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ABSTRACT
Motivation: Microarray experiments generate a consider-
able amount of data, which analyzed properly help us gain
a huge amount of biologically relevant information about
the global cellular behaviour. Clustering (grouping genes
with similar expression profiles) is one of the first steps
in data analysis of high-throughput expression measure-
ments. A number of clustering algorithms have proved use-
ful to make sense of such data. These classical algorithms,
though useful, suffer from several drawbacks (e.g. they re-
quire the predefinition of arbitrary parameters like the num-
ber of clusters; they force every gene into a cluster despite
a low correlation with other cluster members). In the follow-
ing we describe a novel adaptive quality-based clustering
algorithm that tackles some of these drawbacks.
Results: We propose a heuristic iterative two-step algo-
rithm: First, we find in the high-dimensional representation
of the data a sphere where the ‘density’ of expression pro-
files is locally maximal (based on a preliminary estimate
of the radius of the cluster—quality-based approach). In
a second step, we derive an optimal radius of the clus-
ter (adaptive approach) so that only the significantly co-
expressed genes are included in the cluster. This estima-
tion is achieved by fitting a model to the data using an
EM-algorithm. By inferring the radius from the data itself,
the biologist is freed from finding an optimal value for this
radius by trial-and-error. The computational complexity of
this method is approximately linear in the number of gene
expression profiles in the data set. Finally, our method is
successfully validated using existing data sets.
Availability: http://www.esat.kuleuven.ac.be/∼thijs/Work/
Clustering.html
Contact: frank.desmet@esat.kuleuven.ac.be
Supplementary information: http://www.esat.kuleuven.
ac.be/∼fdesmet/paper/adaptpaper.html

INTRODUCTION
A variety of techniques (Self-Organizing Maps; Tamayo
et al., 1999), hierarchical clustering (Carr et al., 1997;
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Eisen et al., 1998), Self-Organizing Tree Algorithm
(Herrero et al., 2001), K -means (Tavazoie et al., 1999;
Tou and Gonzalez, 1979), simulated annealing (Lukashin
and Fuchs, 2001), Principal Component Analysis (Quack-
enbush, 2001), MultiDimensional Scaling (Bittner et al.,
2000), Cluster Affinity Search Technique (Ben-Dor et al.,
1999) has been implemented and successfully been used
to analyze or cluster high-dimensional microarray data
(DeRisi et al., 1997; Lander, 1999; Schena et al., 1995).
One of the objectives of these methods is to detect groups
of genes that exhibit a highly similar expression profile
(here defined as coexpressed). Since gene expression
profiles are encoded in real vectors (whose elements
are the different measurements of the expression levels
of a specific gene), these algorithms intend to group
gene expression vectors that are sufficiently close to
each other (according to a certain distance or similarity
measure). Most clustering algorithms originate from
non-biologically related research fields. Therefore, al-
though useful, the original implementations suffer from
some drawbacks as has been highlighted by Sherlock
(2000). These deficiencies can be summarized as follows.
Firstly, algorithms such as K -means and Self-Organizing
Maps require the predefinition of the number of clusters
(parameter of the algorithm). When clustering gene
expression profiles, the number of clusters present in the
data is usually unknown. Changing this parameter usually
affects the final clustering result considerably. Clustering,
using for example K -means, therefore involves extensive
parameter fine-tuning to detect the optimal clustering and
the choice of the final parameter setting remains somehow
arbitrary (e.g. based on visual inspection of the clusters).
When using hierarchical clustering, the number of clusters
is determined by cutting the tree structure at a certain
level. The resulting cluster structure is therefore highly
influenced by the choice of this level, which in turn is
rather arbitrary. Secondly, the idea of forcing each gene of
the data set into a cluster is a significant drawback of these
implementations. If genes are, despite a rather low correla-
tion with other cluster members, forced to end up in one of
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the clusters, the average profile of this cluster is corrupted
and the composition of the cluster becomes less suitable
for further analyses (such as motif finding or functional
annotation; Roth et al., 1998; van Helden et al., 2000).

Much effort is currently being done to adapt clustering
algorithms towards the specific needs of biological prob-
lems. In this context the ideas of quality-based clustering
(Heyer et al., 1999) and gene shaving (Hastie et al., 2000)
were developed (gene shaving also uses a quality measure
to select the cluster size). Heyer et al. (1999) proposed
an algorithm (QT Clust) that tries to identify clusters that
have a certain quality (representing the minimal degree
of coexpression needed—see below for the exact defini-
tion used in this paper) and where every cluster contains a
maximal number of points. Genes not exhibiting this mini-
mal degree of coexpression with any of the clusters are ex-
cluded from further analysis. A problem with the quality-
based approach of Heyer et al. (1999), however, is that this
quality is a user-defined parameter that is hard to estimate
(it is hard to find a good trade-off or optimal value: setting
the quality too strictly will exclude a considerable number
of coexpressed genes, setting it too loose will include too
many genes that are not really coexpressed). Moreover, it
should be noted that the optimal value for this quality is, in
general, different for each cluster and data set dependent.

In this paper, we describe an adaptive quality-based
clustering method starting from the principles described
by Heyer et al. (1999; quality-based approach; locating
clusters, with a certain quality, in a volume where the
density of points is maximal). The algorithm described
below is in essence a heuristic, two-step approach that
defines the clusters sequentially (the number of clusters
is not known in advance, so it is not a parameter of the
algorithm). The first step locates a cluster (quality-based
approach) and the second step derives the quality of this
cluster from the data (adaptive approach). The perfor-
mance of the algorithm is tested on a real microarray data
set and the result is compared with an already published
analysis (K -means) using the same data. Finally, we make
a theoretical comparison between our algorithm and the
algorithm of Heyer et al. (1999).

METHODS
Normalization
It is common practice to normalize gene expression
vectors before cluster analysis. In this paper, we normalize
the expression profiles so that their mean is zero and
their variance is one before proceeding with the actual
cluster algorithm. If gi (g1

i , g2
i , . . . , gE

i ) is a normalized
expression vector, this means that

µi = 1

E

E∑
j=1

g j
i = 0, (1)

σi =
√√√√ 1

E − 1

E∑
j=1

(g j
i − µi )2 = 1. (2)

Normalized expression profiles or vectors therefore are
located in an E-dimensional space on the intersection of a
hyperplane (Equation 1) and a hypersphere with a radius
equal to

√
(E − 1) (Equation 2).

Quality R of a cluster
The definition used in this paper for the quality R of a
cluster, is as follows: In a collection of gene expression
profiles G = {gi , i = 1, . . . , N }, a cluster K with center
CK and quality RK (also called radius of cluster K ), will
only contain the profiles satisfying the following property:

‖gi − CK ‖2 < RK . (3)

Equation (3) means that cluster K only contains gene
expression profiles with a minimum degree of coexpres-
sion (represented by the quality guarantee RK ). The norm
or distance measure we use in this paper is the 2-norm or
Euclidean distance.

ALGORITHM AND IMPLEMENTATION
Global algorithm
The global cluster algorithm (Adap Cluster) is, as men-
tioned previously, a heuristic iterative two-step approach
where the basic steps are as described below. In this
implementation we use two user-defined parameters
(MIN NR GENES and S—the values between brackets
are default values), several internal tuning parameters that
have a fixed value (the user is not allowed to change these
values) and the data set itself (G).

Adap Cluster
(G = {gi , i = 1, . . . , N }, MIN NR GENES <2>, S<0.95>)
ACCUR RAD = 0.1 /* Set internal tuning parameter */
Initialize RK PRELIM /* Radius estimate intialization */
WHILE Stop criterion NOT TRUE

CK = locate cluster center (G, RK PRELIM)

/* Localization of a cluster center – Step 1 */
RK = recalculate radius (G, CK, RK PRELIM, S)

/* Re-estimation of radius − Step 2 */
IF(|RK − RK PRELIM|/RK PRELIM) < ACCUR RAD

/* Check accuracy of radius estimation */
CLUSTER = {g ∈ G| ‖gi − CK‖ < RK}
G = G \ CLUSTER /* Remove cluster from data set G */
IF #CLUSTER >= MIN NR GENES /* Valid cluster ? */

Output CLUSTER
END IF

END IF
RK PRELIM = RK /* Update radius estimate */

END WHILE

During each iteration, this algorithm first finds a cluster
center (CK ) using a preliminary estimate (RK PRELIM)
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of the radius or quality of the cluster (Step 1). When the
cluster center has been located, the algorithm determines
a new estimate for the radius (RK ) of the cluster (Step 2).
Now there are two possibilities:

(1) If this new estimate is approximately equal to
the preliminary estimate (e.g. within 10%—
ACCUR RAD), the set of genes defined by the
cluster center and the new estimate of the radius is
removed from the data set G. Furthermore, if the
number of genes in this set is equal or larger than a
predefined value (MIN NR GENES—user-defined;
default 2), this set is a valid cluster. The preliminary
estimate of the radius to be used in Step 1 of the next
iteration (for the next cluster) is updated with the
new estimate of the radius calculated in Step 2 of the
current iteration (in most cases, the best preliminary
estimate for the radius of the next cluster seems to
be the radius of the previous cluster).

(2) If the new estimate of the radius is substantially dif-
ferent from the preliminary estimate, the prelimi-
nary estimate RK PRELIM is also updated with the
new estimate RK and a new iteration is started. This
is repeated until the relative difference between RK
and RK PRELIM falls under ACCUR RAD.

The iterations are terminated when the stop criterion is
satisfied (see below).

The algorithm was implemented in MATLAB and
is publicly available for data analysis. Note that this
implementation can deal with missing values often oc-
curring in expression data (also see Troyanskaya et al.,
2001). We used the methodology suggested by Kaufman
and Rousseeuw (1990) to handle missing values. A
detailed mathematical description of the missing values
management can be found on our supplementary web site.

Below we will discuss the initialization of the pre-
liminary estimate of the radius before the first iteration,
the procedures used in Step 1 and 2, the stop criterion
(WHILE loop) and the computational and memory
complexity of the overall algorithm.

Radius estimate initialization
In the global cluster algorithm, the preliminary estimate
of the radius (RK PRELIM) has to be initialized before
the first iteration (radius estimate for the first cluster—
line 3 of Adap Cluster). We use half of the radius of the
hypersphere defined by normalization of the expression
profiles (see above). This is given by:

RK PRELIM =
√

E − 1

2
(4)

where E is the dimension of the gene expression vectors
(number of expression vector components).

Localization of a cluster center—quality-based
clustering (Step 1)
Given a collection G of gene expression profiles, the
objective of Step 1 is to find a cluster center in an
area of the data set where the ‘density’ (or number) of
expression profiles, within a sphere with radius or quality
equal to RK PRELIM (preliminary estimate of the radius),
is locally maximal. The method described here is based
on the principles used by Heyer et al. (1999) but is
significantly faster (also see Discussion—Tables 2a, b).
The disadvantage with the approach of Heyer et al. (1999)
is that the quality or radius of the clusters is a parameter
that is not very intuitive (it is often hard to find a ‘good’
value for this parameter; often a trial-and-error approach is
used with manual validation of the clusters). Furthermore,
all the clusters are forced to have the same radius.

The basic steps of the algorithm used for the first step
are described below:

CK = locate cluster center (G, RK PRELIM)

MAXITER=50 /* Set Internal tuning parameter – maximum
number of iterations */

DIV=1/30 /* Set internal tuning parameter – fraction
needed to determine DELTRAD */

CK = mean(G) /* Cluster center intialization */
RAD = max({‖gi −CK‖ | gi ∈ G) /∗ Start with maximal radius */
DELTARAD = (RAD − RK PRELIM) ∗ DIV /* Determine step for

decreasing radius */
RAD = RAD − DELTRAD /* Decrease radius */
GENES IN SPHERE = {gi ∈ G | ‖gi − CK‖ < RAD}

/* Determine profiles within sphere */
ME = mean (GENES IN SPHERE) /* Recalculate mean */
ITER =1
WHILE (ME = CK AND ITER < MAXITER) OR RAD > RK PRELIM
/* Iterate until convergence or maximal number of iterations has been
reached */

ITER = ITER + 1
CK = ME /* Move cluster center to cluster mean */
IF RAD > RK PRELIM

RAD = RAD − DELTRAD
/* Decrease radius if desired quality has not yet been reached */

END IF
GENES IN SPHERE = {gi ∈ G | ‖gi − CK‖ < RAD}

/* Determine profiles within sphere */
ME = mean(GENES IN SPHERE) /* Re-calculate mean */

END WHILE
IF ME = CK

CK = empty /* Undefined cluster center if no convergence */
END IF

After initialization of the cluster center (with the mean
profile of all the expression profiles in the data set G),
all the expression profiles within a sphere with radius
RAD are selected. Iteratively, the mean profile of these
expression profiles is calculated and subsequently the
cluster center is moved to this mean profile. This approach
moves the cluster in the direction where the ‘density’ of
profiles is higher (conceptually visualized in Fig. 1).

The radius RAD of the sphere is initialized so that all
profiles in the data set are located within this sphere.
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Table 1a. Biological validation of the cluster result in Figure 3 (see supplementary web site) and comparison with the result of Tavazoie et al. (1999)

Cluster number Number of ORFs MIPS functional ORFs within functional category P-value (−log10)

Adap Cluster K -means Adap Cluster K -means category Adap Cluster K -means Adap Cluster K -means
(Tavazoie et al.) (Tavazoie et al.) (Tavazoie et al.) (Tavazoie et al.)

1 1 302 164 Ribosomal proteins 101 64 80 54
Organization of cytoplasm 146 79 77 39
Protein synthesis 119 NR 74 NR
Cellular organization 211 NR 34 NR
Translation 17 NR 9 NR
Organization of chromosome 4 7 1 4
structure

2 4 315 170 Mitochondrial organization 62 32 18 10
Energy 35 NR 8 NR
Proteolysis 25 NR 7 NR
Respiration 16 10 6 5
Ribosomal proteins 24 NR 4 NR
Protein synthesis 33 NR 4 NR
Protein destination 49 NR 4 NR

5 2 98 186 DNA synthesis and replication 20 23 18 16
Cell growth, cell division 48 NR 17 NR
and DNA synthesis
Recombination and DNA repair 12 11 8 5
Nuclear organization 32 40 8 4
Cell-cycle control and mitosis 20 30 7 8

6 58 Mitochondrial organization 15 7
Peroxisomal organization 4 4
Energy 9 4

8 58 TRNA-synthetases 5 5
Organization of cytoplasm 14 4

16 15 Cellular transport and transport 6 4
mechanisms

21 17 20 83 Transcription 9 21 4 4

31 14 28 74 Organization of centrosome 3 6 4 6
Nuclear biogenesis 1 3 2 5
Organization of cytoskeleton 2 7 2 4

36 14 TRNA transcription 3 4
37 18 10 101 Organization of cytoplasm 7 30 6 9

Ribosomal proteins 4 16 4 7
Protein synthesis 4 20 3 7
Cellular organization 7 55 2 5

40 11 Organization of endoplasmatic 4 4
reticulum

Every iteration, this radius is decreased with a constant
value (DELTARAD, a fraction (DIV) of the difference
between the initial value of RAD and RK PRELIM) until
the radius has reached the desired value (RK PRELIM)
and then remains constant. In the first iterations (when
RAD is still ‘large’) this technique will move the cluster

center to regions of the data where the ‘global’ den-
sity is higher (these regions often contain the largest
cluster(s)). After some iterations (when RAD is equal
or close to RK PRELIM) the cluster center will move
towards an actual cluster where the density is ‘locally’
higher.
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Table 1a. —Continued.

Cluster number Number of ORFs MIPS functional ORFs within functional category P-value (−log10)

Adap Cluster K -means Adap Cluster K -means category Adap Cluster K -means Adap Cluster K -means
(Tavazoie et al.) (Tavazoie et al.) (Tavazoie et al.) (Tavazoie et al.)

42 12 Cellular transport and transport 6 4
mechanisms

5 152 Cell rescue, defense, cell death 22 5
Carbohydrate metabolism 24 4
Stress response 12 4
Energy 16 4
Metabolism of energy reserves 6 4

7 101 Cell-cycle control and mitosis 17 5
Budding, cell polarity, filament 10 4
formation
DNA synthesis and replication 7 4

8 148 TCA pathway 5 4
Carbohydrate metabolism 22 4

21 70 Protein synthesis 14 5
Organization of cytoplasm 18 5
Ribosomal proteins 10 4

30 60 Nitrogen and sulphur metabolism 9 8
Amino acid metabolism 12 7

The genes in each cluster have been mapped to the functional categories in the MIPS database and (−log10 transformed) P-values (representing the degree of
enrichment—also see text) have been calculated for each functional category in each cluster. Only significantly enriched functional categories are shown (log10

transformed P-values �4) and clusters without enrichment are not listed. As a comparison and in parallel (functionally matching clusters are shown in the same
row), the results obtained by Tavazoie et al. (1999) (K -means) are also included. NR = Not Reported.

Convergence is reached if the cluster center remains
stationary after RAD has reached RK PRELIM. If this
does not happen within a certain (MAXITER) number of
iterations, CK is emptied and the algorithm stops.

Note that, the number of distance calculations per-
formed during each iteration of locate cluster center is
equal to the number (= N ) of all expression profiles in
G (only the distances from the expression profiles to the
current cluster center have to be calculated). Note also
that the computational complexity of the calculation of
one distance is O(E) (E is the dimensionality of the
expression vectors). Because the number of iterations is
limited (MAXITER), the computational complexity for
the localization of one cluster center is thus O(N × E).

Re-estimation or adaptation of the cluster quality
(Step 2)
In the previous paragraph we located a cluster center CK
in a collection G of gene expression profiles, using a
preliminary estimate RK PRELIM of the radius of the
cluster. The objective of the method described in this

paragraph is, given the cluster center that remains fixed,
to re-calculate the radius RK of the current cluster as to
assess that genes belonging to this cluster are significantly
coexpressed.

To substantiate the method described here, we introduce
a randomized version of the original data set where the
components of each expression vector are randomly
and independently permuted (Herrero et al., 2001). This
randomized version of the data will only be used for
conceptual reasons, it will not be used during the actual
calculations. This process of randomization destroys
the correlation between the expression vectors that was
introduced through non-accidental mechanisms (e.g.
experimental setup). Any correlation still existing after
this procedure can be attributed to chance.

First, we calculate the Euclidean distance r from every
expression vector in the data set to the cluster center CK .
Imagine doing the same for every vector present in the
randomized data. The distribution of these distances in the
original data consists of two parts (this approach has some
similarities with the work of Sharan and Shamir (2000))—
see Figure 2:
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Table 1b. Biological validation of the cluster analysis of the Cho et al. (1998) data with Adap Cluster (MIN NR GENES = 10, S = 0.95) using the standard
deviation (σ ) as the metric of variance for filtering. The algorithm retrieved 38 clusters. We looked for enrichment (represented by the P-values) of top-level
functional categories (from the MIPS database) in individual clusters. Notice the periodic behaviour of the clusters enriched with cell-cycle specific genes
(cluster 3, 6 and 9)

Cluster number Graphical representation
of cluster

Number of ORFs MIPS functional
category (top-level)

ORFs within
functional category

P-value (−log10)

1 426 energy
transport facilitation

47
40

10
5

3 196 cell growth, cell division
and DNA synthesis

48 5

4 149 protein synthesis
cellular organization

71
107

50
19

5 159 cell rescue, defense, cell death
and ageing

20 4

6 171 cell growth, cell division
and DNA synthesis

76 24

9 78 cell growth, cell division
and DNA synthesis

23 4

37 11 metabolism 9 6

1. Background: these are the expression profiles with a
distance to the cluster center that is also significantly
present in the distance distribution of the random-
ized data set. Genes belonging to the background of
the current cluster center either do not belong to any
cluster (noise; are not significantly coexpressed with
other genes) or belong to another cluster. Genes be-
longing to other clusters (if not too dominant) will
not significantly show up in the distance distribution

for the current cluster center (they ‘drown’ in the
noise or background).

2. Cluster: these are the expression profiles with a dis-
tance to the cluster center that is not significantly
present in the distance distribution of the random-
ized data set (left-sided tail in the distribution of the
original data set). Genes belonging to the cluster are
significantly coexpressed.
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Fig. 1. Conceptual visualization of cluster center (XC K ) reloca-
tion to the cluster mean (X M E ) in two dimensions (one iteration—
cluster radius constant—data not normalized). The number of pro-
files (black dots) within the sphere after relocation is substantially
higher than the number of profiles before relocation.

To calculate the true radius of the cluster we need
to construct a model (probability density estimation)
describing the total distribution of the distance r in the
original data. We propose the following model structure:

p(r) = PC .p(r |C) + PB .p(r |B) (5)

where

p(r |C) = SD(
2πσ 2

)D/2
r D−1 exp

(
− r2

2σ 2

)
(6)

p(r |B) = SD

SD+1 (D + 1)D/2
r D−1 (7)

PC + PB = 1 (8)

and

D = E − 2 (9)

SD = 2π D/2

�(D/2)
(10)

�(x) =
∞∫

0

ux−1e−udu. (11)

E is the dimensionality of the gene expression vectors, SD
is the surface area of a unit sphere in D dimensions and
�(x) is the gamma function.

Note that the model structure assumes that the distance
measure used for r is the Euclidean distance. This means

that our method cannot be directly extrapolated to other
distance measures.

The model for the total distribution described in Equa-
tion (5) is the sum of two terms (also see Figure 2). One
term represents the distribution of the cluster (see Equa-
tion 6), the other term represents the distribution of the
background (see Equation 7), each multiplied by the asso-
ciated a priori probability (PC and PB). Note that Equa-
tions (6) and (7) are only valid for normalized gene ex-
pression vectors. Note also that this model is an approxi-
mation and only reliable in the neighbourhood of the clus-
ter. A detailed mathematical discussion of Equations (6)
and (7) and of the assumptions used to construct them,
can be found on our supplementary web site. Notice that
two parameters (σ and PC (or PB)) still have to be de-
termined by fitting the model to the distance distribution
of the original data (the randomized data is not used for
the actual calculations). This is done by an EM-algorithm
(Bishop, 1995). We use the preliminary estimate of the ra-
dius RK PRELIM (see localization of a cluster center) to
initialize the two parameters to be determined by the EM-
algorithm. Because the model only has to fit the distribu-
tion of r (distance to the cluster center—one dimension),
the computational complexity of the EM-algorithm is low
as compared to the computational complexity of the clus-
ter center localization in Step 1 and therefore can be ne-
glected if E is sufficiently large. The accuracy of the fit
(which represents the validity of the assumptions we made
to construct our model) for the clusters found in the Cho
et al. (1998) data (see Figure 3 on our supplementary web
site and the Section Results) can be inspected in Figure 2
for the first four clusters of Figure 3 and on our supple-
mentary web site for all the clusters of Figure 3.

After the estimation of σ and PC , we determine the
radius RK of the current cluster so that points that are
assigned to the cluster have a probability S or more
(significance level—user-defined; default setting: S =
95%) to belong to the cluster:

P(C |RK ) = PC .p(RK |C)

PC .p(RK |C) + PB .p(RK |B)
= S. (12)

To summarize, the complete input–output relation of the
method explained in this paragraph is given by

RK = recalculate radius(G, CK, RK PRELIM, S).

RK will be empty if CK is empty (cluster center localiza-
tion did not converge) or if the EM-algorithm to determine
the model parameters did not converge.

Stop criterion
The iteration (WHILE loop) in the global algorithm ends
when the stop criterion is satisfied. This is the case when
one of the three following conditions holds true:
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Fig. 2. Distribution of r (distance from expression vectors to a certain cluster center) for the first 4 clusters found in the data set from Cho et
al. (1998), (see Figure 3 on our supplementary web site). In each box, the histogram on the left represents the distribution of r in the actual
data and the histogram on the right represents the distribution of r in the randomized data (note that the cluster center for the randomized
distribution is identical to the cluster center for the actual distribution—the randomization is not applied to the cluster center itself). For each
cluster, the model (see Equations (5)–(11)) fitted by the EM-algorithm is superposed on the distribution of the actual data (after multiplication
with an appropriate factor to fit the scale (this accounts for the bin size and the number of expression profiles in the data set)). The model for
the background (see Equation (7)) is also superposed on the distribution of the randomized data.

Table 2a. Comparison between Adap Cluster and QT Clust

Adap Cluster QT Clust

User-defined 1. Data set G 1. Data set
parameters 2. Significance level S 2. Quality (radius R or diameter d)

3. Minimum number of genes 3. Minimum number of genes
MIN NR GENES (termination criterion)

Computational
complexity

∼ O(N × E × V C) ∼ O(N 2 × E × V C)

Cluster radius R Automatically calculated for each cluster separately—not constant Constant and user-defined

Quality measure Significance level S: statistical parameter that can be chosen
independently of data set (default value (0.95) almost always gives
meaningful results)

Arbitrary parameter that has to be set by the user in function
of a specific data set, after visual inspection of clusters
formed at different quality-levels (optimal value is not
straightforward)—no meaningful default value

Number of clusters Not predefined Not predefined

Inclusion of all genes
in clusters

No No

Result Deterministic Deterministic
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Table 2b. Comparison between Adap Cluster, hierarchical clustering, Self-Organizing Maps and K -means

Adap Cluster Hierarchical
clustering
Eisen et al. (1998)

SOM
Tamayo et al. (1999)

Standard K -means
Tou and Gonzalez
(1979)

Format of result Set of clusters Tree structure difficult
to interpret for large
data sets

Set of predefined
number of clusters

Set of predefined
number of clusters

Principal user-defined parameter Significance level S – Number of clusters /
Node topology

Number of clusters

Additional requirements from the user Limited (fine-tuning
of S is rarely
necessary)

Definition of (an
arbitrary) level where
the tree structure has
to be cut

Extensive parameter
fine-tuning
(comparison of
several runs with
different parameter
settings) is almost
always necessary

Extensive parameter
fine-tuning
(comparison of
several runs with
different parameter
settings) is almost
always necessary

Statistical definition of clusters Yes No No No

Inclusion of all genes in clusters No Yes Yes Yes

Missing values management Yes Yes Not discussed Not standard

Computational complexity of one run of the
algorithm

Linear in N Quadratic in N Linear in N Linear in N

1. Step 1 or 2 stops converging.

2. If, for a specific cluster, the number of iterations
necessary to decrease the relative difference be-
tween RK and RK PRELIM (under ACCUR RAD),
is larger than a predefined number.

3. If the clusters removed from the data are not valid
(number of genes below MIN NR GENES) for a
predefined and consecutive number of times.

Computational and memory complexity of the
global algorithm
It is difficult to give an exact measure for the computa-
tional complexity of this heuristic approach. However,
we can give an indication of the role of the most im-
portant variables. As previously said, the computational
complexity of one cluster center localization is approxi-
mately O(N × E) (N is the number of gene expression
profiles in the data set, E is the dimensionality of the
expression vectors) and the computational complexity
of the re-estimation of the cluster quality is negligible.
So, the computational complexity of one iteration in the
global algorithm (WHILE loop) is also approximately
O(N × E). Notice also that Condition 2 of the stop
criterion sets a limit for the maximum number of itera-
tions in the global algorithm needed to define one cluster
(which is only valid if the number of genes in this cluster
equals or exceeds MIN NR GENES). Moreover, the
number of invalid clusters (number of genes less than

MIN NR GENES) found before one of the conditions
of the stop criterion is true, is in practice also more or
less proportional to the number of valid clusters found
(e.g. for each invalid cluster found, two valid clusters will
be found). This number of valid clusters is no classical
attribute of the data (like N or E) used to express com-
putational complexity but it is rather a measure for the
complexity of the structure of the data. Taken together,
this means that the number of iterations in the global algo-
rithms is also more or less proportional to this number of
valid clusters in the data set and since the computational
complexity of one iteration is approximately O(N × E),
the computational complexity of the global algorithm is
thus approximately O(N × E × V C), (V C = number
of valid clusters). Notice also that, after finding a certain
number of clusters, the number of genes left in the data is
smaller than N (clusters are discarded from the data). The
computational complexity, as described above, is thus an
upper limit.

Since only the distances from the expression profiles to
the current cluster center have to be kept in memory (this is
true at any stage of the algorithm), the memory complexity
of the global algorithm is O(N ).

RESULTS
Mitotic cell cycle of Saccharomyces cerevisiae
The algorithm was tested on the expression profiling
experiment of Cho et al. (1998), studying the yeast cell
cycle in a synchronized culture on an Affymetrix chip
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(also see Spellman et al., 1998). This data set (http:
//cellcycle-www.stanford.edu) can be considered as a
benchmark (Heyer et al., 1999; Jakt et al., 2001; Tamayo
et al., 1999; Tavazoie et al., 1999; Yeung et al., 2001) and
contains expression profiles for 6220 genes over 17 time
points taken at 10-min intervals, covering nearly two full
cell cycles. The majority of the genes included in the data
set have been functionally classified (Mewes et al., 2000),
which makes this data set an ideal candidate to correlate
the results of new clustering algorithms with the biological
reality. For more details about the data set itself, we refer
to the original paper of Cho et al. (1998).

Our pre-processing included the following steps: data
corresponding to the 90 and 100-min measurements were
removed (Tavazoie et al., 1999). Also, we selected the
3000 most variable genes using σ/µ as a metric of
variation (Tavazoie et al., 1999; filtering). Finally, we
normalized the gene expression profiles as described
in the normalization section. The results of the cluster
analysis with our algorithm (MIN NR GENES = 10,
S = 0.95) are shown in Figure 3 (see supplementary
web site). Table 1a summarizes the biological validation
of this result by looking for enrichment of functional
categories in individual clusters as described in Tavazoie
et al. (1999). We mapped the genes in each cluster
to the functional categories in the Munich Information
Center for Protein Sequences (MIPS; Mewes et al., 2000)
Comprehensive Yeast Genome Database. For each cluster
we calculated P-values for observing the frequencies
of genes in particular functional categories using the
cumulative hypergeometric probability distribution. In the
same table we also show, as a comparison and in parallel
(where possible, we compare P-values of functionally
matching clusters), the results obtained by Tavazoie et al.
(1999) on the same data using the K -means algorithm.
Note that the three most important clusters found by
Tavazoie et al. (1999) (cluster 1, 4 and 2 in Tavazoie et
al., 1999) could be matched with three clusters discovered
by Adap Cluster (cluster 1, 2 and 5). The degree of
enrichment in the clusters identified by Adap Cluster,
however, was considerably higher and biologically more
consistent.

In the biological validation and comparison discussed
above, we filtered the data using the same metric of vari-
ance (σ/µ) as proposed by Tavazoie et al. (1999) because
different filtering strategies could produce different clus-
ters independent of the clustering technique (we did not
want different filtering to interfere with our comparison).
However, in general, if filtering is performed, we recom-
mend using simple measures of variation, like the standard
deviation σ (not σ/µ) or the difference between the min-
imum and maximum value, together with Adap Cluster.
Using Adap Cluster with the Cho et al. (1998) data in-
deed resulted in biologically more relevant results when

using the standard deviation (σ ) as the metric of variance.
This analysis produced several clusters enriched in top-
level functional categories (see Table 1b).

We were able to determine the role of every cluster
presented in Table 1b within the yeast cell cycle context
and correlate this role with the behaviour of the average
profiles of the clusters. We have also found several protein
complexes where nearly all members belong to the same
cluster. A detailed discussion of these findings can be
found on our supplementary web site.

Note that the results of Adap Cluster in this section have
been obtained without additional fine-tuning (we used the
default value for S) of one or more parameters (unlike, for
example, K -means; used by Tavazoie et al. (1999) where
the number of clusters has to be estimated in advance,
which is certainly not trivial) and that these results
can be obtained very easily and almost instantaneously
(maximum 1.5 min for the examples above on a typical
PC).

Additional results/simulations
A discussion of the clusters found by our algorithm in
other data sets (with different mathematical and biological
characteristics) can be found on our supplementary web
site:

• response to mechanical wounding in Arabidopsis
(Reymond et al., 2000);

• central nervous system development (Wen et al.,
1998);

• measurement of expression levels in different tissues
(data not publicly available—manuscript in prepara-
tion);

• artificial data (with and without missing values).

DISCUSSION
The algorithm proposed in this paper is designed to find
clusters of significantly coexpressed genes (higher degree
of coexpression than could be expected by chance) in
high-density areas of the data (high-density areas were
assumed by Heyer et al. (1999) to be, biologically seen,
the most interesting regions in the data). Genes not
exhibiting an expression profile significantly similar to
the expression profile of other genes in the data are
not assigned to any of the clusters. The same applies
to genes lying in low-density areas of the data. The
size or radius for each cluster separately is determined—
through the significance level S—by making a trade-off
between the probability of false positive results (a gene
assigned to the cluster that is not really coexpressed with
the other members of the cluster) and the probability of
false negative results (genes not assigned to the cluster
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but coexpressed with the members of the cluster). The
default value for the significance level S guarantees that
a gene, which has been assigned to the cluster, has a
probability of 95% or more to belong to the cluster (this
means that the probability of being a false positive is
5% or less). In other words, the genes in the cluster are
significantly coexpressed with a certain confidence. The
significance level S, in turn, can be seen as a constant
quality criterion for the clusters (while the quality criterion
R as defined in Equation (3) differs among the clusters
defined by our algorithm). Our algorithm can thus be
regarded as being a pure quality-based clustering method
where all the clusters have a constant quality represented
by the significance level S (the term adaptive quality-
based clustering is thus only valid when using Equation (3)
as quality criterion). When compared to the previous
definition (quality measure R), this new quality measure
S has the advantage that it has a strict statistical meaning
(it is much less arbitrary) and that, in most cases, it can be
chosen independently of a specific data set or cluster. In
addition, it allows for the setting of a meaningful default
value (95%).

In Table 2a a detailed comparison between our global
algorithm (Adap Cluster) and the algorithm proposed by
Heyer et al. (1999; QT Clust) is made. Because we focus
on algorithmic aspects, the QT Clust algorithm in our
comparison uses the same distance and quality measure
as we did (Euclidean distance and quality defined as
in Equation (3)—In Heyer et al. (1999) the jackknife
correlation was used together with a quality measure
defined as a diameter). This change of distance and
quality measure does not significantly change the structure
of QT Clust and in essence, there is no fundamental
difference between a quality defined as a radius and a
quality defined as a diameter.

To complete the picture, Table 2b gives a summary of
the differences between our method, hierarchical cluster-
ing, SOM and K -means.

Clusters formed by our algorithm might be good ‘seeds’
for further analysis of expression data (Thijs et al.,
2002) since they only contain a limited number of false
positives. When the presence of false positives in a
cluster is undesirable, a more stringent value for the
significance level S might be applied (e.g. 99%; for
noise-sensitive analyses such as motif finding) which will
result in smaller clusters exhibiting a more tightly related
expression profile.

Conclusively, Adap Cluster can be considered as an in-
tuitively appealing, user-friendly (no need for a predefini-
tion of the number of clusters, statistical and intuitive def-
inition of the quality measure with a meaningful default
value) and fast clustering algorithm.
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