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Population variation in gene expression<p>The expression of a selected suite of 192 metabolic genes in brain, heart and liver in three populations of the teleost fish <it>Fundulus heteroclitus </it>was examined. Only a small subset (31%) of tissue-specific differences was consistent in all three populations, indicating that many tissue-specific differences in gene expression are unique to one population and thus are unlikely to contribute to fundamental differences between tissue types.</p>

Abstract

Background: Variation in gene expression is extensive among tissues, individuals, strains,
populations and species. The interactions among these sources of variation are relevant for
physiological studies such as disease or toxic stress; for example, it is common for pathologies such
as cancer, heart failure and metabolic disease to be associated with changes in tissue-specific gene
expression or changes in metabolic gene expression. But how conserved these differences are
among outbred individuals and among populations has not been well documented. To address this
we examined the expression of a selected suite of 192 metabolic genes in brain, heart and liver in
three populations of the teleost fish Fundulus heteroclitus using a highly replicated experimental
design.

Results: Half of the genes (48%) were differentially expressed among individuals within a
population-tissue group and 76% were differentially expressed among tissues. Differences among
tissues reflected well established tissue-specific metabolic requirements, suggesting that these
measures of gene expression accurately reflect changes in proteins and their phenotypic effects.
Remarkably, only a small subset (31%) of tissue-specific differences was consistent in all three
populations.

Conclusions: These data indicate that many tissue-specific differences in gene expression are
unique to one population and thus are unlikely to contribute to fundamental differences between
tissue types. We suggest that those subsets of treatment-specific gene expression patterns that are
conserved between taxa are most likely to be functionally related to the physiological state in
question.

Background
The regulation of gene expression varies extensively among
tissues, individuals, strains, populations and species [1-6]
and variation in gene expression has a genetic basis [7,8].
Despite such biological variance, differences in gene expres-
sion are used to describe cancers [9-12], heart failure [13,14]

and metabolic diseases [15]. It is common for these patholo-
gies to be associated with changes in tissue-specific gene
expression or changes in metabolic gene expression. For
example, many different cancers have unique tissue-specific
patterns of gene expression [16], and thyroid cancers are
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associated with increases in aerobic metabolic gene expres-
sion [17].

Although tissue-specific gene expression patterns are often
used as a method to identify functionally relevant genes, how
conserved these differences are among outbred individuals
and among populations has not been well documented. It is
possible that many of these changes represent polymorphism
among individuals or populations and are not specifically
associated with disease. To address this we used a well estab-
lished system (tissue-specific gene expression) and genes
with well defined function and tissue-specific distributions
(metabolic genes).

Given the high variance in gene expression among individuals
and populations, our goal was to examine the conservation of
tissue-specific gene expression among populations of the
same species. Specifically, we assessed the among-population
variance of tissue-specific patterns of gene expression (in
brain, heart and liver) in the teleost fish Fundulus heterocli-
tus. A cDNA microarray was used to measure levels of expres-
sion in normal healthy male fish for 192 genes involved in
central metabolic pathways. We used this compact array in
order to impose a high degree of technical and biological rep-
lication (24 replicates for each of three tissues from nine indi-
viduals with two samples per array). Also, this array was used
because metabolic genes are essential, are known to have tis-

sue-specific expression, especially in fish, and are often mis-
used as controls with little characterization of variation in
expression among individuals or tissues. Analysis of variance
(ANOVA) was used as a statistical test to determine which
genes were differentially expressed among tissues and popu-
lations. Tissue-specific patterns of gene expression were com-
pared among populations. As expected, we detected extensive
variation in gene expression among tissues. Unexpectedly,
only a fraction (31%) of tissue-specific differences was con-
served between all populations.

Results
Variation among
Variation among individuals within groups was high (groups
included the nine tissue-by-population groupings; Figure 1).
Nearly half of genes (92 genes, 48%) were differentially
expressed (p < 0.05) among individuals within populations
and tissues (Figure 1), and inter-individual differences
ranged over fivefold.

Variation within individuals (technical variance) and among individuals within populations and tissues (biological variance) for each of 192 genes indicated by the mean square error (MS) of measurementsFigure 1
Variation within individuals (technical variance) and among individuals 
within populations and tissues (biological variance) for each of 192 genes 
indicated by the mean square error (MS) of measurements. Points above 
the dashed line indicate genes with greater variance among individuals than 
within. F-crit is the critical value of the F-statistic (F = MSamong/MSwithin, 
with 12 and 27 degrees of freedom and α = 0.05) for testing significant 
differences in gene expression between individuals. For 48% of genes, 
MSamong/MSwithin > F-crit (solid red line). These genes are therefore 
differentially expressed among individuals within treatments.
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Volcano plot of differences between tissues and corresponding p-valuesFigure 2
Volcano plot of differences between tissues and corresponding p-values. 
Differences in expression for each gene is the log2 ratio of tissue mean 
expression minus grand mean; a twofold difference in expression between 
tissues is indicated by one unit separation along the x-axis. p-values for 
differences in gene expression among tissues were calculated using 
ANOVA, and illustrated as -log(p). A p-value of 10-4 is expressed as 4 on 
the y-axis, and the α = 0.05 threshold is indicated by the red dashed line (1 
- log(0.05) = 1.3).
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Variation among tissues
Although variation among individuals was high, added varia-
tion due to tissues was significant. Considering 192 genes and
a p-value of 5%, one would expect less than 10 false-positive
differences among tissues under the null hypothesis. We
detected 76% of genes (146 of 192 genes) differentially
expressed among brains, hearts and livers (ANOVA, p <
0.05). Selecting the α level at which differences between
treatments are considered significant is problematic because
of the large number of comparisons performed. As such, we
present a volcano plot to illustrate the range of expression dif-
ferences between tissues and associated p-values (Figure 2).
When α is set at 0.01, 0.001 or at the Bonferroni-corrected
value (2.6 × 10-4), the proportion of significant genes is 67%
(129 genes), 50% (96) and 39% (75), respectively. Significant
differences in expression ranged from less than 1.2-fold to
nearly 16-fold (Figure 2). The predominant pattern of tissue-
specific expression can be described by expression signifi-
cantly different in the liver compared to the other two tissues
(Figure 3).

Many expected tissue-specific patterns emerged. For exam-
ple, the brain-specific fatty-acid-binding protein was typically
more highly expressed in the brain than in other tissues (p =
0.005), hepatocyte nuclear factor 4-alpha (a transcription
factor) was more highly expressed in liver than in other tis-
sues (p < 0.001), and two genes involved in glycerolipid
metabolism -lipoprotein lipase and phopholipase XIII A2 -

Figure 3

Dendrogram of gene expression patterns across samples for genes significantly different between tissues (ANOVA, p < 0.05)Figure 3
Dendrogram of gene expression patterns across samples for genes 
significantly different between tissues (ANOVA, p < 0.05). Clustering 
indicates similar expression patterns among samples (top axis) and among 
genes (left axis). Samples cluster as livers (yellow), hearts (pink) and brains 
(blue). Genes involved in oxidative phosphorylation are highlighted in 
green, and expression patterns that are consistent across all three 
populations are highlighted with a blue triangle.

Number of genes differentially expressed among tissue groups for each populationFigure 4
Number of genes differentially expressed among tissue groups for each 
population. Tissue-specific genes are those that are expressed more highly 
in a tissue than in the other tissues (for example, L > H, B) or lower in a 
tissue than in the other tissues (for example, L < H, B).
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were more highly expressed in liver than other tissues (p <
0.001 for both genes).

Liver-specific expression accounted for 61% of the expression
differences among tissues (Figure 4). Heart-specific and
brain-specific expression accounted for 24% and 15% of dif-
ferences among tissues, respectively. Regardless of
population, expression patterns were typically most similar
between heart and brain, and least similar between liver and
heart (Figure 5). There were 67 genes printed on the array
that code for proteins involved in oxidative phosphorylation,
and 88% (59 genes) were differentially expressed between tis-
sues (genes highlighted in green, Figure 3). Of differentially
expressed oxidative phosphorylation genes, only 10% (six
genes) were expressed more highly in the liver than in other
tissues, whereas the remaining 90% (53 genes) had lower
expression in the liver compared to brain or heart.

Variation among taxa
A small proportion of genes (six genes, 3%) differed in expres-
sion among populations (p < 0.05). However, it should be
noted that although the split-plot design is powerful for
detecting differences between split-plot factors (tissues), it is
considered to have low power for detecting differences
between blocks (populations) [18]. As such, it is likely that 3%
is an underestimate of true among-population differences in
gene expression. Indeed, two-way ANOVA (data not shown),
which has higher power for detecting population differences
but is less valid than the split-plot model for testing individual
and tissue differences, detected among-population differ-
ences in expression for 18% of genes at p < 0.05, or 6.3% of
genes at p < 0.01. Each tissue contributed a similar number of
genes differentially expressed among populations.

Similarity of expression patterns among tissuesFigure 5
Similarity of expression patterns among tissues. (a) Proportion of 192 genes that are similarly expressed between heart and brain (black bar), brain and 
liver (gray bar) and liver and heart (white bar), for each population including Maine (ME), New Jersey (NJ) and Georgia (GA). (b) Neighbor-joining trees of 
global similarity of expression patterns among samples (L, liver; H, heart; B, brain) for each population. Distance between samples is the sum of differences 
of log2 expression values over all genes.
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Table 1

Identity of tissue-specific genes with expression patterns consistent in all three populations, and those inconsistent in all three 
populations

Gene (see Figure 7) Grid Short name Swiss-Prot name

Consistent - oxidative phosphorylation

a E8 Aldo keto reductase 1 A1 Aldo-keto reductase family 1 member A1 (aldehyde reductase)

b E7 Aldo keto reductase 1 D1 Aldo-keto reductase family 1 member D1; steroid-5-beta-reductase beta polypeptide 1 (3-
oxo-5 beta-steroid delta 4-dehydrogenase beta 1); steroid 5-beta-reductase

c F1 G3PDH Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

d D10 Glucose 6 phosphatase Glucose-6-phosphatase (G6PASE)

e H3 Pyruvate kinase muscle Pyruvate kinase (muscle isozyme)

f G10 Pyruvate kinase R Pyruvate kinase isoform R (erythroid)

g I6 NADH dehydrb 6 (17 kD) NADH dehydrogenase (ubiquinone) 1 beta subcomplex 6 (17 kD B17)

h G4 NADH Ubiq Oxi ASHI NADH-ubiquinone oxidoreductase ASHI subunit precursor (complex I-ASHI) (CI-ASHI)

i M4 NADH Ubiq Oxi MNLL NADH-ubiquinone oxidoreductase MNLL subunit (complex I-MNLL) (CI-MNLL)

j L1 ATP syn H+ FO c 9 2 ATP synthase H+ transporting mitochondrial F0 complex subunit c (subunit 9) isoform 2

k P3 ATP syn H+ FO F6 ATP synthase H+ transporting mitochondrial F0 complex subunit F6; coupling factor 6

l I9 Cyto C oxi III Cytochrome c oxidase subunit III

m J10 Cyto C oxi VA Cytochrome C oxidase polypeptide VA

n N8 Cyto C oxi VIa Cytochrome c oxidase subunit VIa precursor polypeptide 2

o J5 Cyto C oxi VIIC Cytochrome C oxidase polypeptide VIIC precursor (VIIIA)

p K12 Cyto C oxi VIIIb Cytochrome c oxidase subunit VIIIb

Consistent - other metabolism

q H12 Isocitrate dehyd 2 Isocitrate dehydrogenase 2 (mitochondrial IDH2)

r A9 PEP carboxykinase PEP carboxykinase phosphoenolpyruvate carboxykinase

s D8 Fatty acid binding liver basic Liver-basic fatty acid binding protein (LB-FABP)

t B12 Delta 6 fatty acid desaturase Delta-6 fatty acid desaturase

u H1 Triglyceride lipase triacylglycerol Triglyceride lipase triacylglycerol

v I5 Glycerol kinase Glycerol kinase

w M10 Lipoprotein lipase Lipoprotein lipase

x P9 Phospholipase XIII A2 Group XIII secreted phospholipase A2

y F4 Cystathionine beta synthase Cystathionine-beta-synthase

z K11 Cold inducible RNA binding Cold inducible RNA-binding protein; (CIRBP) glycine-rich RNA binding protein;

aa F2 Hepatocyte nuclear F 4 A Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (transcription factor HNF-4)

bb M1 p450 2P1 (CYP2P1) Cytochrome P450 2P1 (CYP2P1)

cc D6 Glutathione peroxidase 4 Glutathione peroxidase 4 (phospholipid hydroperoxidase)

dd O11 Methylmalonate semialdehyde dehyd Methylmalonate-semialdehyde dehydrogenase (acylating)

ee N7 Phosphatidylcholine sterol acyltrans Phosphatidylcholine-sterol acyltransferase

ff B1 Prostaglandin D syn Prostaglandin D synthase

Inconsistent - oxidative phosphorylation

gg A6 ADH class II mito Aldehyde dehydrogenase, mitochondrial precursor (ALDH class 2)

hh E12 Aldolase 1 A Aldolase 1 A. muscle

ii A2 Enolase beta muscle enolase (beta muscle specific)

jj F7 LDHB lactate dehydrogenase B (LDHB)

kk O6 PFK 6-phosphofructokinase

ll K4 NADH dehyd MLRQ NADH dehydrogenase (ubiquinone) MLRQ subunit (complex I-MLRQ)

mm L9 NADH dehyd I NADH dehydrogenase subunit 1

nn C6 NADH dehydr a 1 (7.5 kD MWFE) NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 1 (7.5 kD MWFE)

oo E6 NADH dehydr a 9 (39 kD) NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 9 (39 kD)

pp M6 ATP syn B ATP synthase subunit B
Genome Biology 2005, 6:R13
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Surprisingly, differences among tissues in gene expression
were not consistent across all three populations. More than
one-third (37%) of the genes differentially expressed between
tissues were significant in only one of the three populations
(Figure 6). Population-specific differences were distributed
among the three populations; Georgia had 40% of the popu-
lation-specific genes, and New Jersey and Maine had 34%
and 26%, respectively. A proportion of these inconsistencies
could be due to false-positive or false-negative differences
between tissues in individual populations. However, statisti-
cally significant interaction between tissue and population
was detected for many (30%) of these inconsistencies (see
Additional data file 1).

A relatively small proportion of tissue-specific genes (31%)
have consistent expression patterns in all three populations
(Figure 6; also see Additional data file 1 for details). This sub-
set of genes also reflects the different metabolic status of
brain, heart and liver; most of the genes involved in oxidative

phosphorylation were more highly expressed in brain and
heart than in liver (Figure 7a, Table 1), and most of the genes
involved in fatty-acid metabolism, glycerolipid metabolism,
steroid metabolism and detoxification were more highly
expressed in liver. The majority of the tissue-specific genes
were not consistent among populations (a subset of these
genes are illustrated in Figure 7b, Table 1).

Quality control
Variation among technical replicates was low, and permuta-
tion tests indicated that the ANOVA model was robust. Sam-
ple coefficients of variation (CVs (standard deviation/mean)
× 100), which estimate technical variance due to replicate
spots (six spots per hybridization), repeated measures (two
hybridizations per dye), and dye (two dyes per sample), were
calculated for each gene of each of the 27 samples. CVs less
than 5% accounted for 95% of sample/genes, respectively. Of
the many comparisons performed (differences among tissues,
populations, interaction), permutation tests results agreed
with ANOVA results (the same comparisons identified as sig-
nificant or not significant) for 99.1% of comparisons, suggest-
ing that our ANOVA model was robust.

Discussion
Considerable variation occurs among the 27 samples (three
tissues from each of three individuals from three populations)
used to measure inter-individual and tissue-specific variation
in gene expression. We are able to precisely describe the pat-
terns of gene expression for 192 metabolic genes because of
the low experimental variation; for 95% of the replicate meas-
ures of gene expression the standard deviation is less than 5%
of the mean. Notably, gene expression is statistically different
for many genes among individuals within a population for a
tissue (48%), between tissues (76%), and between popula-
tions (3%). For genes with tissue-specific expression, only a
fraction (31%) had expression patterns consistent across all
three populations. These data do not specifically identify tis-
sue-specific differences that are inconsistent across popula-

Inconsistent - other metabolism

qq C7 Transketolase Transketolase

rr H8 Fatty acid binding 7 brain Fatty acid binding protein 7 brain (B-FABP)

ss A3 Fatty acid binding H6 Fatty acid binding protein H6-isoform

tt O10 Fatty acid binding heart Heart-type fatty acid-binding protein (H-FABP)

uu D9 Fatty acid syn Fatty acid synthase

vv F9 Glutamate decarboxylase Glutamate decarboxylase

Letters in the first column refer to genes illustrated in Figure 7; the grid column identifies genes as reported in our data entry to the NCBI Gene 
Expression Omnibus (GLP1224). Gene identities are listed as those identified by Swiss-Prot and as shortened names, and grouped as genes involved 
in oxidative phosphorylation or in other biochemical pathways.

Table 1 (Continued)

Identity of tissue-specific genes with expression patterns consistent in all three populations, and those inconsistent in all three 
populations

Shared expression patterns among populationsFigure 6
Shared expression patterns among populations.

31%

15% Georgia

MaineNew Jersey 8%
9%

13%

12%
12%
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tions, but rather emphasize that tissue-specific differences
detected can vary from one population to another. When
measured from a single population, highly significant differ-
ences in tissue-specific expression do not necessarily repre-
sent genes relevant to general functional or morphological
differences between tissues.

Variation among individuals
Variation in gene expression among healthy male individuals
raised under controlled laboratory conditions was high.
Nearly half of the metabolic genes (48%) were differentially
expressed among individuals within a population for any one
tissue (Figure 1), with fold differences ranging from 1.2- to 5-
fold and p-values ranging down to 10-7. Differences in gene
expression among individuals are unlikely to be due to com-
mon reversible environmental factors that affect physiologi-
cal performance (acclimation effects) since all individuals
used in this study were housed in a common environment and
fed the same food for at least two months. However, the dif-
ferences could be due to irreversible developmental effects or
genetic variations that affect gene expression. Regardless of
this, if these differences are heritable or due to developmental
plasticity, they represent variation one would expect to find
among outbred organisms, including humans.

Other studies that have measured inter-individual differences
in gene expression have also detected high levels of variation
in a variety of taxa. Among crosses of different yeast strains a
large number of differences in expression (6% of genes vary-
ing more than twofold) were detected between morphotypes
[1]. A previous study of the same Maine and Georgia Fundu-
lus populations assayed here detected 18% of genes differen-
tially expressed among healthy individuals [3]. Although
inter-individual variance in gene expression seems prevalent,
our observation that 48% of genes are differentially expressed
among individuals is high. This may reflect the greater preci-
sion of these measurements as a result of extensive technical
replication (24 replicate measures per sample) as coefficients
of variation for technical replicates was less than 5% for 95%
of the genes. Indeed, using similar methods and tools, a con-
current study assessing variation in Fundulus also detected a
very high proportion of genes (94%) differentially expressed

among individuals [19]. Alternatively, since our array is heav-
ily biased toward metabolic genes, detected variance may also
reflect a greater variation in metabolic gene expression. We
could speculate that the high variation in metabolic genes
reflects a greater allowable variation. That is, there may be
less selective pressure to constrain metabolic variation either
because varying the amount of an enzyme does not affect
metabolism or variation in metabolism is phenotypically
acceptable. One could test this by using an array with more
comprehensive representation of the genome and comparing
variances of different gene classes defined by function.

Considering the high inter-individual variation detected, the
data presented here underscore the importance of including
biological replicates within treatment groups in order to
ascribe differences in expression to treatment rather than to
inter-individual variation. Statistically, an analysis of vari-
ance can be used to examine the effects of technical and bio-
logical variation, and these tests have proved powerful for
detecting significant differences in gene expression [3,4],
even differences as small as 1.2-fold. The cost of resources in
microarray experiments should no longer excuse lack of bio-
logical and technical replication. Often, microarray experi-
ments pool individual samples within treatment groups to
capture biological variation. However, this approach only
estimates an average level of expression and fails to estimate
biological variation. When only small quantities of RNA can
be extracted from samples, one can estimate biological varia-
tion by pooling multiple independent samples [20].

A variety of factors can contribute to differences in gene
expression among individuals. Pritchard et al. [21] proposed
that differences in immune status may explain the 3.3% dif-
ference in gene expression among genetically identical mice.
Sex explained a large portion of among-individual variation
in gene expression in Drosophila, whereas genotype was less
of an influence, and the influence of age was weak [4]. Fur-
thermore, this type of variation can be biologically relevant.
For example recent work in Fundulus indicates that most
inter-individual variation in metabolism can be accounted for
by differences in metabolic gene expression [19].

Gene expression in liver, brain and heart (three symbols for each line) for the three different populations (three lines per gene)Figure 7 (see following page)
Gene expression in liver, brain and heart (three symbols for each line) for the three different populations (three lines per gene). Each letter represents a 
gene, expression values are log2 transformed and are indicated for liver, brain and heart (left to right) in each of Maine (circles), New Jersey (triangles) and 
Georgia (squares) populations. (a) Genes consistently different among tissues in all three populations are grouped as those involved in oxidative 
phosphorylation (upper panel) and those involved in other metabolic pathways (lower panel). (b) A representative subset of genes not consistently 
different among tissues in all populations. Gene names associated with letters are provided in Table 1 and Additional data file 1.
Genome Biology 2005, 6:R13



R13.8 Genome Biology 2005,     Volume 6, Issue 2, Article R13       Whitehead and Crawford http://genomebiology.com/2005/6/2/R13
Figure 7 (see legend on previous page)
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Variation among tissues
Another important source of biological variation in gene
expression is differences in expression among different tis-
sues; 76% of genes were differentially expressed between
brain, heart and liver, and expression in the liver was the most
distinct compared to heart and brain. In this study, genes
printed on our array are primarily enzymes functional in cen-
tral metabolic pathways such as fatty-acid metabolism, glyco-
lysis and oxidative phosphorylation. Of the oxidative
phosphorylation genes differentially expressed between tis-
sues, 92% were more highly expressed in heart or brain than
in liver (Figure 3). The primary purpose of the heart is to act
as a pump, and contraction is highly dependent on oxidative
metabolism [22]. The metabolic rate in the brain is 7.5 times
the average rate in the rest of the body [23]. High metabolic
demand in the brain supports pumping of ions across neuro-
nal membranes during action potentials and metabolism is
primarily oxidative. Mitochondria are the principal sites for
oxidative phosphorylation, and are most numerous in heart,
brain and skeletal muscle cells. The liver, in contrast, is much
more functionally diverse, as it is involved in carbohydrate
storage, synthesis of proteins, glucose, fatty acids, cholesterol
and lipids, and metabolism of xenobiotics and endogenous
compounds, and has a relatively low respiration rate. Accord-
ingly, transcripts of genes functional in oxidative phorphor-
ylation appear to represent a much smaller portion of the
cell's RNA transcripts in liver tissues than in the heart or
brain. In addition, genes involved in fatty acid and
phospholipid synthesis were more highly expressed in liver
than the other tissues. Differences in expression among tis-
sues detected using our array appear to reflect differences in
the metabolic status of brain, heart, and liver. Because data
presented here support well established patterns of metabo-
lism, they suggest that measuring mRNA expression using
microarrays accurately reflects changes in proteins and their
phenotypic effect.

Many microarray studies have used expression levels of
'housekeeping' genes as an internal control for comparisons
among arrays, individuals and treatments. Housekeeping
genes may be defined as those that are involved in routine
cellular metabolism and always expressed in all cells.
Accordingly, many, if not most, of the genes studied here
could be considered housekeeping genes. Nearly half of these
genes were expressed at different levels between individuals,
with fold differences ranging from 1.2- to 5-fold and p-values
ranging down to 10-7. Lee et al. [24] applied ANOVA to screen
four previously published datasets for housekeeping genes
across a variety of biological contexts. They found that all
genes that are commonly used as controls had fold changes
ranging from greater than 2.0 to more than 300 within at
least one dataset, and coefficients of variation were concord-
antly high, reflecting high variance in expression of these
genes. It appears that upon application of ANOVA, statisti-
cally significant differences in expression of housekeeping
genes can be detected among individuals and across different

biological contexts, and scaling for differences among arrays
using expression levels of these genes ought to be approached
with caution.

Although genes differentially expressed among tissues reflect
their different metabolic requirements, it should be noted
that the purpose of the current study was not to
comprehensively identify suites of genes responsible for
functional differences between tissues. The relatively small
number of printed probes was useful for a high degree of tech-
nical replication, and obviously represents a small portion of
the expressed genes. However, this approach shows that
highly significant differences in gene expression among tis-
sues may be apparent but not consistent among closely
related taxa. Therefore, highly significant differences in gene
expression found only within a single population may not
necessarily represent genes relevant to general functional or
morphological differences between tissues.

Variation among taxa
Although the pattern of metabolic gene expression among tis-
sues reflects established patterns of tissue-specific metabo-
lism, there is additional variation due to population. It should
be noted that the split-plot statistical design is not as powerful
for detecting among-block differences (among populations)
as for detecting differences among split-plot factors [18]. We
detected 3% of genes (6 of 192) differentially expressed
among populations. This proportion is similar to that
detected in a previous study [3] in which 2.6% of genes were
differentially expressed between Maine and Georgia Fundu-
lus hearts. Similarly, approximately 1% of genes were differ-
entially expressed in brain tissue among inbred strains of
mice [2]. Differences in gene expression are to be expected
among taxa (phylogenetically distinct groups of organisms
which may include strains, populations or species), with the
majority of differences most likely to be attributable to ran-
dom genetic drift. For more distantly related groups, one
would expect expression patterns to be more divergent than
for closely related groups. Indeed, expression patterns
between humans and chimpanzees are more similar than
those between humans and orangutans, and similar results
were obtained from comparisons among three mouse species
[5,6].

An unexpected finding is that the tissue-specific differences
depend on which population was assayed. Differences in gene
expression are expected between tissues because of func-
tional divergence and between populations because of neutral
genetic divergence. In addition, one might expect that the
number of genes significantly different between populations
would depend on the tissue. One might also expect tissue-spe-
cific differences to be consistent in all taxa. Yet our data indi-
cate that tissue-specific expression patterns are not fixed
within a species. The genes for which expression is signifi-
cantly different between tissues are not all the same in all
three populations. Of the 128 genes that have tissue-specific
Genome Biology 2005, 6:R13
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patterns of expression in any population, 37% are tissue-spe-
cific in only one of the three populations and 32% are found
in only two of the three populations. Overall, it would appear
that only 31% of tissue-specific differences in gene expression
are consistent among all populations of F. heteroclitus. One
needs to be careful about this interpretation, however. Our
emphasis was not to specifically identify genes that have sig-
nificant interaction between tissue and population. Rather,
we emphasize that genes detected as tissue specific will vary
from one population to another, and most microarray studies
measure treatment-specific expression patterns in only one
population of test organism. Because inter-individual varia-
tion is high, it is probable that inclusion of more replicate
individuals in each group would increase the sensitivity of
ANOVA, and the number of genes that distinguish tissues
consistently in all populations may change.

The consistent tissue-specific differences still support expec-
tations based on the metabolic requirements of each tissue
(for example, genes involved in oxidative phosphorylation
were more highly expressed in heart and brain, and those
involved in fatty-acid and lipid metabolism were more highly
expressed in the liver; Figure 7a). Accordingly, those differ-
ences in expression that are consistent across several groups
of organisms are most likely to account for functional and
morphological differences among tissues, emphasizing that
this type of comparative approach may be powerful for testing
the biological relevance of other functional traits. For exam-
ple, expression differences between diseased and non-dis-
eased tissues may vary among mouse strains, so that the
subset of differences that are consistent across strains are
more likely to be functionally related to the diseased state.

Our data suggest that many of the differences in gene expres-
sion detected between experimental groups may be of little
functional importance because they vary among taxa. We
suggest that patterns of expression that are consistent in dif-
ferent populations are more likely to be functionally impor-
tant. Elucidation of adaptively important variation, such as
variation related to antibiotics, pesticides or temperature
adaptation, may also benefit from such a comparative
approach that screens for conserved patterns. However, there
is the possibility that partitioning of genetic polymorphisms
among populations may allow distinct groups of organisms to
reach different physiological or biochemical solutions to the
same biological challenges. For example, patterns of poly-
morphism in a gene that regulates coat color in mammals
indicated recent directional selection and was associated with
coat color in one pocket mouse population, but not in a
second population [25]. Other loci were probably responsible
for adaptive variation in coat color in the second population.

Conclusions
These data indicate high variation in metabolic gene expres-
sion among individuals and thus expression of these

housekeeping genes is unreliable as an internal control or as
a method of normalization across samples. Second, concord-
ance between tissue-specific expression patterns and estab-
lished metabolic functions of brain, heart and liver indicate
that measuring mRNA levels accurately reflects physiological
status. Furthermore, since many metabolic genes differ in
expression among brain, heart and liver, those studies using
whole organisms need to rule out whether changes in expres-
sion reflect differences in the proportions of various tissues
among samples. Finally, studies seeking to identify patterns
of gene expression related to physiological states, such as dis-
ease or toxic stress, must consider both variation between
individuals and differences between populations. Because of
this biological variation, not all differences between treat-
ments in any one population of test organism are likely to be
generally relevant. We suggest that conserved patterns of
treatment-specific gene expression among taxa are most
likely to be functionally related to the physiological state in
question.

Methods and materials
Animals and maintenance
Teleost fish Fundulus heteroclitus were collected from the
field by seine and minnow trap in June 2003, transported to
the University of Miami RSMAS laboratory under controlled
temperature and aeration conditions, and acclimated to
common conditions (20°C, 15 parts per thousand salinity) in
recirculating 100-gallon tanks for at least two months before
experiments. Fish were sacrificed by cervical dislocation and
tissues were excised and stored in RNAlater (Ambion) at
-20°C. Fish were collected at Wiscasset, Maine; Stone Har-
bor, New Jersey, and Sapelo Island, Georgia. Only healthy
male fish were used for the following experiments.

Microarrays
Microarrays were printed using 192 cDNAs from a F. hetero-
clitus cardiac library encoding essential proteins for cellular
metabolism [26]. These cDNAs were a subset of over 40,000
expressed sequences in our online database Funnybase [27].
These 192 cDNAs were amplified with amine-linked primers
and printed on 3-D Link Activated slides (Surmodics) using a
SpotArray Enterprise piezoelectric microarray printer (Perk-
inElmer Life Sciences) at Louisiana State University. Slides
were blocked following slide manufacturer protocols. The
suite of 192 amplified cDNAs was printed as a group in six
spatially separated replicates. Four hybridization zones of
these six replicate arrays were printed per slide, with each
zone set separated by a hydrophobic barrier.

Hybridization experimental design
Microarray analyses were applied to three tissues (brain,
heart and liver) from three individuals collected from three
populations of F. heteroclitus. Each of these 27 samples was
measured four times, twice with Cy3 and twice with Cy5 (Fig-
ure 8). In addition, since a hybridization zone covered six rep-
Genome Biology 2005, 6:R13
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licate printed arrays, total experimental replication per
sample per gene was 24-fold. A total of 108 hybridizations
were performed (27 × 4), and Cy3-Cy5 hybridizations were
balanced (although incompletely) among tissues and popula-
tions in a sheet-loop design (Figure 8).

Sample preparation
RNA was extracted from tissue homogenate in a chaotropic
buffer using phenol/cholorform/isoamyl alcohol. All
reagents were from Sigma unless otherwise noted. Tissues
were removed from RNAlater, blotted dry, and homogenized
using an electric homogenizer in 400 µl chaotropic buffer (4.5
M guanidinium thiocyanate, 2% N-lauroylsarcosine, 50 mM
EDTA pH 8.0, 25 mM Tris-HCl pH 7.5, 0.1 M β-mercaptoeth-
anol, 2% antifoam A). An equal volume of 2 M sodium acetate
(pH 4.0) was added to the homogenate, followed by 400 µl
acidic phenol (pH 4.4), and 120 µl chloroform/isoamyl alco-
hol (23:1). The mixture was kept at 4°C for 10 min then cen-
trifuged at 4°C at 16,000g for 20 min. Supernatant was
removed and combined with 400 µl isopropanol, stored at -
20°C for 30 min, then centrifuged at 4°C at 16,000g for 30
min. The remaining RNA pellet was rinsed twice with 400 µl
of 70% ethanol, then further purified using the Qiagen RNe-
asy Mini kit (Qiagen) following the manufacturer's protocols.
Purified RNA was quantified spectrophotometrically, and
RNA quality was assessed using the Agilent 2100 Bioanalyzer.
RNA was stored in 1/10 volumes 3 M sodium acetate and 2.5
volumes 100% ethanol at -20°C.

RNA for hybridization was prepared by amplification using a
modified Eberwine protocol [28]. The Ambion Amino Allyl
MessageAmp aRNA Kit was used (according to manufac-
turer's protocols) to copy template RNA by T7 amplification
following incorporation of a T7 promoter, resulting in ampli-
fied template in the form of antisense RNA. Amino-allyl UTP
was incorporated into targets during T7 transcription, and
resulting amino-allyl antisenseRNA was coupled to Cy3 and
Cy5 dyes (Amersham Biosciences).

Hybridization
Labeled aRNA aliquots of the two individual samples for each
hybridization (18 pmol each of Cy3 and Cy5) were vacuum
dried together and resuspended in 12 µl hybridization buffer
(final concentration of each labeled sample = 1.5 pmol/µl).
Hybridization buffer consisted of 5 × SSPE, 1% SDS, 50% for-
mamide, 1 mg/ml poly(A), 1 mg/ml sheared herring sperm
carrier DNA, and 1 mg/ml BSA. Slides were washed in sodium
borohydride solution according to Raghavachari et al. [29] to
reduce autofluorescence. Following rinsing, slides were
boiled for 2 min and spin-dried in a centrifuge at 800 rpm for
3 min. Samples (12 µl) were heated to 90°C for 2 min, quick
cooled to 42°C, applied to slide (hybridization zone area was
350 mm2), and covered with a coverslip. Slides were placed in
an airtight chamber humidified with paper soaked in 1 × SSC
buffer and incubated 12-18 h at 42°C. Following hybridiza-
tion, slides were scanned using the Packard Bioscience
ScanArray Express microarray scanner (PerkinElmer Life
Sciences). Resulting .tiff images were imported into spot grids
built in ImaGene (Biodiscovery) for each array, and spot
signals were collected as fluorescence intensities for each dye
channel.

Data processing and statistical analysis
Raw data were first sum normalized [30], which involves
summing the total signal from each replicate array to the
same value. Then spatial bias on each array was smoothed
using a lowess transformation in MAANOVA Version 0.93-2
for R [31]. Other methods of normalization have also been
proposed [32-34]. Log2 values of lowess-transformed sum-
normalized data were used for all subsequent statistical anal-
yses. MIAME-compliant data [35] have been submitted to the
Gene Expression Omnibus as accession number GLP1224.
Data were analyzed in a split-plot ANOVA design with popu-
lation as blocks and tissues as split-plot factors using scripts
written in MatLab Version 6 (The MathWorks). MatLab code
is available upon request from the authors. Nested within tis-
sue-by-population samples were technical replicates. Repli-
cate spots within hybridization (six), replicate hybridizations
per labeling (two) and replicate labelings per sample (two;

Experimental design for hybridizationsFigure 8
Experimental design for hybridizations. Each arrow represents an array hybridization, with the samples at arrow base and head labeled with Cy3 and Cy5, 
respectively. Liver, heart and brain samples are indicated as purple, red and blue circles, respectively. Three individuals were assayed per tissue and from 
each of three populations. ME, Maine; NJ, New Jersey; GA, Georgia.

Liver

Heart

BrainME2 ME3GA2 GA3NJ3NJ2ME1 GA1NJ1

ME2 ME3GA2 GA3NJ2 NJ3ME1 GA1NJ1

ME3ME2 GA3GA2NJ2 NJ3ME1 GA1NJ1
Cy3 Cy5
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Cy3 and Cy5) represent the three levels of technical variance
nested within the tissue-by-population sample. The ANOVA
structure is presented in Figure 9 and Table 2, and the model
can be written as:

y = grand mean + population + tissue + population-tissue
interaction + individual in population + tissue-by-individual
within population + dye within individual + hybridization
within dye + spot within hybridization

where y is the normalized log2 expression and individual in
population and tissue-by-individual within population are
random effects. To test for differences among multiple means
(for example, among population and tissue groups), and to
correct for multiple comparisons, the T-method [36] was
applied. The T-method calculates the minimum significant
range defined as:

MSR = Qα[kv] × SE

where the critical value Qα[kv] is the studentized range [37], k
= number of groups in the comparison (for example, if com-
parisons are among tissues then k = 3), v = degrees of freedom
of MStissue-by-individual within population, and SE is the standard
error among tissue-by-individual samples within popula-
tions. The T-method following ANOVA was used to identify
genes differentially expressed among tissues in each popula-
tion. These data were then used to contrast tissue-specific and
population-specific expression patterns. Robustness of
ANOVA data was tested using a permutation test; means for
the 27 biological samples were randomly permuted 1,000
times between population and tissue and test statistics were
recalculated for differences among populations, tissues and
tissue-by-population interaction. Agreement between
ANOVA and permutation test results would indicate the
robustness of the ANOVA model. Finally, in order to graphi-

Split-plot ANOVA statistical designFigure 9
Split-plot ANOVA statistical design. Populations (ME, Maine; NJ, New Jersey; GA, Georgia) are treated as blocks, replicate individuals within each 
population (1, 2 and 3) as plots, and tissue (L, liver; H, heart; B, brain) within an individual as the split-plot factor. Nested within each tissue-by-individual 
sample are technical replicates including two dyes (Cy3 and Cy5) within each sample, two replicate hybridizations (A and B) per dye, and six replicate 
spots per hybridization. GM, grand mean.
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cally illustrate expression similarity among tissues, expres-
sion distance between samples was calculated as the sum of
differences of log2 expression values over all genes, and neigh-
bor-joining trees of global similarity of expression patterns
among tissues (L, liver; H, heart; B, brain) were constructed
[38] for each population.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 lists the results
from statistical analyses for all genes. Listed for each gene are
p-values associated with statistical tests for differences in
expression between populations, tissues, tissue-by-popula-
tion interaction, and among individuals within populations.
Also listed are mean expression for each sample, and columns
comparing differences in expression between tissues within
each population. Final columns tabulate whether a tissue dif-
ference was detected for each comparison, whether this dif-
ference was consistent between populations, and whether
significant interaction was detected for that gene.
Additional data file 1The results from statistical analyses for all genesThe results from statistical analyses for all genesClick here for additional data file
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