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ABSTRACT
Motivation: A microarray experiment is a multi-step process,
and each step is a potential source of variation. There are
two major sources of variation: biological variation and tech-
nical variation. This study presents a variance-components
approach to investigating animal-to-animal, between-array,
within-array and day-to-day variations for two data sets. The
first data set involved estimation of technical variances for
pooled control and pooled treated RNA samples. The vari-
ance components included between-array, and two nested
within-array variances: between-section (the upper- and lower-
sections of the array are replicates) and within-section (two
adjacent spots of the same gene are printed within each
section).The second experiment was conducted on four differ-
ent weeks. Each week there were reference and test samples
with a dye-flip replicate in two hybridization days. The vari-
ance components included week-to-week, animal-to-animal
and between-array and within-array variances.
Results: We applied the linear mixed-effects model to quantify
different sources of variation. In the first data set, we found
that the between-array variance is greater than the between-
section variance, which, in turn, is greater than the within-
section variance. In the second data set, for the refer-
ence samples, the week-to-week variance is larger than the
between-array variance, which, in turn, is slightly larger than
the within-array variance. For the test samples, the week-to-
week variance has the largest variation. The animal-to-animal
variance is slightly larger than the between-array and within-
array variances. However, in a gene-by-gene analysis, the
animal-to-animal variance is smaller than the between-array
variance in four out of five housekeeping genes. In sum-
mary, the largest variation observed is the week-to-week effect.
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Another important source of variability is the animal-to-animal
variation. Finally, we describe the use of variance-component
estimates to determine optimal numbers of animals, arrays
per animal and sections per array in planning microarray
experiments.
Contact: jchen@nctr.fda.gov

1 INTRODUCTION
DNA microarray technology provides tools for studying
expression levels for thousands of genes in a number of exper-
imental samples (conditions) simultaneously. A microarray
experiment is a multi-step process, and each step is a poten-
tial source of variation. Variability can be generally classified
into three categories: biological variation, technical (pro-
cess) variation, and residual variance (Novak et al., 2002;
Churchill, 2002). Biological variation refers to the variation
from different RNA sources. It reflects differences in host
characteristics. Biological variation is due to inherent dif-
ferences in gene expression, varying from subject to subject
due to genetic or environmental factors. Technical variation
refers to the variation arising from the use of the microarray
system. Potential sources of technical variation include the
sample preparation procedures such as RNA extraction and
purification, cDNA synthesis, incorporation extent of dyes
and the specific batch of dyes used; the microarray construc-
tion procedures such as the amount of probe applied to the
slides, spot shape, pin geometry and fixation of the spotted
DNA to the slides; the hybridization and washing procedures
such as the amount of labeled cDNA applied to the slides
and hybridization temperatures; the detection method such as
scanner setting parameters; cross-hybridization within gene
families; and outshining from neighboring spots. Laborat-
ory environmental conditions, such as room temperature, are
another source of variability during the lengthy, multi-step
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process of performing a microarray experiment. Although the
relative magnitude of effects of environmental conditions on
the total variability of the experiment is generally not known,
controlling these conditions to the greatest extent possible will
obviously help reduce this source of variability. This variation
is generally classified as a time or block effect. Other potential
sources of variability such as concentrations of components
in reaction and wash buffers can be controlled by using stock
solutions and master mixes as much as possible.

A microarray experiment is generally a comparative exper-
iment in which the experiment of interest is the comparison of
the relative expression levels among samples rather than the
determination of absolute intensity measures of each sample.
But gene expression data produce a signal-to-noise ratio that
must be assessed objectively. Replication allows for assess-
ment of the variability of expression data such that formal
statistical analysis methods can be applied. Without replica-
tion, one cannot distinguish between true differences in gene
expression and random fluctuations. Replication can be incor-
porated at different levels of the experiment. For example,
replications can be conducted for different tissues or different
cell lines, each one can be hybridized to more than one arrays
and each array can consist of replicated spots of the same
gene. Yang and Speed (2002) described two types of replica-
tion: technical replicates and biological replicates. Technical
replication refers to replication in which the mRNA is from the
same pool (the same extraction). Biological replicates refer to
hybridizations that involve mRNA from different extractions.
If the purpose of the experiment is to determine the effects of
a treatment on different biological populations, then statist-
ical tests should be based on the biological replicate samples.
If the purpose is to detect variations within the experimental
groups, then tests can be based on technical replicate samples.
In general, a researcher will want to use biological replicates
to obtain averages of independent data and to validate a gen-
eralization of the conclusion and to use technical replicates to
assist in reducing experimental variabilities.

Kerr et al. (2000) presented an analysis of variance
(ANOVA) model for the analysis of microarray data. The
ANOVA model is a popular statistical approach for model-
ing sources of variation. It considers all possible sources of
variation in a microarray experiment and summarizes them in
one equation. The ANOVA method provides an automatic
correction for the nuisance effects in estimating the relat-
ive expression of genes across experimental samples. An
advantage of the model-based ANOVA approach is that it
estimates the magnitude of the sources of variation explicitly.
A microarray experiment is conducted in steps; variation in
each step potentially affects the measured gene expression
intensity levels. Identifying and estimating different sources
of variation are essential in designing an efficient experiment.
Recently, Cui and Churchill (2003), Spruill et al. (2002) and
Wernisch (2002) used the ANOVA model to evaluate the
sources of variation in microarray data. In this paper, we

present a variance-components approach to assessing sources
of variation for two gene expression data sets.

2 MATERIALS AND METHODS
2.1 Sources of variation
The variation of the measured gene expression data can be cat-
egorized into three generic sources: biological, technical and
residual variations. The biological variation in gene expres-
sion measured comes from different animals or different cell
lines or tissues. It reflects the variability among the different
target biological samples used in the experiment. The target
biological samples are the experimental units. Different tar-
get samples are independent biological replicates to reflect
the variability in the population of interest. Biological vari-
ation is estimable only when there are independent biological
replicates. If all biological samples are pooled, the biological
variation is minimized and inference can be made only as to the
experimental conditions. The technical variation accounts for
the variation associated with the use of microarray techniques
unrelated to the biological samples (more details given below).
The residual variation accounts for sampling or experimental
variation or other unaccountable factors. The biological, tech-
nical and residual variations are mutually independent. The
variation in a measured intensity is the sum of these three
variations.

We distinguish two types of variations: within-array vari-
ation and between-array variation. Within-array variation
refers to variation originating from array-specific spot effects.
The within-array variation can be caused by scratches or dust
on the surface of an array or by the printing, washing or
image extraction processes. There are also systematic vari-
ations, such as differences in labeling efficiency, intensity or
spatial dependency biases. For example, every grid in an array
is printed using the same print-tip. Systematic differences may
exist between the print-tips or printing order, such as slight
differences in the length or deformation after many hours
of printing, or the biological materials can decay with time.
Within-array variation can be assessed by putting replicates
at different locations of each array. Note that normalization
or transformation (Yang et al., 2002; Durbin et al., 2002) is
often performed to adjust for the systematic biases prior to
statistical analysis. Since the target mRNA sample within an
array is from the same extraction, within-array variation is
attributed to the technical variation.

Between-array variation observed in an experiment can
be due to biological factors or technical factors. They can
be composed of array batch-to-batch variation (quality and
homogeneity in manufacturing the array including gene
sequence variance), array-to-array hybridization variance
(such as sample preparation on different dates) and biological
variation (i.e. target mRNA samples are from different bio-
logical samples hybridized to different arrays). In this paper,
the between-array variation is restricted to the same target
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(biological) sample. The target sample can be one individual
or a mixture of individuals. Under this restricted definition, the
between-array variation is attributable to technical variation.
Thus, technical variation consists of two components: within-
array and between-array variation. Technical variations can
be assessed by technical replicates. Between-array variation
can only be assessed by replication of the same RNA sample
to more than one array. Depending on the microarray design,
the within-array replication can consist of sub-components,
illustrated in the first example data set below. The biological,
between-array and within-array variations are nested in a hier-
archical fashion (between-array variation nested in biological
variation and within-array variation nested in between-array
variation).

In addition to the biological and technical variations,
another random variation often encountered is the time effect.
Because of available resources, a large study (an experiment
involves many arrays or many biological samples) is often
divided into several small experiments. Each experiment is
conducted at a different time (day or week). The data from
the same experiment are more homogeneous because they
are generated under similar experimental conditions. (Each
experiment can be considered as a block.) In the hierarchical
structure of the variance components, the time effect vari-
ance is generally at the highest level. The second example
data set provides an illustration of the four hierarchical vari-
ance components: week-to-week, biological, between-array
and within-array variations.

In the next section (Section 2.2), we give an overview
of the basic experimental design for a two-color dye-flip
microarray experiment and illustrate it with an ANOVA model
to the partition of sources of variation. We use a simple
variance-component model involving three layers of vari-
ations, animal-to-animal (biological), between-array (tech-
nical) and residual variations, to provide the background and
methods for estimation of variance of components and calcu-
lation of degrees of freedom (Montgomery, 1991). The simple
variance-component model will be generalized to more com-
plex effects such as within-array variations in the example
data sets (Sections 2.2.1 and 2.2.2).

2.2 Experimental design, ANOVA and variance
components

Consider a dye-flip design. Assume that the treated sample
is labeled with Cy5 (red) dye and the control sample with
Cy3 (green) dye on the first array. The second array has
the dye assignment reversed. Each observation (of a gene)
is obtained from different combinations among these three
factors: array, dye and treatment. The complete model for the
intensity measure of a gene is given by the ANOVA model

Y = m+A+D +T + (AD)+ (AT )+ (DT )+ (ADT )+ ε,

where m represent the overall effect (average), A represents
the main effect for arrays, D represents the main effect for dyes

(red or green), T represents the main effect for treatments,
(AD), (AT ) and (DT ) represent the interactions between
main effects and (ADT ) are the interactions among the three
main effects. To estimate all eight effects, it would need eight
observations from the eight different combinations: (A1, Cy3,
Control), (A1, Cy5, Treatment), (A2, Cy3, Treatment), (A2,
Cy5, Control), (A1, Cy3, Treatment), (A1, Cy5, Control),
(A2, Cy3, Control) and (A2, Cy5, Treatment). However,
the dye-flip experiment, in which only the first four (or the
last four) combinations are observed, is a one-half fractional
design. The effects can still be estimated by linear combina-
tions of the half observations. Then, every two effects would
share the same linear combinations and are confounded. The
indistinguishable effects are called aliases. The generator is
the effect that confounds with the overall effect m. In this
design, (ADT ) is the generator, and the defining relation is
then given by m = ADT . An efficient way of determin-
ing the alias structure is multiplying any effect on both sides
of the defining relation. Any effect can be obtained by mul-
tiplying the overall effect. For example, the alias of A is
obtained by multiplying A on both sides of the defining rela-
tion, A = A · m = A · ADT = A2DT = DT , since the
square of any two-level effect is the constant. Thus, the com-
pleted alias structure in this design is m = ADT , A = DT ,
D = AT , T = AD. When the interactions are negligible, the
fractional design is applicable for investigation of the main
effects of interest.

The ANOVA model was initially developed for the analysis
of differences between means (e.g. Kerr et al., 2000). The
ANOVA technique was later adapted to estimating variance
components. In the analysis of variance components of a data
set, we are interested in attributing variability of the data to
various factors. There are different levels of an effect in a
factor that impacts the measurements of interest. The factors
include treatment, dye, animal, array, etc. There are two kinds
of effects for a factor, fixed effects and random effects. Fixed
effects refer to the effects attributable to a finite set of levels
of a factor that occur in the data. Random effects refer to
the effects attributable to a (usually) infinite set of levels of
a factor. The effects for the factor dye (red and green) or
treatment (exposed and unexposed samples) are fixed, and
the effects for arrays or animals are random because they are
considered randomly chosen from some infinite population
of arrays or animals. Therefore, a typical microarray experi-
ment consists of both fixed effects and random effect factors.
Analysis of variance components involve estimation of the
variance of random effects.

In order to separate the variance of random components
from treatment effects, we consider a variance-component
model of a repeated dye-flip experiment within each treat-
ment group. Let nr denote the number of animals within each
treatment group, na denote the number of arrays per animal
and ng denote the number of genes on the array. The experi-
mental design is shown in Figure 1 with nr = 2 and na = 2.
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Fig. 1. Experimental design of a replicated dye-flip experiment.

A variance-component model that consists of array, dye, gene
and animal (rat) effects is

Y = m + G + D + R + A(R) + ε,

where G represents the effect of genes, R represents the effect
of animals and A(R) represents the between-array effect nes-
ted within animals, indicating the same RNA samples are
hybridized with different arrays. Effects m, G and D are
fixed, and effects R and A(R) are random. Standard stochastic
assumptions about the random effect components are that R,
A(R) and ε are independently normally distributed with mean
0 and with variancesσ 2

r , σ 2
a(r) andσ 2

ε , respectively. This model
provides a simple structure of the three layers of variance
components discussed before. The variance of a measured
intensity is the sum of the three layers of the variance com-
ponents, Var(Y ) = σ 2

r + σ 2
a(r) + σ 2

ε . The variances σ 2
r , σ 2

a(r)

and σ 2
ε can be estimated from the expectation of mean squares

of the ANOVA table.
The expected mean squares of animal effect (MSR), array

effect (MSA(R)) and residual (MSE) are E(MSR) = σ 2
ε +

ngnaσ
2
a(r) + ngnanrσ

2
r , E(MSA(R)) = σ 2

ε + ngnaσ
2
a(r) and

E(MSE) = σ 2
ε , respectively. Substituting the expectation with

its ANOVA estimates, estimates of σ 2
ε , σ 2

a(r) and σ 2
r can be cal-

culated by solving the above system of linear equations. This
approach is known as the method of moments. In practice, an
estimated variance can be negative. The restricted maximum
likelihood (REML) method (Searle et al., 1992) is an alternat-
ive approach to estimating variance components. The REML
estimates are maximum likelihood estimates with respect to
the marginal likelihood excluding fixed effects by a vague
prior. In balanced designs, REML and moment estimation
give the same results under non-negative constrains.

A general rule for calculating the degrees of freedom is that
for each effect, the degree of freedom is the product corres-
ponding to the factors involved in the effect. Each term in the
product is either the number of levels of the factor (for factors
nested within parentheses) or the number of levels minus 1
(for factors not in parentheses). Thus, the degrees of freedom
for G, D, R and A(R) should be (ng − 1), (2 − 1), (nr − 1)

and (na − 1)nr , respectively. However, due to the nature of
the microarray design, each array consists of one dye (either
red or green) for a given treatment. The effects of dye and
array are, thus, confounded with each animal, i.e. the A(R)

and D(R) are alias A(R) = D(R) = D + DR, where DR is
the interaction between dye and animal. The A(R) and D are
then confounded. (The effect DR is not included in the above
model.) Since the dye effect, D, is regarded as an important
factor and is included in the model, this results in the loss
of one degree of freedom for the A(R) effect. The degree of
freedom for A(R) is (na − 1)nr − 1.

2.2.1 Toxicogenomic data set The first data set is from a
toxicogenomic study of gene expression changes of kidney
samples from rats dosed with cisplatin, a known kidney toxin.
Details of the study are given in Thompson et al. (2002). The
array is a 700 gene cDNA rat chip from Phase-1 Molecular
Toxicology (Santa Fe, NM). In each array there are four by
four grids of 14×14 spots. The upper section (half of the array)
consists of Grids 1–8, and the lower section is a replicate of
the upper section, consisting of Grids 9–16. On each grid,
genes were spotted in duplicate, and so each gene has four
replicate values on each array. In addition to the 700 rat genes,
sequences of four plant genes and one bacteria gene were also
spotted on the array, each with four replications. A total of
705 genes were analyzed.

The control RNA was pooled from the kidneys of five rats.
The treated RNA sample was pooled from the kidneys of five
rats 7 days after being treated with 5 mg/kg of cisplatin. Con-
trol and treated samples were hybridized on six arrays (arrays
A1–A6). Samples were all labeled and hybridized on one date.
Each replicate sample was labeled independently (one treated
and one control). There were 12 separate labeling reactions.
On the arrays A1–A3, the control samples were assigned to
the green dye and treated samples were assigned to the red
dye. The dye assignments to the control and treated samples
were reversed on the arrays A4–A6. Intensity was calculated
by subtracting the local background intensities from each raw
fluorescent value using the GenePix software package (Axon
Instruments Inc., 1999). Since all biological samples were
pooled, only technical and residual variances could be estim-
ated. Control and treated samples were analyzed separately.
Since the data set does not have biological replicates, only
between-array and two levels of within-array variations are
estimated.

Let y denote the background-subtracted base-2 logarithm of
individual intensity measurements. Assume the three-factor
interaction is negligible; a nested mixed-effects (ANOVA)
model for the control samples can be expressed as

yaijws = m + Aa + Gi + Dj + (GD)ij + (GA)ia + (DA)ja

+ W(A)w(a) + S(WA)s(wa) + εaijws , (1)

where A represents the between-array effect (a = 1, . . . , 6),
G represents the gene effect (i = 1, . . . , 705), D represents
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the dye effect (j = 1, 2), W(A) represents the between-
section (within-array) effect attributed to upper and lower
sections (w = 1, 2), S(WA) represents the within-section
effect (within-array) (s = 1, 2) and ε represents the random
error in a given condition of a, i, j , w and s. As discussed,
the gene and dye are assumed to be fixed effects, and the
between-array, between-section (within-array) and within-
section are assumed to be random effects. The within-array
variations, W(A), and the within-section (within-array) vari-
ation, S(WA), are modeled as random effects. S(WA) is the
variation of intensities of two adjacent spots of the same gene
within any section of an array. W(A) is the variation of the
intensities of the same genes between the upper section and
the lower section. Both variations are likely due to the printing
order. S(WA) effect is interpreted as the printing order effect
within any section within any array, which is independent of
any particular gene or dye. W(A) is the printing time effect
within any array. The between-array effect, A, is likely due to
the batch effect of preparing samples.

We restrict the model to the main effects and the interaction
for two-factor fixed effects,

yaijws = m + Aa + Gi + Dj + (GD)ij + W(A)w(a)

+ S(WA)s(wa) + εaijws . (2)

The two random effect components, (GA) and (DA)

[Equation (2)], are not included in this model; their vari-
ances σ 2

ga , σ 2
da are negligible. Assume that the random effects

Aa , W(A)w(a), S(WA)s(wa) and εaijws are independently
normally distributed with mean 0 and with the variance com-
ponents, σ 2

a , σ 2
w(a), σ 2

s(wa) and σ 2
ε , respectively. Under Model

(2), the random error, ε, represents the overall variations of
σ 2

ga , σ 2
da and σ 2

ε . The variance of yaijws is the sum of the

variance components, σ 2
a + σ 2

w(a) + σ 2
s(wa) + σ 2

ε . In order
to investigate the distribution of variance components across
genes, we consider the following mixed-effects model for
gene-by-gene analysis,

yajws = m + Aa + Dj + W(A)w(a) + εajws . (3)

In the gene-specific model, the between-spot effect is not
estimable, and it is confounded with the residual term, εajws .

2.2.2 Circadian data set The second data set is a study of
circadian changes in gene expression in liver samples from
rats and was conducted at the National Center for Toxicolo-
gical Research (NCTR), FDA. Details of the study are given
in Desai et al. (2004). The rats were fed an ad libitum NIH-31
diet with a 12 h light/dark cycle (lights on at 0200 h and off at
1400 h). At 52 weeks of age, four rats were sacrificed at each
of the following times: 0600, 1100, 1700 and 2300 h. Total
RNA was extracted from the livers, generating 16 samples. A
reference RNA was formed by mixing equal amounts of the
16 sample RNAs. In this study, the differences in gene expres-
sion among the four sacrifice times are the effect of interest.

Microarrays were prepared using the rat 4K Ready-to-Print
Long Oligos from Clontech (Palo Alto, CA; identities of the
genes can be found at www.clontech.com). The RNA from
each (test) sample was labeled with Cy3 and hybridized along
with a Cy5-labeled reference sample to a glass slide contain-
ing duplicate sections of 3906 rat genes so that each gene
had two measurements (upper and lower sections) on each
array. In addition, dye-flip experiments were performed. After
hybridization and washing, fluorescent signals were measured
using an Axon 4000B scanner (Axon Instruments, Union City,
CA). The Axon GenePix Pro software was used to quantify
the signals from each gene spot for use in subsequent data
analyses.

The 16 RNA samples were divided into four experimental
blocks (four samples per block), each block consisting of a
sample from each of the four sacrifice times. The samples
within each block were labeled with one fluorophore and
hybridized on a single day. The dye flip labeling and hybrid-
ization were conducted on the next day (one-half technical
replicate). The four blocks were run in four different weeks,
two consecutive days in each week, a total of eight arrays per
week with two arrays per animal. Note that each day involved
an animal from each of the four time points. In total, each
gene had 128 intensity measurements (32 arrays × 2 dyes ×
2 sections). For computational reasons, we only considered
955 genes where all 128 measurements were available.

For the reference samples, there is no biological effect
(either animal-to-animal variation or sacrifice time) since
the reference samples are all from the same pool. The
mixed-effects model for the reference samples is

yabijwh = m + Bb + H(B)h(b) + A(HB)a(hb) + Gi + Dj

+ (GD)ij + W(AHB)w(ahb) + εabijwh, (4)

where Gi represents the gene effect (i = 1, . . . , 955), Dj

represents dye effect (j = 1, 2), (GD)ij are the interac-
tion between Gi and Dj , Bb represents the between-block
effect (b = 1, . . . , 4), H(B) represents the between-day effect
within block (h = 1, 2), A(HB) represents the between-array
effect within block and day (a = 1, . . . , 4) and W(AHB)

represents the within-array (between-section) effect within
block, day and array (w = 1, 2). The variance components
of interest are the block variance, σ 2

b , between-day variance,
σ 2

h(b), between-array variance, σ 2
a(hb), within-array variance,

σ 2
w(ahb) and residual variance, σ 2

ε . The gene-specific model is
given by

yabjh = m+Bb+H(B)h(b)+A(HB)a(hb)+Dj +εabjh. (5)

In this model, the within-array effect is not estimable, and it
is confounded with the residual term εajbh.

For the test samples, biological replicates enabled us
to estimate biological variation (between-rat variation).
Because there is only one biological sample for each sac-
rifice time in each week, the biological variability among
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the four rats is confounded with biological differences
at the sacrifice time. In order to estimate between-rat
variance, we consider five housekeeping genes that are
not expected to be changed with time among rats. The
five genes were hypoxanthine-guanine phosphoribosyltrans-
ferase, glyceraldehyde-3-phosphate dehydrogenase, ornith-
ine decarboxylase, polyubiquitin and tubulin alpha 1. Fur-
thermore, the between-day effect (within an animal) and
between-array effect are confounded in the 16 animals and
four blocks. They cannot be estimated independently. We first
consider the model without between-day effect. The nested
mixed model for the five genes for the test samples is

yabrijw = m + Bb + R(B)r(b) + A(RB)a(rb) + Gi + Dj

+ (GD)ij + W(ARB)w(arb) + εabrijw, (6)

where B represents the between-block effect, R(B) repres-
ents the between-rat within block effect and A(RB) represents
the between-array effect within block and rat. The variance
components of interest for the test samples are the block vari-
ance, σ 2

b , between-rat variance, σ 2
r(b), between-array variance,

σ 2
a(rb), within-array variance, σ 2

w(arb), and residual variance,

σ 2
ε . Alternatively, we can model the between-day effect but

without the between-rat effect,

yabhijw = m + Bb + H(B)h(b) + A(HB)a(hb) + Gi + Dj

+ (GD)ij + W(ARB)w(ahb) + εabhijw. (7)

Finally, the variance-component ANOVA model for a gene-
by-gene analysis with the rat effect and sacrifice time is

ytabrj = m+Tt +Bb +R(B)r(b)+A(RB)a(rb)+Dj +εtabrj ,
(8)

where T represents the four sacrifice times effect
(t = 1, . . . , 4). This model is a generalization of the classical
ANOVA model. For example, if there is no block or dye-effect,
it becomes the split-plot ANOVA model (Montgomery, 1991,
Chapter 14),

ytar = m + Tt + Rr + A(R)a(r) + εtar .

In a typical split-plot model Rr = Rr + (T R)tr and
A(R)a(r) = Aa + AR(ar). The effects T and R are whole
plot units and A(R) is the sub-plot effect. When there is
only one section per array (no within-array replicate), this
model becomes the well-known one-way ANOVA model,
ytr = m + Tt + εtr .

3 RESULTS
All analyses of the ANOVA model and variance component
estimates were carried out using PROC VARCOMP of the
SAS system for windows (SAS Institute, 1999). Although
both PROC VARCOMP and PROC MIXED procedures can

be used to analyze an ANOVA model with random effect com-
ponents, PROC VARCOMP performs a type I analysis for a
quantitative description of importance of each factor in the
ANOVA model. The SAS output of the type I estimation,
which uses the moment estimates, provides an analysis of
variance table in addition to the variance component estim-
ates. The analysis of variance table includes sum of square
error, the degrees of freedom (df), mean square error and the
expected mean square error (EMS) from each source of vari-
ation. PROC VARCOMP provides an alternative option of
using restricted maximum likelihood (REML) estimation.

3.1 Analysis of toxicogenomic data set
Table 1 contains the ANOVA analysis and variance-
component estimates from Equation (2). The ANOVA table
(in upper panel) includes the degrees of freedom (df), mean
square errors for the reference and treated samples and expec-
ted mean squares. The lower panel contains the variance-
component estimates σ 2

a , σ 2
w(a), σ 2

s(wa) and σ 2
ε with their

respective asymptotic standard error estimate in brackets.
Note that the number of degrees of freedom for the array effect
is 4, instead of 5, due to the factional design for the dye-flip
experiment. For instance, the control samples on array A1–A3
were labeled with green color and labeled with red color on
array A4–A6. The dye effect and the array effect were con-
founded. The dye effect is the variation between the average of
A1–A3 and the average of A4–A6. Estimating the dye effect
results in the loss of one degree of freedom for estimating the
array effect.

As discussed, the estimated residual variance, σ̂ 2
ε , rep-

resents the pooled variance estimate for the experimental
variation as well as higher ordered interaction effects such
as Gene×Array, Dye×Array, etc. The estimated between-
array variance, σ̂ 2

a , is much larger than both estimated
within-array variances (between-section and within-section
variances), σ̂ 2

w(a) and σ̂ 2
s(wa). The between-section variance

itself is slightly larger than the within-section variance (vari-
ance between the adjacent spots, σ̂ 2

s(wa)). The smaller variance
estimates appear to confirm that the within-array variance is
due to printing order effect. It is worth mentioning that the dye
effects and array effects are substantially different between
treatment group and reference group (Table 1).

The distributions of the three variance components for treat-
ment and reference samples are plotted in Figure 2. All
variance components have positively skewed distributions.
The shapes of the distribution of residual variance and within-
array (within-section) variance are similar in both groups. The
majority of the genes have small within-array as well as resid-
ual variance, the between-array effect being the major source
of variation.

3.2 Analysis of circadian data set
Table 2 contains the ANOVA analysis and variance-
component estimates for the reference sample, Equation (4).
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Table 1. Analysis of variance and variance-component estimates [Equation (2)] for the toxicogenomic data set

Source df MS EMS
Control Treated

Gene 704 56.8527 49.9613 σ 2 + Q1

Dye 1 783.3850 74.9596 σ 2 + 705σ 2
s(wa) + 1410σ 2

w(a) + 2820σ 2
a + Q2

Gene∗dye 704 0.7422 1.1134 σ 2 + Q3

Array 4 360.4026 180.5637 σ 2 + 705σ 2
s(wa) + 1410σ 2

w(a) + 2820σ 2
a

Section(array) 6 15.9566 15.1519 σ 2 + 705σ 2
s(wa) + 1410σ 2

w(a)

Spot(section∗array) 12 3.8108 4.6545 σ 2 + 705σ 2
s(wa)

Residual 15488 0.1822 0.1838

Variance-component estimates (standard error)
Array: σ̂ 2

a 0.12214 0.05866
(0.09043) (0.04538)

Section(array) σ̂ 2
w(a) 0.00861 0.00745

(0.00663) (0.00635)

Spot(section∗array): σ̂ 2
s(wa) 0.00515 0.00634

(0.00221) (0.00270)

Residual: σ 2
ε 0.18221 0.18383

(0.00207) (0.00209)

Degrees of freedom (df), mean squares (MS) for the control and treated samples and the expected mean squares (EMS).

Fig. 2. Distributions of the estimated variance components for the toxicogenomic data set.

The variance-component estimates include block, day,
between-array, within-array, and residual variances. Note that
this design has 32 arrays with two dyes, four blocks and two
days within a block. In this model, H and D are aliases within
each block, that is, H(B) = D(B) = D + DB, where DB

is the interaction between dye effect and the between-block
effect. Thus, the H(B) effect lost one degree of freedom for
estimating the the dye effect.

The estimated variance due to day effects is small (0.0018).
The day effect is the variation of intensities of the same gene
hybridized in two different dates (with two arrays) within
any week. The small variance suggests homogeneity of the
hybridization procedure for the same biological batch. The
three other variance component estimates, σ̂ 2

b , σ̂ 2
a(hb) and

σ̂ 2
w(ahb), appear in a hierarchical pattern. The block effect

has the largest variance and the between-array variance is
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Table 2. Analysis of variance for the reference samples and variance
component estimates, Equation (4), for circadian data

Source df MS

Gene 954 40.3686
Dye 1 665.5898
Gene∗dye 954 2.0794
Block 3 1599.8172
Day(block) 3 201.7371
Array(day∗block) 24 187.9890
Section(array∗day∗block) 32 56.6009

Residual 59148 0.1408

Variance-component estimates (standard error)
Block: σ̂ 2

b 0.09150 (0.08616)

Day(block): σ̂ 2
h(b) 0.00180 (0.02270)

Array(day∗block): σ̂ 2
a(hb) 0.06879 (0.02936)

Section(array∗day∗block): σ̂ 2
w(ahb) 0.05912 (0.01482)

Residual: σ̂ 2
ε 0.14078 (0.00082)

Degrees of freedom (df) and mean squares (MS) for the reference samples.

Fig. 3. Distributions of the estimated variance components for the
circadian data set.

slightly larger than the within-array variance. The latter result
is consistent with the result in Example 1. Figure 3 con-
tains the plots of the distributions of the variance components
from gene-by-gene analysis, Equation (5). Again, the day
effect has small variances for most of the genes. The distribu-
tions for the remaining three variance components appear very
similar.

Table 3 contains the ANOVA analysis and variance-
component estimates for the test sample, Equation (6). The

Table 3. Analysis of variance for five housekeeping genes in test samples
and variance component estimates, Equation (6), for the circadian data

Source df MS

Gene 4 12.7396
Dye 1 10.0007
Gene∗dye 4 1.9594
Block 3 11.3173
Rat(block) 12 1.7958
Array(rat∗block) 15 0.6722
Section(array∗rat∗block) 32 0.3235

Residual 248 0.0809

Variance-component estimates (standard error)
Block: σ̂ 2

b 0.11902 (0.11589)

Rat(block): σ̂ 2
r(b) 0.05618 (0.03866)

Array(rat∗block): σ̂ 2
a(rb) 0.03487 (0.02584)

Section(array∗rat∗block): σ̂ 2
w(arb) 0.04851 (0.01624)

Residual: σ̂ 2
ε 0.08094 (0.00727)

Degrees of freedom (df) and mean squares (MS).

variance component estimates include block, between-rat,
between-array, within-array and residual variances. Similar
to the reference samples, the block effect has the largest
variance. The between-rat (biological) variation is slightly lar-
ger than the between-array and within-array variation. Note
that between-array variation consists of the two components:
day effect and array effect. The technical variation consists
of between-array (including day effect) and within-variation.
These two component variances combined are larger than the
biological variance.

For the alternative model, Equation (7), the variance-
component estimates are

σ̂ 2
b = 0.12682, σ̂ 2

h(b) = 0, σ̂ 2
a(hb) = 0.08481,

σ̂ 2
w(ahb) = 0.04851, σ̂ 2

ε = 0.08094.

The REML estimated variance for the day effect is 0 since
the negative estimate is typically set to 0. Under this
model, the between-array variance consists of the rat-variance
and between-array variance. The estimated within-array and
residual variance from (7) are identical to the estimates
from (6). Since the estimated day-effect variance is 0, the
estimate σ̂ 2

a(hb) = 0.08481 probably reflects approximately

the sum of between-rat variance (σ̂ 2
r(b) = 0.05618) and

between-array variance (σ̂ 2
a(rb) = 0.03487) shown in Table 3

for the five housekeeping genes. In both reference and
test samples, the between-block is the the major source of
variation.

Table 4 gives the variance-component estimates (bottom
panel) from the gene-by-gene analysis, Equation (8), for
the five selected housekeeping genes. For Gene 1, Gene 2
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Table 4. Analysis of variance for each of five housekeeping genes in test samples (degrees of freedom (df) and mean square) and variance component estimates,
Equation (8), for the circadian data

Source df Mean square
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Dye 1 0.5713 8.4281 3.3967 0.9039 4.5382
Time 3 0.4183 0.3225 0.3329 1.3160 0.7983
Block 3 2.7033 1.9111 2.4715 2.0921 2.4941
Rat (block) 9 0.2620 0.3077 0.3960 0.5873 0.5195
Array (rat∗block) 15 0.1180 0.1840 0.2295 0.3483 0.3208
Residual 32 0.0722 0.1137 0.1100 0.0937 0.0718

F -value (time) 1.60 1.05 0.84 2.24 1.54
P -value (time), from F (3,9) 0.2568 0.4168 0.5054 0.1529 0.2703

Variance-component estimates
Block: σ̂ 2

b 0.15258 0.10021 0.12972 0.09405 0.12341
Rat (block): σ̂ 2

r(b) 0.03600 0.03093 0.04163 0.05975 0.04966
Array (rat∗block): σ̂ 2

a(rb) 0.02291 0.03518 0.05973 0.12730 0.12450
Residual: σ̂ 2

ε 0.07219 0.11368 0.11004 0.09371 0.07184

Gene 1: hypoxanthine-guanine phosphoribosyltransferase; Gene 2: glyceraldehyde-3-phosphate dehydrogenase; Gene 3: ornithine decarboxylase; Gene 4: polyubiquitin;
Gene 5: tubulin alpha 1.

and Gene 3, block effect dominates other sources of vari-
ation as seen in the previous results. Gene 4 has slightly
larger biological variation. The technical variation in the level
within-rat is mainly present in Gene 4 and Gene 5. This
suggests that the majority of genes have moderate biological
variance when compared with block variation and technical
variation.

The ANOVA model, Equation (8), allows us to test the
hypothesis of treatment effects. For purposes of illustration,
assume that we are interested in knowing whether the expres-
sion profiles of, say, Gene 1 are different among the four
sacrifice times. The significance of the hypothesis is revealed
by the F -test (the last two rows of the upper panel in Table 4).
Here the F -value is the ratio of the two mean squares of
the Time effect and Rat(Block) effect, MST /MSR(B) =
0.4183/0.2620 = 1.60. Note that the denominator of the
F -statistic is not the conventional mean square of the resid-
ual because the biological samples are the basic experimental
unit for inference from samples to population. The F -test
measures the variation of the sacrifice times with the vari-
ation of rats. The mean square of residuals here represents the
within-array variance. The p-values indicate no differences
in the sacrifice times for all five genes. It should be noted
that the above F -test presented for differences among sacri-
fice times was for illustrative purpose; only the test samples
were used in the analysis. In practice, the data would include
reference samples. Typically, the variable y in Equation (8) is
the ratio of test to reference samples. Also, the permutation
test or re-sampling method may be used instead of parametric
t- or F -tests since the data often do not follow the normal
distribution (Tsai et al., 2003).

4 DISCUSSION
Variability in microarray data is expected and unavoid-
able. The identification and estimation of different sources
of variation are fundamental to the design of cost-efficient
microarray experiments. The basic principles of experimental
design are randomization, blocking and replication. The
purpose of randomization is to reduce the likelihood of sys-
tematic biases due to selection or assignment. For example,
the biological samples should be randomized to a treat-
ment using a predetermined scheme so that the underlying
characteristics of subjects are equally representative across
treatments. Randomization can also be applied to the dye
assignments in technical replicates. Replication, to minim-
ize technical artifacts and to assess biological variability, is
the key to the accuracy and reliability of the data. Replica-
tion enables us to understand and interpret the significance
of observed changes for thousands of genes. Blocking is
used to increase the precision of estimates; a block is a
subset of experimental units that are more homogeneous
than the entire experiment itself. Below we describe the
use of variance-component estimates in conjunction with
replication and blocking techniques in planning microarray
experiments.

In the circadian data set, the basic measurement for a gene
and sacrifice hour is the average of the measurements of a rat
made on a particular week. These averages are then averaged
across rats and week. Denote nb (=4) as the number of weeks,
nr (=4) as the number of animals per week, na (=2) as the
number of arrays per animal and nl (=2) as the number of
sections per array. Let xrb.. = ∑

a,l xrbal/(nanl) represent
the basic experimental measurement for a given week, that
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is, the average for the nl sections for a gene and sacrifice
hour for the r-th rat in the b-th week. The total number of
measurements for the mean value of xrb.. is nr × nb. The
variance of the mean of the xrb.. is

Var

(∑
r ,b xrb..

nrnb

)
= σ 2

b

nb

+ σ 2
r(b)

nbnr

+ σ 2
a(rb)

nbnrna

+ σ 2
w(arb)

nbnrnanl

+ σ 2
ε

nbnrnanl

. (9)

The variance estimates can be obtained from the variance-
component estimates (Tables 2–4).

Equation (9) can be used to calculate the number of animals,
of arrays per animal and of sections per array when the vari-
ance component estimates for σ 2

b , σ 2
r(b), σ 2

a(rb), σ 2
w(arb) and

σ 2
ε are available. In general, if the information on the relative

cost of measurements for sections within arrays and the cost
of arrays (per rat) are available, then an optimum number of
sections per array (possible only 1 or 2) and optimum num-
ber of arrays per rat can be calculated. In the special case,
assume an equal cost of measurements for arrays within a rat
and in different rats, for a fixed total number of rat, array and
section combinations (nr × na × nl), the variance is min-
imized when ns = nw = 1. That is, the design with one
gene per array per biological sample (rat) is the most efficient
design.

In the context of a microarray experiment, replicated spots
of the same gene are not only used for averaging and for
reduction of variance [Equation (9)] but have also been used
for evaluation of overall quality of the data. For example, the
four plant genes and one bacteria gene in the toxicogenomic
data set are regarded as replicates and are used to monitor non-
specific background binding of labeled cDNA. Replicates of
the same genes on an array are not only useful for evaluation
of the quality of data but also offer protection against missing
data (e.g. not-hybridized data points). However, replicated
spots should be well spaced, not adjacent, so that the true
variability within an array can be estimated.

Equation (9) provides a general formula to determine the
number of replicates at different stages in the experiment. It is
worth remembering that extrapolation of statistical inferences
from sample to population is valid only through biological
replication. Variability of the population of interest in a study
can only be estimated by biological replication. Biological
samples should reflect the variability of the population. In
the experiment, biological samples can be pooled to reduce
the biological component of variation and increase statistical
power to detect a treatment difference (Kendziorski et al.,
2002). Pooling, however, does not reduce the variation of
the technical component. Technical replicates are needed to
estimate or to reduce measurement variation. Furthermore,
making a large pool from all biological samples for each treat-
ment will minimize the biological variation. However, this

design losses information on the variability of the population
and statistical inference can be made only on the experimental
samples.

In summary, we present an analysis of estimating sources
of variation and their relative contributions to the overall vari-
ation in microarray studies. A large week-by-week variation
is observed. That is, the performance of procedures from one
week run (block) to the next run accounts for much of the over-
all variability. Reduction of this variability would increase
the precision of the estimates of gene expression changes.
The number of runs required to perform a study is determ-
ined by the size of the resources available on a daily basis
to conduct the experiments. With limited resources, dividing
the entire study into multiple experimental runs is unavoid-
able. Development of rigid standard operating procedures, as
well as limiting the number of experimental runs, would be
expected to have a big impact on reducing this run-to-run
variability and therefore the overall variability. In addition, it
is critical that each treatment is represented on each experi-
mental block in order to avoid confounding and biases that
would be introduced due to the different blocks. Furthermore,
the technical variation, that is, the sum of the between-array
and within-array variations, appears to be larger than the biolo-
gical variation. The between-array variance is slightly larger
than the within-array variance in both data sets. Technical
replicates can be made on replicate arrays or replicate spots
(of the same gene) on the array. Since the cost of replic-
ate spots is less than the cost of replicate arrays, an array
with well-spaced replicated spots is a cost-effective design
to reduce technical variation. Another source of variability
is animal to animal variation, although we found that the
effect is less substantial in the second example. Equation (9)
shows that replication of biological samples is generally the
most effective way of reducing this variability with a fixed
number of blocks and increasing the power for identifying dif-
ferentially expressed genes. Thus, by identifying the sources
and magnitude of variability in two microarray data sets, we
show that reduction in overall variability may be obtained by
modification of experimental protocols and inclusion of more
biological replication.
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