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ABSTRACT
Motivation: When analyzing microarray data, non-biological
variation introduces uncertainty in the analysis and interpreta-
tion. In this paper we focus on the validation of significant
differences in gene expression levels, or normalized channel
intensity levels with respect to different experimental condi-
tions and with replicated measurements. A myriad of methods
have been proposed to study differences in gene expres-
sion levels and to assign significance values as a measure
of confidence. In this paper we compare several methods,
including SAM, regularized t -test, mixture modeling, Wilk’s
lambda score and variance stabilization. From this comparison
we developed a weighted resampling approach and applied it
to gene deletions in Mycobacterium bovis.
Results: We discuss the assumptions, model structure, com-
putational complexity and applicability to microarray data.
The results of our study justified the theoretical basis of the
weighted resampling approach, which clearly outperforms the
others.
Availability: Algorithms were implemented using the statist-
ical programming language R and available on the author’s
web-page.
Contact: wolkenhauer@informatik.uni-rostock.de
Supplementary information: For additional material see
http://www.sbi.uni-rostock.de/

∗To whom correspondence should be addressed.

1 INTRODUCTION
Among the various reasons to conduct microarray experiments
we may identify the following key objectives: comparison of
different gene expression levels in varying conditions; identi-
fication of functionally related genes, discriminating samples
through the clustering of gene expression profiles; and the
unravelling of gene interaction networks from time series data.
Here, we are interested in microarray data with at least three
replicates under two different ‘conditions’. These conditions
can either be normalized channel intensities, or gene expres-
sion levels at two different time points, comparing cell lines or
strains, or generally ‘before’ versus ‘after’ or ‘control’ versus
‘treatment’ comparative experiments. Since in Section 4 we
apply this technique to gene deletion studies, we refer to
‘normalized channel intensities’ when gDNA was hybridized
against gDNA, instead of using the term ‘gene expression’.
The aim is to reliably identify genes with significant differ-
ences in gene expression between the two conditions. This
problem is non-trivial due to uncertainties arising from various
sources of non-biological variation during experimentation,
measurement and data pre-processing. For differences in
expression levels the use of ‘fold changes’ is unreliable and
a statistical analysis is required to distinguish true changes
from random variations and to assign significance values to
differences.

The data set we analysed was based on comparative gen-
omic experiments between strains of Mycobacterium bovis,
the agent of bovine tuberculosis, and the human pathogen
M.tuberculosis. These organisms share >99.9% identity at the
nucleotide level, but this is offset by a range of gene deletions
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from M.bovis (Gordon et al., 2001). It is still unclear whether
these deletions confer any phenotype on M.bovis, or whether
the distribution of deletions differs across M.bovis isolates.
This would have major implications for strain evolution. Fur-
thermore, this data set should in theory have been simple,
in that we were comparing the presence or absence of genes
across strains. However, as we shall show, even this relatively
simple data set requires a robust statistical approach to ensure
the validity of the results.

An important step in pre-processing microarray data is
‘normalization’ (Kepler et al., 2002; Yang et al., 2002;
Quackenbush, 2002), which ensures that data from different
arrays are comparable. For the significance analysis investig-
ated in this paper, we assume that data were normalized before
we investigate differences in normalized channel intensities of
the genes.

Various statistical approaches are available to test whether
two samples are drawn from the same population or distri-
bution. Although non-parametric tests such as Wilcoxon’s
2-sample test are applied extensively to microarray data, these
are out of the scope of the present study. On the other hand,
parametric tests applied to microarray data are based on the
t-test at one stage or another. They can be further classified
according to whether they use assumptions about gene-to-
gene interactions. Regression models and mixture models
require prior assumptions that some calculated quantities have
special, implicit relationships (e.g. expression level and stand-
ard deviation of genes) (Baldi and Long, 2001; Huber et al.,
2002). The other type of tools, such as the simple t-test,
concentrate only on individual genes. We are going to demon-
strate that these methods, concentrating on individual genes,
perform poorer than methods based on regression.

In this paper we compare several methods including SAM
(Tusher et al., 2001; Efron et al., 2000, http://www.stat-
standford.edu/∼tibs/ftp/microarrays.pdf), Bayesian regular-
ized t-test (Baldi and Long, 2001), mixture modeling (Pan,
2002) (analyzed only theoretically), Wilk’s lambda score
(Hwang et al., 2002) and variance stabilization (Huber et al.,
2002). We discuss implicit assumptions, the model structure,
computational complexity and applicability to microarray
data. From this comparison, we developed a weighted res-
ampling approach and applied it to the study of differences in
channel intensities as the result of gene deletions in M.bovis.
The approach is derived from ideas in SAM and the regular-
ized t-test and employs weighted resampling. We introduced
a new way of replicate handling to grasp the reliability of the
replicates in two steps. First, this approach detects particular
outliers gene-by-gene (which reflects the local disturbance on
the array), second, it weights every resampled group accord-
ing to the probability of containing an outlier. The results of
our comparison justified the theoretical basis of this approach,
which outperforms previously published algorithms. All the
methods are not restricted to specific microarray experiments,
thus can be applied to any comparative experiment.

The outline of this paper is as follows. In Section 2, we
provide a short summary of the methods used in the com-
parative study. Section 3 introduces our weighted resampling
approach to identify significant differences in gene expres-
sion levels (or in normalized channel intensities). This is
followed by a comparison of our approach to the others with
an application to data sets obtained for gene deletions in
M.bovis. The summary of the results and discussion are in
Sections 4 and 5, respectively. In the supplementary material
(http://www.sbi.uni-rostock.de/) we prove the equality of vari-
ance stabilization with a special case of the modified t-test.
The web-link also includes the proof of the equivalence of
Wilk’s lambda score (for two-class comparisons) with the
simple t-test. Note that in this paper we call two statistical
tests equivalent if their test statistics are monotone function
of each other, thus they give the same significance ranking for
the genes. This does not necessarily mean that they pick the
same group of genes at each confidence level.

2 METHODS
In this paper experimental data are assumed to be normalized
and divided into two sub-groups. The process of normaliza-
tion should be tailored to the particular experiment and we
refer to the literature for a survey of methods (Kepler et al.,
2002; Yang et al., 2002; Quackenbush, 2002). For our M.bovis
data set, we used a simple three-step normalization proced-
ure for two-color DNA microarrays. This procedure consisted
of background subtraction, Lowess normalization and finally
across replicate normalization.

Hereafter x(g) = {xi(g)}ni=1 refers to the sub-group ‘before
treatment’ and y(g) = {yi(g)}mi=1 to the ‘after’ sub-group,
where g = 1, . . . , G indexes individual genes, n and m are
the number of replicates in each sub-group and G denotes the
total number of genes.

For the t-test, the following notation is used for replicate
averages and variances

x̄(g) = 1

n
·

n∑
i=1

xi(g), ȳ(g) = 1

m
·

m∑
i=1

yi(g)

s2
x (g) = 1

n − 1
·

n∑
i=1

[
xi(g) − x̄(g)

]2
,

s2
y (g) = 1

m − 1
·

m∑
i=1

[
yi(g) − ȳ(g)

]2
.

Now the standard t-statistic for gene g is given by

d(g) = x̄(g) − ȳ(g)

s(g)
, (1)

where s(g) is the sample estimate for the standard devia-
tion, i.e.

s(g) =
√

s2
x (g)/n + s2

y (g)/m. (2)
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Under normality assumptions (i.e. individual gene measure-
ments follow a normal distribution) d(g) follows a students
t-distribution. In the following, we briefly summarize com-
monly used methods for significance analysis applied to
microarray data.

2.1 Regularized t-test
Because the denominator of the t-statistic in (1) uses an
estimate s2 for the real variance σ 2, the t-test is too conservat-
ive for a decreasing sample size compared to its regularized
modification (Baldi and Long, 2001).

Baldi and Long (2001) followed the Bayesian approach,
which resulted in the following modified t-statistic

t∗ = x̄ − ȳ

s∗ , (3)

where

s∗ =
√

(n − 1)
(
s2
x/n + s2

y/m
) + ν0σ

2
0

ν0 + n − 1
. (4)

Although not immediately apparent, this approach is very
informative. Namely, ν0 refers to the strength of prior belief
about σ 2

0 . Note that the parameter estimates suggest that
one should use the weighted average of prior knowledge and
empirical estimate.

By looking for connections between parameters, for
example, mean expression level, (x̄ + ȳ)/2, and empirical
standard variation, s, we can establish regression models to
define a functional relationship between those parameters.
Baldi and Long (2001) introduced ‘local’ regression mod-
els. These regression estimators can be used for σ0. Other
models also exploit regression models for variance. One such
approach is variance stabilization.

2.2 Variance stabilization method
The variance stabilization method is described well in Huber
et al. (2002). The approach is based on quadratic regression,
modeling the variance against the mean of untransformed but
normalized microarray data. Referring to this regression func-
tion denoted by v, in Tibshirani (1988) it was shown that
the best transformation function to reduce the unevenness of
variance across the sample is

h(y) =
∫ y

−∞
1/

√
v(u) du. (5)

For further details refer to Huber et al. (2002). Note that in
the case of v(u) = u2 this leads to h(y) = log(y), which is
the usual transformation used for microarray data. The meas-
ure of significance is defined as the difference of transformed
values. In case the dye effect is removed properly by the
pre-normalization, the transformation functions v will agree
between the Cy3 and Cy5 channels. Suppose now that the
functions v do not differ too much and therefore Cy3 and

Cy5 channels assign a common function v (and therefore
a common function h). In the supplementary material we
show that in case of common variance regression functions in
both channels, the proposed measure of significance is equi-
valent to a special case of the regularized t-test. However,
when it is difficult to remove the dye effect suitably the use of
different h functions for each channel can deviate consider-
ably from the t-test (1). Another equivalence to the t-test is the
Wilk’s lambda score as will be shown in the following section.

2.3 Wilk’s lambda scoring
Wilk’s lambda score is a measure of significance and the basis
of the ‘leave one out’ cross-validation method described in
Hwang et al. (2002). Their procedure iteratively builds test-
and training sets of genes and computes the corresponding
misclassification error rate. The final set of discriminatory
genes will build up from the genes with the top Wilk’s lambda
score. The number of discriminatory genes is decided by the
misclassification error rate function. In the supplementary
material, we prove that the Wilk’s lambda score (for two-class
comparison) is equivalent to the t-statistic.

2.4 SAM
A popular method for significance analysis, called SAM
(Tusher et al., 2001), based on a modified version of the
t-statistic (1), is defined as follows:

dSAM(g) = x̄(g) − ȳ(g)

s(g) + s0
, (6)

where s0 is defined to minimize the difference in the coef-
ficient of variation of dSAM within classes of genes with
approximately equal variance (Chu et al., 2001, http://www.
stanford.edu/∼wanjen/Chu%20Lab/Papers/sam.pdf). A draw-
back of calculating s0 is the computational cost. As will
be shown in Section 4, using a simpler regularized t-test
(Tibshirani et al., 2002) one obtains very similar results.

Assuming that n and m are even numbers, the algorithm
computes all N = (

n
n/2

)(
m

m/2

)
possible regroupings of the

union of the two groups x and y. Regroupings where each
of the two groups contain an equal number of elements from
x and y are indexed with p. For a particular permutation p,
denote the two groups with p1 and p2; the ‘null score’ is
defined by

dp(g) = x̄p1(g) − ȳp2(g)

s(g) + s0
. (7)

The method uses these values to mimic the null statistics. To
save space, we do not go into the details of the method, the
reader is referred to Chu et al. (2001) for more details.

2.5 Mixture modeling
Pan (2002) used the principle idea of the SAM method (Chu
et al., 2001; Efron et al., 2000), and computed only one ran-
domly selected dp(g) value from all possibilities (for each
gene). As these dp(g) null-values (for all genes) are drawn
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Fig. 1. Detailed description of the proposed WR method.

from the same null distribution they can be pooled together to
have an estimate for the null density function, f0. Approximat-
ing the distribution by a mixture of well-known distributions
is not well justified since it imposes strong assumptions on
the tail of the distribution. [Using the statistical language R
we used several functions for the approximation (incl. simple
smoother, normal, mixture-normal) but noticed that they var-
ied widely.] Pan (2002) suggested creating a pooled empirical
density function (called f ), where the histogram is built up
from the original d(g) values. The final score of significance
is therefore f0/f . The smaller the value is, the more probable
it is that a significant change is detected.

3 WR ALGORITHM
All of the previously described methods treat replicates with
the same weight. Here, we propose an approach that com-
bines the advantages from the aforementioned methods. The
SAM method (Tusher et al., 2001; Chu et al., 2001; Efron
et al., 2000) approached the replicate handling through
randomized resampling while we suggest the following two-
step approach. Our weighted resampling (WR) approach is
based on the regularized t-test (Baldi and Long, 2001) as
in SAM. We modeled the replicates’ reliability by meas-
uring local disturbance (individual genes) through outlier
detection.

Using the replicates we create regularized t-statistics of
smaller size. To make the rest of the procedure clear we
will explain each step using an example. For instance,
given a ‘4-against-4’ experiment. We create all (16) possible
‘3-against-3’ t-statistics as these are the largest t-statistics one
can obtain without including all the replicates from the control
and treatment group. Here, the prior SD σ0 in (4) is determ-
ined as the mean of all estimated SD. The strength of the prior

ν0 in (4) is set to 0.7 based on the formula (10 − n + 1) as
suggested in Baldi and Long (2001). Once we have these reg-
ularized t-values (3), we should assign weights to them. The
weights depend on the variance of the actual sample (in our
example we have to compute all 16 3-against-3 variances).
Before we continue, we test the variances for ‘outliers’. We
call a variance a negative outlier if its relative deviation from
the mean variance (of all the possible sampling of one particu-
lar gene) is smaller than a fixed threshold δ. In our application
δ was set to −0.5 to pick up the top third of the most reli-
able replicates across all genes. This means that a particular
grouping exhibiting significantly low variation suggests that
the replicate left out from that resampled group may be unre-
liable. The threshold can be altered according to the data set
(e.g. to produce only a certain number of groupings with sig-
nificantly low variation among genes). We found that this does
not play an important role for the results in our application.
Once we have chosen the groupings with greater importance,
they are assigned a multiple weight (here we used the half of
total number of regroupings, i.e. 8); a single weight is given to
all other groupings. It does not make significant difference in
the results if we use a more sophisticated weighting. The idea
behind this weighting is that in the case of particular genes
some replicates can be rather distorted or noisy as detected
by the relative group variation. However, the same replicate
can in general exhibit good correlation properties. This reg-
ular phenomenon has escaped the scope of previous studies.
Thus we would like to give more weight to those groupings
where the replicates are more consistent in that particular
gene’s measurement than others. Of course, eventually the
weights have to be normalized to sum up to one for each
gene. This weighted sum for each gene will represent its new
score of significance denoted zg . The approach described here
is summarized in Figure 1. This weighting scheme seems to
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be a good compromise between the t-test and more robust
statistics, like

median(x) − median(y)

MAD

where MAD is the median SD from the median. The t-test is
sensitive to outliers, which can completely impair the results.
On the other hand, the mentioned robust methods are not sens-
itive enough to detect if some of the replicates has changed.
For instance, in case of ‘4-against-4’ data the largest (and the
smallest) measurement is not taken into account at all, as long
as its value is greater than the second largest replicate.

4 IMPLEMENTATION
DNA microarray technology allows the large-scale analysis
of whole genomes for comparative genomics. Using this
technology we can therefore rapidly screen the genomes
of M.bovis strains for deletions, using an M.tuberculosis
H37Rv array and exploiting the >99.9% sequence identity
at the nucleotide level between the two bacilli. For further
details of the experiment see the supplementary material:
http://www.sbi.uni-rostock.de/. Ideally the microarray signal
intensities should differ significantly in case of gene deletion.
We carried out replicated measurement to boost the reliability
of the results. Four replicates were used in our experiment
and 3852 genes passed the quality control pre-processing. We
applied the simple t-test, regularized t-test (Baldi and Long,
2001), Wilk’s-lambda score (Hwang et al., 2002), two differ-
ent SAM methods (Tusher et al., 2001; Efron et al., 2000),
the mixture modeling approach used by Pan (2002) and the
proposed WR method. RD deletion regions in different types
of M.bovis are extensively explored and many of them are
verified by PCR results, making these data suitable for a com-
parative study (Gordon et al., 2001). Finally, we applied all the
implemented methods—including our proposed method—to
the M.bovis data set.

Although the similarity of the two genomes is about 99%,
since not the entire gene sets were used, we were looking
for the top 5% of the genes with most significantly changed
channel intensities since these are the most plausible candid-
ates for deletions. Using PCR it is known that deleted RD
regions consist of 74 genes (Gordon et al., 2001), one of
which had to be excluded during normalization, as a con-
sequence of high background noise in the data. Note that
only the remaining 73 genes were examined in the further
analysis. The SAM method (Efron et al., 2000) recognized
92%, while the regularized t-test (Baldi and Long, 2001)
identified more than 90% of the proven deletions. Finally,
the proposed WR method identified 92% of gene deletions.
It should be mentioned that the distortion of the measure-
ments sometimes was strong due to cross-hybridization, gene
homologies and other source of non-biological noise (Dorrel
et al., 2001). As a result, two of the 73 genes (3%) showed
positive difference in channel intensities (i.e. the test DNA
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Fig. 2. The proportion of the selected genome is plotted against the
ratio of picked up RD genes among them.

channel produced higher intensity than the control strain).
These gene deletions could not be identified by any statist-
ical tools. Which means that the proposed WR method missed
only three genes (4%), which might have been detected some-
how else. One of these three genes were among the top 10%
of genes with most significant differences in channel intens-
ities, thus just have missed to make it. The complete results
for all proportion between 0–10% of the genome can be seen
in Figure 2.

Other important approach is when not using the inform-
ation about the M.bovis genome (namely that only 5%
of the genes can be deleted) and controlling the false
discovery rate (FDR). For SAM method we used their
approach to control the FDR as described in Chu et al.
(2001). There is a wide range of alternative techniques
(Storey and Tibshirani, 2001; Yekutieli and Benjamini,
1999; Reiner et al., 2003; Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001; Storey, 2001, http://
faculty.washington.edu/~jstorey/papers/dep.pdf), which can
be used to control the FDR. For the RT method and our
WR approach we picked and implemented a less conservative
approach (Storey and Tibshirani, 2001). The results are sum-
marized in Table 1. In this context SAM method picked 55 RD
genes, our WR method found 57 RD genes at 5% confid-
ence level, while the regularized t-test identified 50 genes in
the RD regions. The overall comparison of the methods can
be seen in the receiver operating characteristic (ROC) curve
(Fig. 3), where the FDR was plotted against the true positive
rate method by method. One disadvantage of SAM is that it
changes unevenly and cannot reflect minor changes. However
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Table 1. Detected gene deletions comparing the different approaches

WR (%) RT (%) SAM (%)

% of RD genes with FDR <5% 78 68 75
% of RD Genes in the top 5% 92 90 92

The first row represents the proportion of identified RD genes when the FDR is controlled
to be <5% according to different methods. The second row shows the proportion of
RD genes within the top 5% according to their significance scores. RT refers to the
regularized t-test.
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Fig. 3. Receiver Operating Characteristic curve (ROC curve) of the
different methods applied to M.bovis.

for the lowest FDRs it performs inarguably well. The advant-
age of the WR method is that it is a globally reliable method
either combined with FDR control, or using simply the top z%
of the significance values as its ROC curve clearly dominates
that of the other methods.

Figure 4 shows the deletions (with dark dots) on the genome
suggested by the analyzed methods. The outer circle refers to
WR algorithm suggested here, the next inner ring is the SAM
(Efron et al., 2000), and third is regularized t-test (Baldi and
Long, 2001).

5 DISCUSSION
We compared methods for significance analysis theoretically,
and through the application to experimental data. While a the-
oretical comparison might suggest differences or the formal
equivalence, depending on the experiment conducted there
may be practical arguments for and against these methods.
In this section, we complete our discussion by looking at
the structure and statistical validity of models using the
experimental data set introduced in the previous section.

GENOME

RD5

RD9 RD7

RD17

RD4

RD1 3RD11

RD12

RD6

RD8

RD10

Fig. 4. Genome of M.bovis Type 12. Dark dots represent RD
deletions.

First, it is obvious that the regularized t-test incorporates
the basic t-test as a special case for which we do not intend
to use any prior assumptions (i.e. the weight ν0 = 0). The
randomized SAM method is clearly better than the t-test; it
takes into consideration not only the actual t-statistics, but can
control the type I error more accurately by the re-sampling
technique. To gain an insight into the comparison of differ-
ent significance scores we can scatter-plot the significance
scores against each other, as shown in Figure 5. Here one
can compare how the different methods agree on scoring. If
the plot shows a monotone increasing relationship, we can be
confident that for that particular data set those two methods
of scoring are similar. The more monotone-like the cloud of
points is the more the two methods agree. Figure 5 shows
how the different methods agree in this sense. Considering
expression profiles for thousands of genes, it is important to
remember that each gene is a random variable and intens-
ity measurements are therefore not necessarily drawn from
a common distribution. To create a histogram for d-values
as done in Pan (2002), is therefore questionable, especially
if from the purpose or context of the experiments we expect
significant differences in channel intensities. In such experi-
ments we should have doubts about Pan’s f function where
the f0/f score for significance does not measure exactly what
we need. It is irrelevant for us whether the t-statistic [i.e. the
d-value (1)] of a significantly changed gene is rare among
the t-statistics of the entire gene set. To put this concern into
another form, the Neyman–Pearson lemma cannot be used
in this case. Function f is not a density function, although
in the Neyman-Pearson lemma the alternative hypothesis is
that a particular test statistic belongs to an alternative (f1)
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Fig. 5. Scatter plot compares methods for significance analysis
applied to a TB data set.

distribution. Here it is not the question of whether a gene
belongs to one distribution or another, but whether they are
identically or differentially expressed. Identical expression
can be translated into belonging to a particular distribution,
but differential expression cannot.

A further advantage of our WR method is that due to its
reduced set of assumptions, it can easily deal with missing
data, odd number of replicates, and uneven number of rep-
licates in the ‘treatment’ and ‘control’ groups, unlike SAM.
Naturally a major drawback of our proposed method is compu-
tational cost. To compare the computational complexity with
other methods let us consider G genes with n control and
m treatment replicates and C random resampling for the FDR
computation, the complexity of the SAM method, the regu-
larized t-test is O(C · G), while WR needs O(C · G · n · m)

steps. Our WR has by far the largest computational needs.
The complexity of all other methods are independent of the
sample size. These extended running times are still below
20 min (with a 2.8 GHz Pentium 4 CPU). Furthermore, where
high data quality is apparent, scores for all methods coincide.
However, in our experience it is still a major challenge to
obtain very high-quality microarray data.
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