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ABSTRACT
Motivation: Cancer diagnosis is one of the most important emerging
clinical applications of gene expression microarray technology. We are
seeking to develop a computer system for powerful and reliable can-
cer diagnostic model creation based on microarray data. To keep a
realistic perspective on clinical applications we focus on multicategory
diagnosis. To equip the system with the optimum combination of clas-
sifier, gene selection and cross-validation methods, we performed a
systematic and comprehensive evaluation of several major algorithms
for multicategory classification, several gene selection methods, mul-
tiple ensemble classifier methods and two cross-validation designs
using 11 datasets spanning 74 diagnostic categories and 41 cancer
types and 12 normal tissue types.
Results: Multicategory support vector machines (MC-SVMs) are the
most effective classifiers in performing accurate cancer diagnosis from
gene expression data. The MC-SVM techniques by Crammer and
Singer, Weston and Watkins and one-versus-rest were found to be
the best methods in this domain. MC-SVMs outperform other popular
machine learning algorithms, such as k -nearest neighbors, back-
propagation and probabilistic neural networks, often to a remarkable
degree. Gene selection techniques can significantly improve the clas-
sification performance of both MC-SVMs and other non-SVM learning
algorithms. Ensemble classifiers do not generally improve perform-
ance of the best non-ensemble models. These results guided the
construction of a software system GEMS (Gene Expression Model
Selector) that automates high-quality model construction and enforces
sound optimization and performance estimation procedures. This is
the first such system to be informed by a rigorous comparative analysis
of the available algorithms and datasets.
Availability: The software system GEMS is available for download
from http://www.gems-system.org for non-commercial use.
Contact: alexander.statnikov@vanderbilt.edu

1 INTRODUCTION
An important emerging medical application domain for microarray
gene expression profiling technology is clinical decision support in
the form of diagnosis of disease as well as the prediction of clinical
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outcomes in response to treatment. The two areas in medicine that
currently attract the greatest attention in this respect are management
of cancer and infectious diseases (Fortina et al., 2002; Ntzani and
Ioannidis, 2003).

A necessary prerequisite for the creation of clinically successful
microarray-based diagnostic models is a solid understanding of the
relative strengths and weaknesses of available classification and
related methods (i.e. gene selection and cross-validation). Although
prior research has established the feasibility of creating accurate
models for cancer diagnosis, the corresponding studies conducted
limited experiments in terms of the number of classifiers, gene selec-
tion algorithms, number of datasets and types of cancer involved (e.g.
Yeo and Poggio, 2001; Su et al., 2001; Ramaswamy et al., 2001;
Yeang et al., 2001; Lee and Lee, 2003). In addition, the results of
these studies cannot be combined into a comprehensive comparat-
ive meta-analysis because each study follows different experimental
protocols and applies learning algorithms differently. Thus, it is not
clear from the literature which classifier, if any, performs best among
the many available alternatives. It is also currently poorly understood
what are the best combinations of classification and gene selection
algorithms across most array-based cancer datasets.

Another major methodological concern is the problem of over-
fitting; that is creating diagnostic models that may not generalize
well to new data from the same cancer types and data distribu-
tion despite excellent performance on the training set. Since many
algorithms are highly parametric and datasets consist of a relatively
small number of high-dimensional samples, it is easy to overfit
both the classifiers and the gene selection procedures especially
when using intensive model search and powerful learners. Indeed
recently, a number of reports appeared in the literature raising
doubts about the generalization ability of classifiers produced by
major studies in the field (Schwarzer and Vach, 2000; Reunanen,
2003; Guyon et al., 2003, http://www.clopinet.com/isabelle/Papers/
RFE-erratum.html). In recent meta-analytic assessment of 84 pub-
lished microarray cancer outcome predictive studies (Ntzani and
Ioannidis, 2003), it was found that 74% of the studies did not perform
independent validation or cross-validation of proposed findings, 13%
applied cross-validation in an incomplete fashion and only 13% per-
formed cross-validation correctly. On the other hand, when building
a diagnostic model, one should avoid underfitting as well, which
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results in the classifiers that are not optimally robust due to limited
experimentation. In particular, this is manifested by the application
of a specific learning algorithm without consideration of alternat-
ives, or use of parametric learners with certain values of parameters
without searching for the best ones.

At the heart of the present work lies the thesis that an automated
system can help with the creation of high-quality and robust dia-
gnostic and prognostic models. For such a system to be successful,
it must implement the best possible classification and gene selection
algorithms for the domain and guide model selection by enforcing
sound principles of model building and data analysis. Hence, to
inform the development of such a system, the goals of the present
work are to (1) investigate which one among the many powerful clas-
sifiers currently available for gene expression diagnosis performs the
best across many cancer types; (2) how classifiers interact with exist-
ing gene selection methods in datasets with varying sample size,
number of genes and cancer types; (3) whether it is possible to
increase diagnostic performance further using meta-learning in the
form of ensemble classification; and (4) how to parameterize the
classifiers and gene selection procedures so as to avoid overfitting.
The ultimate goal is to utilize the knowledge gleaned from the above
experiments to create a fully automated software platform that cre-
ates high-quality, if not optimal, diagnostic models for use in clinical
applications. A first incarnation of such a system is introduced as
a result of the reported experiments.

2 MATERIALS AND METHODS

2.1 Support vector machine-based classification
methods

Support vector machines (SVMs) (Vapnik, 1998) are arguably the single
most important development in supervised classification of recent years.
SVMs often achieve superior classification performance compared to other
learning algorithms across most domains and tasks; they are fairly insensit-
ive to the curse of dimensionality and are efficient enough to handle very
large-scale classification in both sample and variables. In clinical bioin-
formatics, they have allowed the construction of powerful experimental
cancer diagnostic models based on gene expression data with thousands of
variables and as little as few dozen samples (e.g. Furey et al., 2000; Guyon
et al., 2002; Aliferis et al., 2003a). Moreover, several efficient and high-
quality implementations of SVM algorithms (e.g. Joachims, 1999; Chang
and Lin, 2003, http://www.csie.ntu.edu.tw/∼cjlin/libsvm) facilitate applica-
tion of these techniques in practice. The first generation of SVMs could only
be applied to binary classification tasks. Yet, most real-life diagnostic tasks
are not binary. Moreover, all other things being equal, multicategory classi-
fication is significantly harder than binary classification (Mukherjee, 2003).
Fortunately, several algorithms have emerged during the last few years that
allow multicategory classification with SVMs. The preliminary experimental
evidence currently available suggests that some multicategory SVMs (MC-
SVMs) perform well in isolated gene expression-based cancer diagnostic
experiments (Yeo and Poggio, 2001; Su et al., 2001; Ramaswamy et al.,
2001; Yeang et al., 2001; Lee and Lee, 2003).

We outline the principles behind SVM algorithms used in the study
below. Full technical descriptions can be found in the references provided
in the text. A detailed review of binary SVMs, exact mathematical
formulations of both binary and multiclass SVM algorithms, and an
illustration of MC-SVMs methods via a solution of example cancer
diagnostic problem are presented in Appendices A, B and C, respect-
ively, which are available online (A.Statnikov, C.Aliferis, I.Tsamardinos,
D.Hardin and S.Levy, http://www.gems-system.org). In the description
of methods below, k is the number of classes or distinct diagnostic
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Fig. 1. A binary SVM selects a hyperplane (bold line) that maximizes the
width of the ‘gap’ (margin) between the two classes. The hyperplane is spe-
cified by ‘boundary’ training instances, called support vectors shown with
circles. New cases are classified according to the side of the hyperplane they
fall into.

categories and n is the number of samples or patients in the training
dataset.

2.1.1 Binary SVMs The main idea of binary SVMs is to implicitly map
data to a higher dimensional space via a kernel function and then solve an
optimization problem to identify the maximum-margin hyperplane that sep-
arates training instances (Vapnik, 1998). The hyperplane is based on a set
of boundary training instances, called support vectors. New instances are
classified according to the side of the hyperplane they fall into (Fig. 1).
The optimization problem is most often formulated in a way that allows
for non-separable data by penalizing misclassifications.

2.1.2 Multiclass SVMs: one-versus-rest (OVR) This is conceptually
the simplest multiclass SVM method (for details see Kressel, 1999). Here,
we construct k binary SVM classifiers: class 1 (positive) versus all other
classes (negative), class 2 versus all other classes, . . ., class k versus all other
classes (Fig. 2a). The combined OVR decision function chooses the class of a
sample that corresponds to the maximum value of k binary decision functions
specified by the furthest ‘positive’ hyperplane. By doing so, the decision
hyperplanes calculated by k SVMs ‘shift’, which questions the optimality of
the multicategory classification.

This approach is computationally expensive, since we need to solve k

quadratic programming (QP) optimization problems of size n. Moreover,
this technique does not currently have theoretical justification such as the
analysis of generalization, which is a relevant property of a robust learning
algorithm.

2.1.3 Multiclass SVMs: one-versus-one (OVO) This method in-
volves the construction of binary SVM classifiers for all pairs of classes;
in total there are

(
k
2

) = [k(k − 1)]/2 pairs (Fig. 2b and Kressel, 1999). In
other words, for every pair of classes, a binary SVM problem is solved (with
the underlying optimization problem to maximize the margin between two
classes). The decision function assigns an instance to a class that has the
largest number of votes, so-called Max Wins strategy (Friedman, 1996). If
ties still occur, each sample will be assigned a label based on the classification
provided by the furthest hyperplane.

One of the benefits of this approach is that for every pair of classes we
deal with a much smaller optimization problem, and in total we need to solve
k(k − 1)/2 QP problems of size smaller than n. Given that QP optimization
algorithms used for SVMs are polynomial to the problem size, such a reduc-
tion can yield substantial savings in the total computational time. Moreover,
some researchers postulate that even if the entire multicategory problem is
non-separable, while some of the binary subproblems are separable, then
OVO can lead to the improvement of classification compared with OVR
(Kressel, 1999). Unlike the OVR approach, here tie-breaking plays only a
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Fig. 2. MC-SVM algorithms applied to a three-class diagnostic problem. (a) MC-SVM OVR constructs three classifiers: (1) class 1 versus classes 2 and 3; (2)
class 2 versus classes 1 and 3; and (3) classes 3 versus classes 1 and 2. (b) MC-SVM OVO constructs three classifiers: (1) class 1 versus class 2; (2) class 2
versus class 3; and (3) class 1 versus class 3. (c) MC-SVM DAGSVM constructs a decision tree on the basis of OVO SVM classifiers. (d) MC-SVM methods
by Weston and Watkins and by Crammer and Singer construct a single classifier by maximizing margin between all classes simultaneously.

minor role and does not affect the decision boundaries significantly. On the
other hand, similar to OVR, OVO does not currently have established bounds
on the generalization error.

2.1.4 Multiclass SVMs: DAGSVM The training phase of this
algorithm is similar to the OVO approach using multiple binary SVM clas-
sifiers; however, the testing phase of DAGSVM requires the construction of
a rooted binary decision directed acyclic graph (DDAG) using

(
k
2

)
classifiers

(Fig. 2c and Platt et al., 2000). Each node of this graph is a binary SVM for a
pair of classes, say (p, q). On the topologically lowest level there are k leaves
corresponding to k classification decisions. Every non-leaf node (p, q) has
two edges—the left edge corresponds to decision ‘not p’ and the right one
corresponds to ‘not q’. The choice of the class order in the DDAG list can be
arbitrary as shown empirically in Platt et al. (2000).

In addition to inherited advantages from the OVO method, DAGSVM is
characterized by a bound on the generalization error.

2.1.5 Multiclass SVMs: method by Weston and Watkins (WW)
This approach to multiclass SVMs is viewed by some researchers as a natural
extension of the binary SVM classification problem [Fig. 2d; Hsu and Lin
(2002) and Weston and Watkins (1999)]. Here, in the k-class case one has
to solve a single quadratic optimization problem of size (k − 1)n which
is identical to binary SVMs for the case k = 2. In a slightly different

formulation of QP problem, a bounded formulation, decomposition tech-
niques can provide a significant speed-up in the solution of the optimization
problem (Hsu and Lin, 2002; Platt, 1999). This method does not have an estab-
lished bound on the generalization error, and its optimality is not currently
proved.

2.1.6 Multiclass SVMs: method by Crammer and Singer (CS) This
technique is similar to WW [Fig. 2d; Hsu and Lin (2002) and Crammer
and Singer (2000)]. It requires the solution of a single QP problem of size
(k − 1)n, however uses less slack variables in the constraints of the optimiz-
ation problem, and hence it is cheaper computationally. Similar to WW, the
use of decompositions can provide a significant speed-up in the solution of
the optimization problem (Hsu and Lin, 2002). Unfortunately, the optimality
of CS, as well as the bounds on generalization has not yet been demonstrated.

2.2 Non-SVM classification methods
In addition to five MC-SVM methods, three popular classifiers, K-nearest
neighbors (KNNs), backpropagation neural networks (NNs) and probabilistic
neural networks (PNNs), were also used in this study. These learning meth-
ods have been extensively and successfully applied to gene expression-based
cancer diagnosis (e.g. Khan et al., 2001; Ramaswamy et al., 2001; Pomeroy
et al., 2002; Nutt et al., 2003; Singh et al., 2002; Berrar et al., 2003).
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Fig. 3. Simplified illustration of the design of neural networks for a four-category diagnostic problem with m-dimensional samples of variables (genes) and
training set containing N samples. (a) Backpropagation neural network contains inputs for m variables (genes); hidden layer with three units (this number is
usually determined by cross-validation); and output layer with a unit for each diagnostic category (1-of-n encoding scheme). (b) Probabilistic neural network
contains inputs for m variables (genes); pattern layer with N units (a unit for each training instance); competitive layer with four units (a unit for each diagnostic
category) and receive inputs only from pattern units that are associated with the category to which the training instance belongs; and output layer with a unit
for each diagnostic category.

2.2.1 K-nearest neighbors The main idea of KNN is that it treats all
the samples as points in the m-dimensional space (where m is the number
of variables) and given an unseen sample x, the algorithm classifies it by a
vote of K-nearest training instances as determined by some distance metric,
typically Euclidean distance (Mitchell, 1997).

2.2.2 Backpropagation neural networks NNs are feed-forward
neural networks with signals propagated only forward through the layers of
units. These networks are comprised of (1) an input layer of units, which we
feed with gene expression data; (2) hidden layer(s) of units; and (3) an output
layer of units, one for each diagnostic category, so-called 1-of-n encoding
(Fig. 3a and Mitchell, 1997). The connections among units have weights
and are adjusted during the training phase (epochs of a neural network)
by backpropagation learning algorithm. This algorithm adjusts weights by
propagating the error between network outputs and true diagnoses backward
through the network and employs gradient descent optimization to minimize
the error function. This process is repeated until we find a vector of weights
that best fits the training data. When training of a neural network is complete,
unseen data instances are fed to the input units, propagated forward through
the network and the network outputs classifications.

2.2.3 Probabilistic neural networks PNNs belong to the family of
Radial Basis Function (RBF) neural networks (Mitchell, 1997). RBF net-
works are feed-forward neural networks with only one hidden layer. The
primary difference between an NN with one hidden layer and an RBF net-
work is that for the latter one, the inputs are passed directly to the hidden layer
without weights. The Gaussian density function is used in a hidden layer as an
activation function. The weights for the connections among the hidden and
the output layer are optimized via a least squares optimization algorithm. A
key advantage of RBF networks is that they are trained much more efficiently
than NNs.

PNNs are made up of (1) an input layer; (2) a hidden layer consisting
of a pattern layer and a competitive layer; and (3) an output layer [Fig. 3b;
Demuth and Beale (2001) and Specht (1990)]. The pattern layer contains
one unit for each sample in the training dataset. Given an unseen training
sample x, each unit in the pattern layer computes a distance from x to a
specific training instance and applies a Gaussian density activation function.
The competitive layer contains one unit for each diagnostic category, and
these units receive inputs only from pattern units that are associated with the
category to which the training instance belongs. Each unit in the competitive

layer sums over the outputs of the pattern layer and computes a probability of
x belonging to a specific diagnostic category. Finally, the output unit corres-
ponding to a maximum of these probabilities outputs 1, while those remaining
output 0.

2.3 Ensemble classification methods
Given that learners used in this study are different in a sense that they
give preference to the different models, the final classification performance
may be improved via the use of algorithms that combine outputs of indi-
vidual classifiers, so-called ensembles of classifiers. This idea has received
much attention in machine learning literature (e.g. Ho et al., 1994; Sharkey,
1996) and has been recently applied to the gene expression domain (Dudoit
et al., 2002; Valentini et al., 2003). Learning how to combine classifiers
to further improve the performance is an additional meta-learning problem.
Since there is no consensus on the methods, which are the best in ensem-
bling classifiers, we considered a number of techniques: the most common
approach by majority voting (Freund, 1995) and more complex approaches
such as Decision Trees (DT) (Murthy, 1998) and MC-SVM methods (OVR,
OVO and DAGSVM). When algorithms were applied for ensembling of clas-
sifiers, the input dataset consisted of attributes corresponding to the outputs
of classifiers (either SVM or both SVM and non-SVM algorithms) and the
original class labels. Combining classifiers by DT or MC-SVM methods could
yield majority voting for some cases, but DT or MC-SVMs allow many more
ways to construct ensemble of classifiers.

2.4 Parameters for the classification algorithms
Parameters for the classification algorithms were chosen by nested cross-
validation procedures to optimize performance while avoiding overfitting as
described in the experimental design subsection.

For all five MC-SVM methods we used a polynomial kernel K(x, y) =
(γ ·xTy+r)p , where x and y are samples with gene expression values and p,
γ , r are kernel parameters. We performed classifier optimization over the set
of values of cost C (the penalty parameter of SVMs) = {0.0001, 0.01, 1, 100}
and p = {1, 2, 3}. The kernel parameters γ and r were set to default
values as in Chang and Lin (2003): γ = 1/number of variables and
r = 0. For NNs, we performed optimization by implementing early
stopping regularization techniques following Goodman and Harrell (2004)
http://brain.cs.unr.edu/publications/NevPropManual.pdf on top of the Mat-
lab NN toolbox with parameter selection in a nested cross-validation fashion
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Table 1. Cancer-related human gene expression datasets used in this study

Dataset name Diagnostic task Number of Max. Reference

Samples Variables Categories Variables/ prior
(genes) samples (%)

11_T umors 11 various human tumor types 174 12 533 11 72 15.5 Su et al. (2001)
14_T umors 14 various human tumor types

and 12 normal tissue types
308 15 009 26 49 9.7 Ramaswamy et al. (2001)

9_T umors 9 various human tumor types 60 5726 9 95 15.0 Stuanton et al. (2001)
Brain_T umor1 5 human brain tumor types 90 5920 5 66 66.7 Pomeroy et al. (2002)
Brain_T umor2 4 malignant glioma types 50 10 367 4 207 30.0 Nutt et al. (2003)
Leukemia1 Acute myelogenous leukemia

(AML), acute lymphoblastic
leukemia (ALL) B-cell and
ALL T-cell

72 5327 3 74 52.8 Golub et al. (1999)

Leukemia2 AML, ALL and mixed-lineage
leukemia (MLL)

72 11 225 3 156 38.9 Armstrong et al. (2002)

Lung_Cancer 4 lung cancer types and normal
tissues

203 12 600 5 62 68.5 Bhattacherjee et al. (2001)

SRBCT Small, round blue cell tumors
(SRBCT) of childhood

83 2308 4 28 34.9 Khan et al. (2001)

Prostate_T umor Prostate tumor and normal
tissues

102 10 509 2 103 51.0 Singh et al. (2002)

DLBCL Diffuse large B-cell
lymphomas (DLBCL) and
follicular lymphomas

77 5469 2 71 75.3 Shipp et al. (2002)

In addition to nine multicategory datasets, two datasets with two diagnoses were included to empirically confirm that the MC-SVM methods behave as well as binary SVMs in binary
classification tasks as expected theoretically. The column ‘Max. prior’ indicates the prior probability of the dominant diagnostic category.

in order to avoid overfitting. In particular, we used feed-forward NN with
one hidden layer and the number of units chosen from the set {2,5,10,30,50}
based on cross-validation error. We employed gradient descent with adaptive
learning rate backpropagation, mean squared error performance goal set to
10−8 (an arbitrary value very close to zero), fixed momentum of 10−3 and
an optimal number of epochs in the range [100, 10000] based on the early
stopping criterion of Goodman and Harrell (2004). For PNNs, we optimized
the smoothing factor σ , a parameter of the Gaussian density function, over
100 different values ranging from 0.01 to 1.00. The parameter σ was set
the same for all diagnostic categories. Similarly, we performed a thorough
optimization of the KNN classifier over all possible numbers of neighbors K

ranging from 1 to the total number of instances in the training dataset based
on cross-validation error.

2.5 Datasets and data preparatory steps
The datasets used in this work are described in Table 1. In addition to nine mul-
ticategory datasets, which were most of the multicategory cancer diagnosis
datasets in humans found in the public domain at the time when this study
was initiated, two binary datasets (i.e. with two diagnoses), DLBCL and
Prostate_Tumor, were also included to empirically confirm that the employed
MC-SVM learners behave well in binary classification tasks as expected
theoretically.

The studied datasets were produced primarily by oligonucleotide-based
technology. Specifically, in all datasets except for SRBCT, RNA was hybrid-
ized to high-density oligonucleotide Affymetrix arrays HG-U95 or Hu6800,
and expression values (average difference units) were computed using Affy-
metrix GENECHIP analysis software. The SRBCT dataset was obtained by
using two-color cDNA platform with consecutive image analysis performed
by DeArray Software and filtering for a minimal level of expression (Khan
et al., 2001).

The genes or oligonucleotides with ‘absent’ calls in all samples were
excluded from the analysis to reduce the amount of noise in the datasets (Lu
et al., 2002; Wouters et al., 2003), and if this was the case, the number of genes
is listed in bold-face in Table 1. While setting up datasets for experiments, we
took advantage of all available documentation in order to increase the number
of categories or diagnoses for the outcome variable. For example, the original
Brain_Tumor1 data analysis had only two categories—glioblastomas and
anaplastic oligodendrogliomas. Instead of a binary classification problem, we
solved a diagnostic problem with four outcomes: classic glioblastomas, non-
classic glioblastomas, classic anaplastic oligodendrogliomas and non-classic
anaplastic oligodendrogliomas.

In summary, the 11 datasets had 2–26 distinct diagnostic categories,
50–308 samples (patients) and 2308–15 009 variables (genes) after the
data preparatory steps outlined above. All datasets are available for down-
load (A.Statnikov, C.Aliferis, I.Tsamardinos, D.Hardin and S.Levy, http://
www.gems-system.org).

We note that no new methods to preprocess gene expression data were
invented. We relied instead on standard normalization and data preparatory
steps performed by the authors of the primary dataset studies. In addition to
that, we performed a simple rescaling of gene expression values to be between
0 and 1 for speeding up SVM training. The rescaling was performed based
on the training set in order to avoid overfitting.

2.6 Experimental designs for model selection and
evaluation

Two experimental designs were employed to obtain reliable performance
estimates and avoid overfitting. Both experimental designs are based on two
loops. The inner loop is used to determine the best parameter of the classi-
fier (i.e. values of parameters yielding the best performance on the validation
dataset). The outer loop is used for estimating the performance of the classifier
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Fig. 4. Pictorial simplified example of Design I. Data are split into mutually
exclusive sets P1, P2 and P3. The performance is estimated in the outer loop
by training on all splits but one, and using the remaining one for testing. The
average performance over testing sets is reported. The inner loop is used to
determine the optimal value of parameter C (in a cross-validated fashion) for
training in the outer loop.

built using the previously found best parameters by testing on an independ-
ent set of patients. Design I uses a stratified 10-fold cross-validation in the
outer loop and a stratified 9-fold cross-validation in the inner loop (Weiss and
Kulikowski, 1991). It is often referred to as nested stratified 10-fold cross-
validation. Fig. 4 shows a simplified pictorial example of a 3-fold Design I
applied to three patient groups (P1, P2 and P3) with the optimization of para-
meter C (which takes values ‘1’ and ‘2’) of some classifier. Note that in
reality we do not optimize just one parameter but, rather, a large set of com-
bined parameters. Design II uses leave-one-out cross-validation (LOOCV)
in the outer loop and a stratified 10-fold cross-validation in the inner loop.
We chose to employ both designs because there exists contradictory evidence
in the machine learning literature regarding whether N -fold cross-validation
provides more accurate performance estimates than LOOCV and vice versa
for zero-one loss classification (Kohavi, 1995).

Building the final diagnostic model involves: (1) finding the best para-
meters for the classification algorithm using a single loop of cross-validation
analogously to the inner loop in Designs I and II; (2) building the classifier
on all data using the previously found best parameters; and (3) estimating
a conservative bound on the classifier’s future accuracy by running either
Design I or II.

2.7 Gene selection
To study how dimensionality reduction can improve the classification per-
formance, we applied all classifiers with subsets of 25, 50, 100, 500 and
1000 top-ranked genes, following the example set by Furey et al. (2000).
Genes were selected according to four gene selection methods/metrics:
(1) ratio of genes between-categories to within-category sums of squares
(BW) (Dudoit et al., 2002); (2–3) signal-to-noise (S2N) scores (Golub et al.,
1999) applied in a OVR (S2N-OVR) and in OVO (S2N-OVO) fashion; and
(4) Kruskal–Wallis non-parametric one-way ANOVA (KW) (Jones, 1997).
The ranking of the genes was performed based on the training set of samples
to avoid overfitting.

2.8 Performance metrics
We used two classification performance metrics. The first metric is accuracy
since we wanted to compare our results with the previously published studies
that also used this performance metric. Accuracy is easy to interpret and
simplifies statistical testing. On the other hand, accuracy is sensitive to the
prior class probabilities and does not fully describe the actual difficulty of the
decision problem for highly unbalanced distributions. For example, it is more

difficult to achieve an accuracy of 50% for a 26-class dataset 14_Tumors with
prior probability of the major class = 9.7% compared to an accuracy of 75%
for a binary dataset DLBCL with prior of the major class = 75.3%.

The second metric is relative classifier information (RCI), which corrects
for differences in prior probabilities of the diagnostic categories, as well as
the number of categories. RCI is an entropy-based measure that quantifies
how much the uncertainty of a decision problem is reduced by a classifier
relative to classifying using only the priors (Sindwani and et al., 2001).

2.9 Overall research design
To maintain the feasibility of this study, we pursued a staged factorial design:
in Stage I, we conducted a fully factorial design involving datasets and classi-
fiers without gene selection; in Stage II, we focused on the datasets for which
the full gene sets yielded poor performance and applied gene selection in a
factorial fashion. In addition, we optimized algorithms using accuracy only
and limited the possible cardinalities of selected gene sets to only five choices
as described in the subsection on gene selection.

Although the above choices restricted the number of models generated, the
resulting analyses still generated more than 2.6×106 diagnostic models. The
total time required was four single-CPU months using Intel Xeon 2.4 GHz
platform. Out of this set of models, only one model was selected for each
combination of algorithm and dataset.

Not that, despite the very large number of examined models, the final
performance estimates are not overfitted. This is because only one model
is selected per split for the estimation of the final performance and it is
applied to previously unseen cases. Thus, regardless of how much perform-
ance is overestimated in the inner loop (which, in the worst case, may result
in not choosing the best possible parameters’ combination), the outer loop
guarantees proper estimation of the performance.

2.10 Statistical comparison among classifiers
To test that differences in accuracy between the best method (i.e. one with
the largest average accuracy) and all remaining algorithms are non-random,
we need a statistical comparison of observed differences in accuracies.

In machine learning, the major study about the comparison of supervised
classification learning algorithms is that of Dietterich (1998) who suggests
using N -fold cross-validated paired t-test for the comparison of N -fold accur-
acy estimates for a single dataset. However, the author clearly admits that this
test violates independence and, even more importantly, does not address how
this procedure is applied to a multitude of datasets. That is why we decided to
use random permutation testing that does not rely on independence assump-
tions and can be straightforwardly applied to several datasets (Good, 2000).
For every algorithm X, other than the best algorithm Y, we performed the
following steps. (1) We defined the null hypothesis H0 to be: classification
algorithm X is as good as Y, i.e. the accuracy of the best algorithm Y minus the
accuracy of algorithm X is zero. (2) We obtained the permutation distribution
of �XY, the estimator of the true unknown difference between accuracies
of the two algorithms, by repeatedly rearranging the outcomes of X and Y
at random. (3) We computed the cumulative probability (P -value) of �XY

being greater than or equal to observed difference �̂XY over 10 000 permuta-
tions. If the P < 0.05, we rejected H0 and concluded that the data support
that algorithm X is not as good as Y in terms of classification accuracy, and
this difference is not due to sampling error. To increase the resolution of sim-
ulated sampling distribution, we computed a single value of accuracy over all
samples from all the datasets. In other words, we treated classifier’s predic-
tions from all 11 datasets as if we had one large dataset with samples from
all individual datasets.

3 IMPLEMENTATIONS
We used the MC-SVM algorithms implemented by the LibSVM team
(Chang and Lin, 2003), since they use state-of-the-art optimization
methods SMO (Platt, 1999) and TRON (Lin and Moré, 1999) for
the solution of MC-SVM problems. The implementation of NN and
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Fig. 5. Screenshot of the GEMS system. Many fields are automatically filled out with default values. Most experiments in this study can be replicated using
the system with a few clicks of the mouse.

PNN classifiers was based on the Matlab Neural Networks toolbox
(Demuth and Beale, 2001). We applied Matlab R13 implementation
of the CART algorithm (Murthy, 1998) for DT, and we used our own
implementations of KNN, ensemble classification, gene selection as
well as statistical comparison algorithms.

The prototype analysis system GEMS (Gene Expression Model
Selector) based on the results and analyses reported here, was built
using Matlab R13 and MS Visual C++ 6. GEMS has a graphics user
interface consisting of a single form (Fig. 5) and is freely available
for download (http://www.gems-system.org). The user’s manual for
the system is provided in Appendix D, which is available online
(http://www.gems-system.org).

4 RESULTS AND ANALYSES

4.1 Classification without gene selection
The performance results of experiments without gene selection
obtained using Design I (nested stratified 10-fold cross-validation)
with accuracy and RCI as a performance metric are shown in Tables 2
and 3, respectively. The results for Design II are almost identical and
are provided only in Appendix E, section 1, which is available online

(http://www.gems-system.org). The fact that we obtained similar res-
ults with two different experimental designs is evidence in favor of
the reliability of performance estimation procedures.

Notably, RCI performance metric revealed different results com-
pared to accuracy. For example, the best RCI for 14_Tumors dataset is
90.96% and for Prostate_Tumor is 71.14%. In contrast, when accur-
acy was employed, we obtained 76.60% in 14_Tumors and 92%
in Prostate_Tumor. The difference can be explained by the diffi-
culties of the classification problems—14_Tumors is much harder
(it has 26 classes with prior of the most frequent class 9.7%;
Table 1) than Prostate_Tumor (it is a binary problem with prior 51%;
Table 1).

According to Table 2, in 8 out of 11 datasets, MC-SVMs per-
form cancer diagnoses with accuracies >90%. The results for RCI
performance metric are similar (Table 3): in 7 out of 11 datasets,
MC-SVMs yield diagnostic performance with RCI > 90%. Over-
all, all MC-SVMs outperform KNN, NN and PNN significantly. The
only exception is KNN and PNN applied to 14_Tumors dataset which
outperformed OVO and DAGSVM, but still were unable to perform
better than more robust MC-SVM techniques, OVR, WW and CS.
The superior classification performance of the SVM-based methods
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Table 2. Performance results (accuracies) without gene selection obtained using a nested stratified 10-fold cross-validation design (Design I)

Methods Multicategory classification (%) Binary classification (%) Averages (%)
9_Tumors 11_Tumors 14_Tumors Brain_Tumor1 Brain_Tumor2 Leukemia1 Leukemia2 Lung_Cancer SRBCT Prostate_Tumor DLBCL

MC-SVM
OVR 65.10 94.68 74.98 91.67 77.00 97.50 97.32 96.05 100.00 92.00 97.50 89.44
OVO 58.57 90.36 47.07 90.56 77.83 97.32 95.89 95.59 100.00 92.00 97.50 85.70
DAGSVM 60.24 90.36 47.35 90.56 77.83 96.07 95.89 95.59 100.00 92.00 97.50 85.76
WW 62.24 94.68 69.07 90.56 73.33 97.50 95.89 95.55 100.00 92.00 97.50 88.03
CS 65.33 95.30 76.60 90.56 72.83 97.50 95.89 96.55 100.00 92.00 97.50 89.10

Non-SVM
KNN 43.90 78.51 50.40 87.94 68.67 83.57 87.14 89.64 86.90 85.09 86.96 77.16
NN 19.38 54.14 11.12 84.72 60.33 76.61 91.03 87.80 91.03 79.18 89.64 67.73
PNN 34.00 77.21 49.09 79.61 62.83 85.00 83.21 85.66 79.50 79.18 80.89 72.38

These results are further improved by gene selection (Fig. 6). The last column in the bottom table reports average performance computed over datasets. Numbers in bold correspond to the best classifications for each dataset.

Table 3. Performance results (RCI) without gene selection obtained using a nested stratified 10-fold cross-validation design (Design I)

Methods Multicategory classification (%) Binary classification (%) Averages (%)
9_Tumors 11_Tumors 14_Tumors Brain_Tumor1 Brain_Tumor2 Leukemia1 Leukemia2 Lung_Cancer SRBCT Prostate_Tumor DLBCL

MC-SVM
OVR 77.00 95.80 90.53 82.31 77.49 93.90 94.42 89.45 100.00 71.14 90.91 87.54
OVO 78.24 92.24 64.99 80.77 80.27 93.05 92.35 87.95 100.00 71.14 90.91 84.72
DAGSVM 78.67 92.24 65.64 80.77 80.27 90.16 92.35 87.95 100.00 71.14 90.91 84.55
WW 76.22 95.80 86.30 80.77 74.75 93.90 91.90 87.46 100.00 71.14 90.91 86.29
CS 77.25 96.20 90.96 80.77 74.44 93.90 91.90 91.40 100.00 71.14 90.91 87.17

Non-SVM
KNN 63.38 83.93 82.73 67.86 64.48 64.45 76.95 68.48 80.71 51.09 63.08 69.74
NN 65.57 67.80 16.24 61.42 62.49 53.06 78.02 64.97 87.50 33.25 58.36 58.97
PNN 55.59 81.39 81.40 43.86 61.73 68.85 73.51 59.72 68.92 39.22 38.23 61.13

These results are further improved by gene selection (Fig. 7). The last column in the bottom table reports average performance computed over datasets. Numbers in bold correspond to the best classifications for each dataset.
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compared to KNN, NN and PNN reflects that SVMs are less sensitive
to the curse of dimensionality and more robust to a small number
of high-dimensional gene expression samples than other non-SVM
techniques (Aliferis et al., 2003b). A more detailed explanation of
this matter follows in the next section.

Among MC-SVMs, OVR, WW and CS yield the best results and
are not statistically significant from each other at the 0.05 level
(Appendix E, section 2). On the other hand, OVO, DAGSVM, KNN,
PNN and NN have poorer performance than the above methods
to a statistically significant degree. OVO and DAGSVM perform
very similar, which is due to the fact that both MC-SVM methods
use the same binary SVM classifiers. We conjecture that OVO and
DAGSVM perform worse than other MC-SVM methods because
both algorithms are based on one-versus-one binary classifiers that
use only a fraction of total training samples at a time (samples that
belong to two classes) and ignore information about the distribution
of the remaining examples that may be significant for the classifica-
tion. In case of large sample sizes, we expect MC-SVMs OVO and
DAGSVM to perform as good as WW, CS and OVR (e.g. see Hsu
and Lin, 2002).

According to Tables 2 and 3 and the results of application of
the binary SVM implementation SVMLight (Joachims, 1999) to
DLBCL and Prostate_Tumor datasets (data not shown), we conclude
that employed implementations of MC-SVM algorithms perform
the same classifications as binary SVMs and, hence, handle binary
diagnostic problems appropriately as expected.

We tried to explain the classification performance of the best MC-
SVM algorithms OVR, WW and CS by fitting inverse power curves
motivated by the ideas described previously (Cortes et al., 1993). We
found that in high-dimensional spaces of microarray gene expression
data, the number of samples divided by the product of the number of
variables times the number of categories explains observed classifi-
cation accuracies in the datasets. When we reduced dimensionality by
gene selection, or employed RCI performance metric, or used other
classification algorithms, this behavior disappeared. More details
can be found in Appendix E, section 3. It is important to note that
curve fitting procedure used in this study is very simplistic since
it does not incorporate predictors describing degree of biological
difficulty and assumes that datasets and learning tasks used in this
study are representative.

Finally, we also analyzed execution time for all learning algorithms
applied without gene selection (Table 4). The fastest MC-SVM meth-
ods CS and WW took 7.95 and 7.88 h for Design I and 289.01 and
290.77 h for Design II, respectively. The slowest MC-SVM tech-
nique OVR completed within 19.28 h for Design I and 772.43 h
for Design II. This technique is slowest among the MC-SVM
algorithms since it constructs several classifiers repeatedly employ-
ing all samples from the training dataset. The fastest overall algorithm
KNN took 3.40 h for Design I and 109.60 h for Design II, while the
slowest overall algorithms NN and PNN took 195.68 h and 186.19 h,
respectively, for Design I. All experiments were executed in the
Matlab R13 environment on eight Intel Xeon 2.4 GHz dual-CPU
workstations connected in a cluster.

4.2 Classification with gene selection
The summary of application of the four gene selection methods,
BW, S2N-OVR, S2N-OVO and KW, to the four most ‘challenging’
datasets, 9_Tumors, 14_Tumors, Brain_Tumor1 and Brain_Tumor2,
using accuracies and RCI as a performance metric is presented in

Table 4. Total time of classification experiments without gene selection for
all 11 datasets and two experimental designs

Methods Time (h)
Design I Design II

MC-SVM
OVR 19.28 772.43
OVO 9.86 388.11
DAGSVM 9.93 390.97
WW 7.95 290.77
CS 7.88 289.01

Non-SVM
KNN 3.40 109.60
NN 195.68 N/A
PNN 186.19 N/A

Figures 6 and 7, respectively. It should be noted that a more rigorous
way to do gene selection with the validation of number of genes and
gene selection method is implemented in GEMS software system
and may be very expensive computationally (that is why it was not
pursued here as explained in the Materials and methods section).

The results show that gene selection significantly improves the
classification performance of non-SVM learners. In particular, for
some datasets, accuracy is improved by up to 14.97, 59.78 and
22.67% and RCI is improved by up to 19.52, 69.95 and 34.98%
for KNN, NN and PNN, respectively. Gene selection also improves
the accuracy of MC-SVMs up to 9.53% and, hence, improves the
accuracy of the overall best classifier. Although KNN, NN and PNN
perform closer to MC-SVMs, three MC-SVM algorithms, OVR,
WW and CS, still outperform non-SVM methods in most of the
cases. We also found that these three MC-SVM methods are not
statistically significant from each other and NN at the 0.05 level
(Appendix E, section 2). The remaining algorithms, MC-SVMs
OVO and DAGSVM, KNN and PNN, have statistically significant
poorer performance. Finally, none of the four gene selection methods
performs significantly better than the other ones.

As we have empirically found, the non-SVM methods KNN,
PNN and NN benefit significantly more than MC-SVMs from gene
selection. A number of observations can explain this behavior: in
high-dimensional spaces, KNN has high variance of the prediction
since all the training points are located close to the edge of the sample
(Hastie et al., 2001). Furthermore, many irrelevant variables in the
data dominate distances between samples which presents a signi-
ficant problem for the prediction (Mitchell, 1997). PNN encounter
problems similar to KNN, in particular because they rely on Parzen
windows for density estimation that generally require exponential
sample to the data dimensionality (Duda et al., 2001). NNs are sens-
itive to high dimensionality for at least two reasons: first, note the
larger the number of variables, the larger is the number of weights
in this type of neural network. Because of this, (1) there may be
more local minima in the error landscape and it is thus more prob-
able for backpropagation to get ‘trapped’ in one of them, and (2) the
model space becomes exponentially larger with the addition of each
weight, and therefore, it becomes harder to identify a model that
generalizes. In comparison, the family of SVMs allows for effective
optimization search procedure by utilizing convex formulation with
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Fig. 6. Performance results (accuracies) of the classification experiments with gene selection obtained using a nested stratified 10-fold cross-validation design
(Design I) for four datasets: 9_Tumors, 14_Tumors, Brain_Tumor1 and Brain_Tumor2. The white bars correspond to the classification results without gene
selection. The black bars show improvement of the results by gene selection. The text above each bar indicates the optimal combination of gene selection
method and the number of genes for a specific classifier. The abbreviation ‘No GS’ stands for ‘No gene selection’.
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Fig. 7. Performance results (RCI) of the classification experiments with gene selection obtained using a nested stratified 10-fold cross-validation design
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a single optimum justified by Statistical Learning Theory (Vapnik,
1998). Furthermore, SVMs seem relatively insensitive to the curse
of dimensionality, possibly due to the specific regularization mech-
anism they employ. In particular, this is reflected by the following:
(1) many established generalization bounds do not depend on the data
dimensionality (Herbrich, 2002) and (2) even linear SVMs assign
zero weights to irrelevant variables (Hardin et al., 2004). On the other
hand, the SVM algorithm may assign non-zero weights to weakly
relevant variables (Hardin et al., 2004), which explains why effective
variable selection can still improve the SVM classification.

4.3 Ensemble classification
For the case when no gene selection was performed, ensembles do not
outperform the best non-ensemble methods with the exception of the
DT ensemble classifier for Brain_Tumor2 dataset, which improves
the classification accuracy by 1.67%. Other ensembles often achieve
similar performance to the best non-ensemble methods (Appendix E,
section 4).

Next, we considered three datasets, 9_Tumors, Brain_ Tumor1
and Brain_Tumor2, where we previously observed an improvement
in the classification performance by gene selection. For each dataset,
we selected a subset of genes yielding the best classification perform-
ance (over all gene selection methods, subsets of genes and learning
algorithms) and constructed combined classifiers. According to the
results, ensembles perform worse than the best non-ensemble models
(Appendix E, section 4).

We believe that in our study, ensemble classifiers did not improve
the final classification performance for the following two reasons:
first, samples misclassified by non-SVM algorithms are almost
always a strict superset of samples misclassified by MC-SVM
algorithms. Second, SVM algorithms are fairly stable in a sense
that small changes in the training data do not result in large changes
in the predictive model’s behavior (Kutin and Niyogi, 2002), and
according to Dudoit et al. (2002) stable algorithms do not usually
tend to benefit from the ensemble classification.

4.4 Comparison with previously published results
Most of the results from this study are not exactly comparable with
the analyses provided in the original studies due to differences in the
setup of dataset/learning task, experimental design, gene selection,
classifiers and so on that vary from study to study. However, the
reported results in the literature confirm that MC-SVMs as applied
here perform equally as well, or even better, compared to previously
published models on the same datasets (Appendix E, section 5).

5 DISCUSSION AND LIMITATIONS
One of the limitations of the present study is that we use accuracy and
RCI as our performance measures. These metrics do not incorporate
information about confidence of the predictions as well as different
misclassification costs of diagnostic categories. On the other hand,
accuracy was used in the published studies and it is easy to inter-
pret and simplifies statistical comparison, while RCI is insensitive to
prior class probabilities and accounts for the difficulty of the learning
problem. There are currently no mature performance metrics applic-
able for multiclass domains and suitable for our classifiers with both
confidence information and consideration of misclassification costs.
Initial attempts were introduced by Lee and Lee (2003), Mossman
(1999) and Ferri et al. (2003); however, much needs to be done

before we obtain a workable metric for experiments such as those
presented here.

As we mentioned above, the choice of KNN, NN and PNN clas-
sifiers as the baseline techniques was grounded on prior successful
applications to gene expression-based cancer diagnosis (e.g. Khan
et al., 2001; Ramaswamy et al., 2001; Pomeroy et al., 2002; Nutt
et al., 2003; Singh et al., 2002; Berrar et al., 2003). We have also
experimented with other non-SVM classifiers, such as DT (Murthy,
1998) and Weighed Voting (WV) classifiers applied both in OVR and
OVO fashion (Golub et al., 1999; Ramaswamy et al., 2001; Yeang
et al., 2001). We found that both with and without gene selection,
DT perform significantly worse than MC-SVMs, worse than KNN,
and similarly or worse than NN and PNN. Likewise, WV classifiers
are significantly outperformed by MC-SVMs, KNN, NN and PNN.
More details about these additional experiments with DT and WV
classifiers can be found in Appendix E, section 6.

A particularly interesting direction for future research is to improve
our existing gene selection procedures with the selection of ‘optimal’
number of genes by cross-validation1. Furthermore, we are interested
in applying various multivariate Markov blanket and local neighbor-
hood algorithms that have been previously successfully applied to
cancer gene expression and several other domains and do guarantee
efficient identification of a set of relevant attributes under fairly broad
assumptions (Aliferis et al., 2003c; Tsamardinos et al., 2003).

We plan to extend our comparative analyses with new MC-SVM
methods as they become available. In particular, we plan to use an
MSVM2 (for details, see Lee and Lee, 2003), which has promising
theoretical properties. Namely, an MSVM employs a certain loss
function for the multicategory classification problem under which
the solution to the multicategory problem resembles Bayes rule
asymptotically. Moreover, this framework easily allows accounting
for unequal misclassification and distortion of class proportions. In
addition to new MC-SVM algorithms, a promising set of new meth-
ods is error correcting output codes for the solution of multiclass
problems by reducing them to binary problems3 that can be solved
using binary SVMs. This approach is very promising in that some
researchers proved a general empirical multiclass error loss bound
given empirical loss of individual binary classifiers (Allwein et al.,
2000).

The emergence of new cancer gene expression datasets in our
institution and elsewhere will allow us to conduct a prospective eval-
uation of the GEMS system to study its ability to facilitate creation
of powerful diagnosis models. We are also working on augmenting
the preliminary version of the system with wizard-like graphics user
interface that will make GEMS usable by researchers with limited
expertise in data analysis.

To the best of our knowledge, currently there exists only one
work aimed at the evaluation of MC-SVM algorithms (Hsu and Lin,
2002). This study is outside the realm of biomedicine since Hsu and

1The functionality to cross-validate number of genes is already implemented
in the software system.
2Although the codes of MSVM were kindly provided by its author, the imple-
mentation of this algorithm cannot currently handle problems with very large
number of categories and/or large sample size. Given the excellent theoretical
properties of the MSVM, we hope that this issue will be solved in the near
future so this algorithm can be applied to the present problem domain.
3In the present study, we have already employed three approaches to reduce
multiclass problems to binary—OVR, OVO and DAGSVM.
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Lin (2002) considered such classification tasks as wine recognition,
letter recognition, shuttle control and so on with the number of vari-
ables ranging from 4 to 180 and sample sizes greater than 500 in the
majority of tasks, which is not typical for microarray cancer gene
expression datasets. However, it is worthwhile to mention the major
conclusions of that evaluation. The authors empirically found the
following: (1) using a Gaussian radial basis kernel, all MC-SVM
methods perform similarly; (2) DAGSVM and OVO have the fast-
est training time; and (3) for problems with large sample size, WW
and CS yield fewer support vectors compared to OVR, OVO and
DAGSVM. The work by Hsu is complementary to ours and is not
overlapping due to significant differences in the problem domain
and dataset characteristics. For example, in our experiments, MC-
SVM methods OVO and DAGSVM achieved inferior classification
performance compared to other MC-SVM algorithms.

Finally, two recent bioinformatics studies have also performed
comparative analyses of multicategory classification algorithms in
cancer gene expression domain (Berrar et al., 2003; Romualdi et al.,
2003). Unfortunately, neither study optimized parameters of the
classifiers for all datasets, which is likely to result in suboptimal
application of the learning methods. Therefore, no study can con-
vincingly answer the central question of this research—what is the
best learning algorithm for multicategory cancer diagnosis based on
gene expression data?

6 CONCLUSIONS
The contributions of the present study are two-fold. The first con-
tribution is that we conducted the most comprehensive systematic
evaluation to date of multicategory diagnosis algorithms applied to
the majority of multicategory cancer-related gene expression human
datasets publicly available. Based on the results of this evaluation,
the following conclusions can be drawn:

• MSVMs are the best family of algorithms for these type of data
and medical tasks. They outperform other popular non-SVM
machine learning techniques by a large margin.

• Among MC-SVM methods, the ones by Crammer and Singer,
Weston and Watkins and OVR have superior classification
performance.

• The performance of both MC-SVM and non-SVM methods can
be moderately (for MC-SVMs) or significantly (for non-SVM)
improved by gene selection.

• Ensemble classification does not further improve the classific-
ation performance of the best MC-SVM models.

We believe that practitioners and software developers should take
note of these results when considering construction of decision
support systems in this domain, or when selecting algorithms for
inclusion in related analysis software.

The second contribution is that we created the fully automated
software system GEMS that automates the experimental procedures
described in this paper to (1) develop optimal classification models
for the domain of cancer diagnosis with microarray gene expression
data and (2) estimate their performance in future patients. The results
obtained by the system in a labor-efficient manner appear to be on par
with or better than previously published results in the literature on the
same datasets. Although several commercial and academic software
tools exist for gene expression classification (e.g. Reich et al., 2004),

to the best of our knowledge GEMS treats the task in the most com-
prehensive manner and is the first such system to be informed after a
rigorous analysis of the available algorithms and datasets. We hope
that the methodology presented in the present paper may encourage
similar principled treatment of other software development efforts in
clinical bioinformatics. The system is freely available for download
(http://www.gems-system.org) for non-commercial use and its users
manual is provided in Appendix D.
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