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ABSTRACT
Motivation: Transcriptional profiling using microarrays can
reveal important information about cellular and tissue
expression phenotypes, but these measurements are
costly and time consuming. Additionally, tissue sample
availability poses further constraints on the number of
arrays that can be analyzed in connection with a particular
disease or state of interest. It is therefore important to
provide a method for the determination of the minimum
number of microarrays required to separate, with statistical
reliability, distinct disease states or other physiological
differences.
Results: Power analysis was applied to estimate the min-
imum sample size required for two-class and multi-class
discrimination. The power analysis algorithm calculates
the appropriate sample size for discrimination of pheno-
typic subtypes in a reduced dimensional space obtained
by Fisher discriminant analysis (FDA). This approach was
tested by applying the algorithm to existing data sets
for estimation of the minimum sample size required for
drawing certain conclusions on multi-class distinction with
statistical reliability. It was confirmed that when the mini-
mum number of samples estimated from power analysis
is used, group means in the FDA discrimination space are
statistically different.
Contact: gregstep@mit.edu

INTRODUCTION
DNA and protein arrays are becoming standard tools
for probing the cellular state and determining important
cellular behavior at the genomic and protein levels.
Oligo-nucleotide and cDNA arrays (Schena et al., 1995;
Lockhart et al., 1996) are being employed increasingly
for determining discriminatory genes and discovering new
classes of disease subtypes that are differentiated at the
level of transcription (Golub et al., 1999; Stephanopoulos

∗To whom correspondence should be addressed.

et al., 2002). Data-driven hypotheses are developed from
these types of measurements that suggest, in turn, novel
experiments furthering biomedical research.

There are certain issues of statistical reliability that
need to be addressed in the implementation of array
technologies. Microarray data are typically subjected
to analyses such as hypothesis testing, classification,
clustering, and network modeling that rely on statistical
parameters in order to draw conclusions (Alizadeh et al.,
2000; Stephanopoulos et al., 2002; Golub et al., 1999).
However, these parameters cannot be reliably estimated
with only a small number of array samples and poor
sample distributions of gene expression levels. Since the
statistical reliability of conclusions largely depends on
the accuracy of the parameters used, a certain minimum
number of arrays is required to ensure confidence in the
sample distribution and accurate parameter values.

This study is concerned with the determination of the
minimum number of gene expression arrays required to
ensure statistical reliability in disease classification and
identification of distinguishing expression patterns. This
is an important issue considering the scarcity of tissue
samples that can be used for transcriptional profiling and
the fact that microarray measurements are rather costly in
terms of time and reagents required. As a result, there is a
tendency to carry out only a small number of microarray
measurements that in many cases are inadequate for the
intended purpose. Conclusions based on an inadequate
number of arrays will not be statistically sound.

The method proposed here first identifies differentially
expressed genes across disease subtypes, hereafter called
discriminatory genes, using Wilks’ lambda score (John-
son and Wichern, 1992; Stephanopoulos et al., 2002;
Dillon and Goldstein, 1984) and leave one out cross-
validation (LOOCV) (Lachenbruch and Mickey, 1968).
Then, Fisher discriminant analysis (FDA) (Stephanopou-
los et al., 2002; Dillon and Goldstein, 1984; Zhao and
Maclean, 2000) is invoked to define linear combinations of
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these discriminatory genes that form a lower dimensional
discrimination space where disease subtypes (classes) are
maximally separated. Finally, the minimum number of
array samples necessary is estimated to ensure satisfactory
separation of the linear combinations (i.e. the projections)
of the discriminatory genes in the discrimination space. It
should be noted that the minimum number of array sam-
ples is estimated only in the reduced-dimensional space,
and therefore the composite expressions of the genes are
well characterized and not necessarily the individual genes
themselves.

SYSTEMS AND METHODS
The data-set
The previously published set of leukemia gene expression
data (Golub et al., 1999) was used in this work. The data
set comprises 72 samples of which 47 were classified as of
acute lymphoid leukemia (ALL) and 25 as acute myeloid
leukemia (AML). A further division of ALL samples into
38 B-lineage acute lymphoid leukemia (B-ALL) and 9 T-
lineage acute lymphoid leukemia (T-ALL) was considered
in extending the sample determination approach to the
multi-class case of three disease subtypes (B-ALL, T-
ALL, and AML). The sample classification among the
three subtypes given in Golub et al. was also used here,
as it was based on both clinical information and validation
through their pattern discovery technique.

Selection of discriminatory genes
Several statistical measures have been proposed to identify
discriminatory genes for two conditions (e.g. cancerous
and normal tissues). Parametric tests such as P-value
(Golub et al., 1999) and t-test (Thomas et al., 2001)
are based on differences of group means, while non-
parametric tests such as Wilcoxon rank sum (Mann–
Whitney) test are based on differences of rank sums
in groups (Thomas et al., 2001). Parametric tests may
perform poorly due to violation of their underlying
assumptions, such as normality and equal variance in the
various groups. A non-parametric test does not rely on
these assumptions and works well with a small sample
size, but the results may be more critically sensitive on the
nature of the samples used for the training of the classifier
than those in parametric tests. No method is unanimously
optimal for all kinds of data. Selection of a method for
application to a certain data set should depend on the
characteristics of the data, the extent of violation of the
underlying assumptions, and the sample size. We propose
a well-characterized alternative measure, called Wilks’
lambda score (Johnson and Wichern, 1992; Dillon and
Goldstein, 1984) to assess discriminatory powers of the
individual genes. Wilks’ lambda, which originated from
ANOVA, is not limited only to two-class comparisons but

can also be used for multi-class cases. It produces more
robust test results than multiple two-class comparisons
using t-test because the Wilks’ lambda is based on group-
variance instead differences between group means and
rank sums.

Genes whose expression distribution has high between-
group variance (the groups are well separated) and small
within-group variance (the samples inside each group are
relatively similar) are deemed to be discriminatory for
the sample classes (Dillon and Goldstein, 1984; Dudoit
et al., 2001). The between-group variance (Bi ) of the
expression of a certain gene i is proportional to the sum of
the differences between group means of expression levels.
The within-group variance of the expression of gene i
(Wi ) is the sum of group variances of the expression levels
of the gene in a single class. With the total variance of
expression levels of gene i , Ti = (xi − 1x̄i )

T (xi − 1x̄i ),
the within- and the between-group variances are defined
respectively as follows:

Wi =
c∑

j=1

W j
i =

c∑
j=1

(x j
i − 1x̄ j

i )T (x j
i − 1x̄ j

i ) (1)

Bi = Ti − Wi . (2)

The vector, xi (N × 1), contains the expression level
of gene i in N samples and x̄i is the mean expression
of gene i in all N samples. The superscript j represents
class j among the c classes. For the two genes shown
schematically in Figure 1, gene 1 has a large between-
group variance and a small within-group variance while
gene 2 has a small between-group variance (overlapping
distributions across the classes) and a large within-group
variance. For gene 1, the large ratio of the between-
group variance to within-group variance indicates a gene
with a discriminatory expression pattern. Without loss of
information, the above procedure is implemented through
a statistical test based on Wilks’ lambda (�i ) that allows
one to establish a formal boundary between discriminatory
genes and non-discriminatory genes:

�i = Wi

Ti
(3)

In order to compare the Wilks’ lambda (�i ) score to a
distribution with known parameters, it is transformed to
the F distribution as follows (Dillon and Goldstein, 1984;
SAS, 1989):

Fi = (1 − �i )

�i

(N − c)

(c − 1)
∼ Fα(c−1,N−c) (4)

where N is the total number of samples and c is the
number of classes. In this form, discriminatory genes are
selected by applying a statistical cutoff determined from
the F distribution using some level of significance (in this
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Fig. 1. Discriminatory genes (potential disease related genes) and non-discriminatory genes.

case α = 0.01). Note that a high F value signifies a more
discriminatory gene relative to one with a low F value.

As a parametric measure, Wilks’ lambda score might
produce a high false positive error due to violation of
the underlying assumptions, especially normality. This
is especially true for genes that have small difference in
their expressions between groups. In order to improve the
false-positive rate, we incorporate an error rate calculation
through LOOCV procedure into the discriminatory analy-
sis (Dillon and Goldstein, 1984; Lachenbruch and Mickey,
1968). In this procedure, a series of many LOOCVs are
performed to get a good error estimate (see Figure 2a). The
first step in this iterative procedure consists of randomly
dividing the data set being considered into c test samples
(i.e. one test sample for each class) and N − c training
samples. The training samples are used to generate an
initial set of discriminatory genes using Wilks’ lambda
score (F statistic values). Using the gene with highest
F value, a FDA classifier is constructed and the error
rate calculated for the c test samples (see next section).
A second classifier is then constructed using the top two
discriminating genes, which is again applied to the test
samples. The number of genes included in the classifier
is thus sequentially increased to form more complex clas-
sifiers until all genes selected with the Wilks’ lambda
score have been included. At each step, the number of
misclassified samples is determined for calculation of the
misclassification error rate (see the next paragraph). A

new division of the samples into training and test sets is
then considered, and the procedure is repeated.

For the estimation of error rates, the entire LOOCV
procedure is repeated g times using different test and
training sets, until all samples have been withheld in the
test set at least once. If we denote by m p the number of
misclassified samples in the g cross-validations for a given
number of discriminatory genes (p) used in the classifiers,
the averaged error rate is given by e(p) = m p/(c ×
g). Then, the error rates from the g cross-validation
iterations can be computed as function of the number
of discriminatory genes. Using the error rate curve, the
number of discriminatory genes can be determined at the
point where the averaged error rates show an asymptotic
behavior (see Figure 3d and 4d). Then, a final set of
45 discriminatory genes is determined based on the
frequencies by which they appeared as discriminatory
genes during the g LOOCVs. (see Figure 2a). The final
list of genes (Figure 3d) is shorter than the original
list of discriminatory genes (Figure 3c), thus enabling
us to reduce the false positive error by identifying a
small set of genes robust to sample variation. If a
gene with small expression difference between the two
classes of samples shows up consistently in the LOOCV
procedure, it indicates that the observed difference, even
though small, is statistically reliable. Other methods have
also introduced to reduce false positives in identifying
discriminatory genes (Storey and Tibshirani, 2001; Tusher
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Fig. 2. (a) Leave one out cross-validation (LOOCV) algorithm, where N is the total number of samples and c is the number of classes, so
that one sample from each class is included in the test. (b) Power analysis algorithm for determination of the minimum sample size.

et al., 2001), and may be used instead of LOOCV at the
user’s discretion.

Dimensional reduction by discriminant analysis
FDA is a linear method of dimensionality reduction from
the expression space comprising all selected discrimina-
tory genes to just a few dimensions where the separation of
sample classes is maximized. FDA is similar to principal
component analysis (PCA) (Alter et al., 2000; Holter
et al., 2000) in the linear reduction of data (Johnson
and Wichern, 1992; Dillon and Goldstein, 1984). The
major difference is that the discriminant axes of the FDA
space are selected such as to maximize class separation

in the reduced FDA space, instead of variability as in the
case of PCA. The discriminant axes of FDA, termed as
discriminant weights (V), maximizing the separation of
sample classes in their projection space can be shown
to be equivalent to the eigenvectors of W−1B, the ratio
of between-group variance (B) to within-group variance
(W), as shown in Equation (5).

W−1BV = V� (5)

where

B = T − W, W =
c∑

j=1

(X j − 1x̄T
j )T (X j − 1x̄T

j ),
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Fig. 3. Determination of minimum sample size for two-class (ALL, AML) distinction, selection of discriminatory genes with the estimated
sample sizes of two classes, and FDA projection. (a) Power plot versus sample size showing how to determine the sample size required for
two-class distinction (eight from each class). (b) The distributions of H0 and H1 for the determined sample size. (c) Univariate F statistic
values of the initial 388 discriminatory genes with a threshold (F0.01(1, 18) = 8.2854) in randomly selected eight ALL and eight AML
samples out of the entire data set. (d) Leave-one-out cross-validation applied to estimate the classification error rates and then to select the
50 most discriminatory genes with the same samples. (e) Separation of eight ALL and eight AML samples in the two-dimensional FDA
projection space defined discriminant axes of 50 discriminatory genes.

and
T = (X − 1x̄T )T (X − 1x̄T ).

The eigenvalues (�) indicate the discrimination power for
the corresponding discriminant axes. Further details of
FDA, and its application in classification of microarray
data are described in Stephanopoulos et al. (2002).
Figures 3e and 4e show the projection of the expression
data in the 2-class (AML and AML) or the 3-class (B-
ALL, T-ALL and AML, respectively).

A classification rule can be built in the FDA space. A
new sample is projected into the FDA space using the
discriminant weights (V). Then, the new sample will be
assigned to the predefined class whose mean is closest to
the projection of the new sample (Johnson and Wichern,
1992): a new sample (x) will be allocated to class j if

‖ŷ − ȳ j‖2 = ‖(x̂ − x̄ j )V‖2

� ‖(x̂ − x̄k)V‖2 for all k 
= j (6)

where ŷ is a projection of the new sample into the dis-
criminant axes (V). It has been shown (Johnson and Wich-
ern, 1992) that FDA is an optimal classification proce-

dure in the sense of the error rates under two assumptions:
(1) multivariate normality of the p discriminatory genes,
and (2) equal p × p covariance matrices for each of the
c classes. Violation of the assumptions affects several as-
pects of FDA. For instance, with unequal covariance ma-
trices, a quadratic classification rule in the FDA projection
space performs better than the linear classification rule in
Equation (6). Agreement between the quadratic rule and
the linear one will decline as the sample sizes decreases,
the differences in class covariance matrices increase, the
class means become closer, or the number of discrimina-
tory genes increases. In this case study, we employed the
linear FDA classifier because of simplicity and appropri-
ateness in our gene selection procedure. However, we tried
to minimize the effect of violations of the assumptions:
false positives have been minimized by two-step selec-
tion of a small sub-set of genes, and we ensured sufficient
mean difference among classes using power analysis (see
next section). Other classifiers have also been introduced
which can be applied to various microarray data (Dudoit
et al., 2000; West et al., 2001), and in general these may
be substituted for the FDA classifier.
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Fig. 4. Determination of minimum sample size for the three-class (B-ALL, T-ALL, AML) distinction, selection of discriminatory genes with
the estimated sample sizes of three classes, and FDA projection. (a) Power plot versus sample size showing how to determine the sample size
(seven from each class). (b) The distributions of H0 and H1 for the determined sample size. (c) Univariate F statistic values of the initial 527
discriminatory genes with a threshold (F0.01(2, 26) = 5.5263) in randomly selected seven B-ALL, seven T-ALL and seven AML samples
out of the entire data set. (d) Leave-one-out cross-validation applied to estimate the classification error rates and then to select the 80 most
discriminatory genes with the same samples. (e) Separation of seven B-ALL, seven T-ALL and seven AML samples in the two-dimensional
FDA projection space defined discriminant axes of the discriminatory 80 genes.

Determination of the minimum sample size using
power analysis
Determining the number of microarray samples has been
presented as an important issue previously (Pan et al.,
2001; Zien et al., 2001) and is one of the first things
to be considered when attempting classification of sam-
ples through microarrays. We present power analysis for
determination of the minimum sample size required for
accurate classification. Instead of using individual genes,
we used the c-1 dimensional FDA projections (y in Equa-
tion (6)) in our analysis, because the FDA classification
is based on those projection variables. Then, we validated
the estimated minimum sample size by testing the entire
methodology presented in this paper: selecting discrimi-
natory genes, building a FDA classifier, and finally calcu-
lating the actual power (see Results).

Power analysis (Cohen, 1988; Kraemer and Thiemann,
1987; Mace, 1974) has been used in many applications
and is based on two measures of statistical reliability in
the hypothesis test, the confidence level (1-α) and power
(1-β). The test compares the null hypothesis (H0) that
the means of classes are the same against the alternative

hypothesis (H1) that the means of classes are not same.
While the confidence level of a test is the probability
of accepting the null hypothesis, when the means of
classes are in fact same, the power of a test is the
probability of accepting the alternative hypothesis, when
the means of classes are in fact different (see ‘G*Power
reference material’). Alternatively, the type I error (false
positives, α) is the probability of accepting the alternative
hypothesis, when the means of the classes are in fact the
same, while the type II error (false negatives, β) is the
probability of accepting the null hypothesis, when the
means of the classes are in fact different (see ‘G*Power
reference material’). The estimation of the sample size in
power analysis is done in such a way that the two statistical
reliability measures, the confidence and the power, in
the hypothesis test can reach predefined values. Typical
analyses may require as 95% confidence and 95% power,
for example.

The confidence level and the power are calculated from
the distributions of the null hypothesis (H0) and the
alternative hypothesis (H1). Defining these distributions
depends on the statistical measure being used in the
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hypothesis test. In the case of two-class distinction having
a one-dimensional FDA projection, the normalized mean
difference follows the t distribution in the FDA space.
This t statistical measure for the hypothesis test is defined
below (Kraemer and Thiemann, 1987; Mace, 1974):

H0 : µ1 = µ2 and H1 : µ1 
= µ2 (7)

t = (ȳ1 − ȳ2)

Sp
√

1/n1 + 1/n2
(8)

where µi and ȳi are the actual mean and the sample mean
of the one-dimensional projection variable (yi ) in class
i . Sp is the pooled standard deviation of the projection
variable of the two classes, ni is the number of samples
in class i , N is the total number of samples and N -2
is the degrees of freedom in the t distribution. While
the distribution of H0 with all classes having the same
mean is defined as a central distribution, the distribution
of H1 with all classes having different means is a non-
central. The effect size (�e) should be set in advance,
before power analysis is conducted. The effect size is a
critical mean difference that can be considered important
enough to warrant attention. Power analysis estimates
the minimum sample size to ensure the power in the
test for the effect size. The non-central distribution H1
is defined by the non-centrality parameter (�), which is
defined by the effect size (see below). For the case of two-
class distinction, the effect size (�e) is the critical mean
difference normalized by the pooled standard deviation
(Sp). Thus, the distributions of H0 and H1 are defined as
follows:

H0 : t = (ȳ1 − ȳ2)

Sp
√

1/n1 + 1/n2
∼ t (N − 2) (9)

H1 : t = (ȳ1 − ȳ2)

Sp
√

1/n1 + 1/n2

∼ t

(
N − 2; � = �e√

1/n1 + 1/n2

)
(10)

with �e = (ȳ1 − ȳ2)cri t

Sp
.

The confidence level and the power are calculated using
the defined distributions of H0 and H1 for a given sample
size and an initial guess for the effect size determined on
the basis of engineering judgement or prior knowledge of
the system. The critical value of the inverse t distribution
at the probability of 1-α/2, shown by the dotted line in
Figure 3b, is first identified for the distribution of H0
(here, α = 0.05 to give a 95% confidence level). For
this confidence level, the power is determined next using
the distribution of H1 in the region from this critical t
value to positive infinity (indicated in Figure 3b by the
area under the H1 distribution after the critical value). If

the power calculated is below the predefined value 1-β
(here, 95%), the sample size is increased until the power
reaches this threshold, as shown in Figure 3a. Figure 3b
shows the confidence level, power, type I error and type II
error in the distributions of H0 and H1 defined by the
determined sample size. The sample size estimated from
this power analysis is the total number of samples, so that
the number of samples required in each class is obtained
by dividing the total sample size by the number of classes
(c). This assumes that the standard deviation matrix is
approximately similar for each class, implying that equal
numbers of samples are needed for each class.

In the case of distinguishing c > 2 classes, instead of
the t statistic (see Equation (8)), the F statistic measure
derived from Pillai’s V is used for the estimation of the
sample size (Olson, 1974). Pillai’s V is the trace of the
matrix defined by the ratio of between-group variance (B)

to total variance (T), and is a statistical measure often used
in multivariate analysis of variance (MANOVA) (SAS,
1989; Olson, 1974):

V = trace
(

BT−1
)

=
h∑

i=1

λi

1 + λi
(11)

where λi is the i th eigenvalue of W−1B and h is the
number of factors being considered in MANOVA, defined
by h = c-1. When W and B are computed in Equation (5),
the c-1 dimensional FDA projections are used, because
they are the test variables for this analysis. A high
Pillai’s V means a high amount of separation between
the samples of classes, with the between-group variance
being relatively large compared to the total variance. The
hypothesis test can be designed as shown below using the
F statistic transformed from Philai’s V (see ‘Other F-
tests’).

H0 : µ1 = µ2 = · · · = µc and H1 : µi − µ j 
= 0 ∃ i, j

(12)

H0 : F = (V/s)/(ph)

(1 − V/s)/[s(N − c − p + s)]
∼ F[ph, s(N − c − p + s)] (13)

H1 : F = (V/s)/(ph)

(1 − V/s)/[s(N − c − p + s)]
∼ F[ph, s(N − c − p + s), � = s�e N ]

with �e = Vcrit

(s − Vcrit )
(14)

where p and c are the number of variables and the number
of classes, respectively. s is defined by min(p, h). The
confidence level and the power can be calculated using
these defined distributions of H0 and H1 for a given
sample size and an effect size. The same procedure used
in the case of two-class distinction is used here to estimate
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the minimum sample size for statistical reliability whereby
the sample size is increased until the calculated power
reaches the predefined threshold value of 1-β (95% for the
cases shown here). Figure 4a and 4b show the calculated
sample size and the distributions of H0 and H1 for the case
of leukemia samples from three classes.

The above approach is applicable only to FDA projec-
tion variables and not to the expression data from a large
number of individual genes, because the denominator in
the F statistic (Equation (13) and (14)), which generally
has a positive value, becomes negative due to a large num-
ber of genes (p). PCA can be used to reduce the number of
variables (p) to resolve such a problem. There is, however,
a limitation that the number of PCs (p) cannot be larger
than N − c + s = N − 1 and in most array cases the
maximum number of PCs (p = N − c + s) does not
capture enough discriminating characteristics among the
classes. Thus, we use only the projections through FDA in
our analysis. This analysis may produce a misleading sam-
ple size estimate when the real gene expression data are
not consistent with the assumptions (normality and equal
variance) underlying the statistics used in power analysis.
To check the effect of possible violations of the assump-
tions on the estimated sample size, the actual power and
mean differences between classes are compared to the pre-
defined values (see Results). The actual values in both
cases studied were sufficiently large that we need not be
worried about the impact of data which does not perfectly
match the normality or equal variance assumptions.

Algorithm
Figure 2 provides a schematic of the leave one out cross-
validation (Figure 2a) for error rate estimation and power
analysis algorithms (Figure 2b). Each LOOCV first splits
the data set into randomly selected sets of N − c training
and c test sets. Then, discriminatory genes are selected
on the basis of their Wilks’ lambda. The number of genes
included in the FDA classifier is increased by one in order
of decreasing magnitude of their F value. The number of
misclassified c test samples is counted as a function of
the number of genes. The above procedure is repeated g
times for different randomly selected training and test sets.
The average error rates calculated by e(p) = m p/(c × g)

are then plotted versus the number of genes included in
the classifier and the discriminatory genes are selected
based on the number of times they are identified as
“discriminatory” in all the iterations.

For power analysis, it is first necessary that the type I
and type II errors, an initial sample size, and a reasonable
effect size are selected for the initiation of the algorithm.
Then, after the test is designed in terms of the null
hypothesis, the alternative hypothesis, and an appropriate
statistic measure (t-test or F test), the distributions of
H0 and H1 are determined using the degrees of freedom

and the non-centrality parameter. Next, the inverse of
the F distribution at the value of 1-α in probability is
identified and the power is calculated using the distribution
of H1. If the calculated power is less than the predefined
power, 1-β, then the sample size is increased and the
power is recalculated using the same α, β, and effect size
but a new sample size until it reaches the preset power
value. Following determination of the number of samples
from power analysis, the actual effect size and power are
computed and their values compared to the initial guesses.
The actual effect size and power should be larger than
those used/calculated in the original analysis so as to not
underestimate the sample size.

Implementations and Results
Power analysis was applied to two-class distinction be-
tween ALL and AML subtypes of leukemia. The null hy-
pothesis (H0) was that the two group means (i.e. the group
averages in the FDA space) were the same, with the alter-
native hypothesis (H1) that the two group means were not
the same. The mean difference normalized by the pooled
standard deviation was used as the t statistic measure. The
effect size was preset to 2, which corresponds to a mean
difference two times larger than the pooled standard devi-
ation and the predefined confidence and power were set to
95% (equivalent to α = 0.05 and β = 0.05). Figure 3a
shows the dependence of the power calculated from the
H1 distribution on the sample size. Eight samples from
each class (16 total) are required for the FDA projection
to establish a sufficient base for the H1 to be accepted.
This indicates that with these eight samples from each
class, there is mean difference between ALL and AML so
that an accurate classifier can be constructed in the FDA
projection space with statistical reliability.

In order to validate this minimum sample size, the pro-
posed procedures for discriminatory gene selection and
FDA classification were applied to eight randomly chosen
samples from each class and then the actual effect size
and the actual power were calculated. The procedure of
discriminatory gene selection identified 50 discriminatory
genes (Figure 3d). This final list of 50 genes is shorter than
the 388 discriminatory genes obtained by using a simple
Wilks’ lambda score metric without the error rate calcu-
lation (Figure 3c), thus enabling us to reduce the errors
due to false positives. Then, using the 50 discriminatory
genes, FDA classification was performed (Figure 3e). In
the FDA projection space, the actual normalized sampled
mean difference was computed to be equal to 7.2453. This
is more than three times larger than the effect size used
for power analysis, confirming that the effect size chosen
was reasonable enough not to underestimate the sample
size. There are two potential explanations for the differ-
ence between the sampled mean difference and the effect
size: (1) only the most discriminatory genes were selected
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with a stringent level of significance in Wilks’ lambda and
by the LOOCV, and (2) the FDA further screens out the
maximal discriminating information from the most dis-
criminatory genes. The actual confidence and power were
also close to 100%.

As a multi-class case study, a distinction of three
subtypes, B-ALL, T-ALL, and AML was considered. The
H0 is that the three group means are same, while H1 states
that at least one of the group means is different from the
rest. The F statistic measure was used for power analysis
and the effect size was chosen to be 0.538. This effect size
is equivalent to 0.7 critical Pillai’s V for three classes,
meaning that the between-group variance is 0.7 of the
total variance. The predefined confidence and power were
set to be 95%, equivalent to α = 0.05 and β = 0.05.
The minimum sample size was computed to be seven
samples from each class from the power curve shown in
Figure 4a. The distributions of H0 and H1 are shown in
Figure 4b. After the gene selection procedure was applied
to seven randomly selected samples from each class, the
final set of 80 discriminatory genes was identified. With
those genes, the FDA was done as shown in Figure 4e. In
the FDA space, the actual measure of effect size defined
by V/(s − V ) was computed to be 1.7552, which is about
three times larger than the one used for power analysis for
the same reasons given in the previous case. The actual
confidence and power were also close to 100%.

DISCUSSION AND CONCLUSIONS
This study has addressed the issue of statistical reliability
for the classification of disease subtypes on the basis
of the sample size. The appropriate statistical measures
have been defined for two-class and multi-class problems,
and these statistics have been applied in a power-analysis
framework to determine the minimal sample size based on
the distributions of the statistic measures. This framework
has been applied in earlier studies (Thall, 1995) for
determining the minimum number of subjects required in
clinical trial studies, when a new drug is discovered and
its efficacy is being evaluated. In this case, the minimal
sample size determined from power analysis is used to
ensure statistical reliability of an efficacy measure.

This reliability issue can also be central in other appli-
cations involving any statistical analysis, with this study
giving only one example. For instance, correlations be-
tween genes are often considered in microarray studies in
the search for co-regulated genes. A small number of sam-
ples will result in unreliable correlation coefficients, so
when additional samples are included, the estimated cor-
relation coefficients will show a high degree of variability.
Thus, the appropriate sample size should be determined
by power analysis to ensure that the distribution of cor-
relation coefficients is reliable. Another application is the

construction of a regression model using gene expression
data to estimate the level of an important cellular variable.
For instance, gene expression regression models of urea
level in liver tissues should also be supplemented by power
analysis to determine the sample size for the model to have
statistically reliable regression parameters. Although the
range of uses is broad, the appropriate statistical measures
and their distributions should be carefully chosen in these
sorts of applications.

Power analysis determines the sample size based on
the assumption of homogeneous sampling from the entire
population of each class (i.e. a disease subtype as in this
study). Therefore, during sample collection, if the number
of samples suggested by power analysis does not cover the
broad population of each subtype to capture the inherent
variance of the population, the distributions of parameters
will be biased toward the type of samples collected. As a
result, a poor sampling can make power analysis appear
to underestimate the necessary sample size. Furthermore,
statistical inference based on the calculated parameters
can be misleading. The FDA has recently noticed the
importance of broad sampling and requested pharmaceu-
tical industries to include clinical trial studies on pediatric
patients in order that the efficacy measure should not be
biased to adults. As a result, a well-designed sampling
strategy is required together with a reasonable estimate
of sample size calculated from power analysis to ensure
statistical reliability.

This study uses linear combinations of individual genes
as variables in the classifier instead of the individual
genes themselves. Although the discriminatory genes used
for the classifier are chosen based on Wilks’ lambda
score and the error rate calculated through LOOCV, the
number of selected genes is usually still large (50 or
more depending on the situation). If all individual genes
are considered independently in constructing a classifier,
and new samples are classified using the sum of all
gene contributions to the classifier, the classifier will not
capture the interaction of the genes and may be biased
to redundant characteristics. In addition, the parameters
in the classifier will be subject to statistical variations
of the individual genes. If all the genes are considered
together as seen in multiple discriminant analysis (MDS),
it may be difficult to estimate the model parameters
due to the large number of discriminatory genes and
singularity in the data. On the other hand, the linear
combinations of individual genes obtained from FDA
capture the important discriminating characteristics at the
outset because the algorithm seeks the most relevant
directions (weights) for separation of classes. Thus, the
number of variables used for the classifier is significantly
reduced to several FDA projection variables (the number
of classes – 1), while capturing in a large degree the
discriminating characteristics in data. This reduction in
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variables is achieved without significant accuracy cost in
discrimination.

The use of FDA also reduces the amount of noise
obscuring the information content of the data. Signals
that nearly appear to be random noise will be filtered out
during the process of obtaining the weights for the linear
combinations. Just as the first few PCs in PCA usually
capture the important patterns and the last few PCs only
random noise, the first few discriminant functions in FDA
captures the important discriminating characteristics in the
data. Only systemic noise that happens to have similar
patterns to the real signals may be retained in the data
projected through the linear combination.

Finally, the interactions and relative contributions of the
individual genes to the classification can be interpreted
from the discriminant weights in the linear combinations,
improving the understanding the discriminant features in
the data. As a result, the FDA classifier using linear combi-
nations as variables can provide the preferable aspects in
classification, including robustness in performance, non-
complexity in modeling and improvement in interpreta-
tion.
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