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Analysis of previously published sets of DNA microarray gene
expression data by singular value decomposition has uncovered
underlying patterns or ‘‘characteristic modes’’ in their temporal
profiles. These patterns contribute unequally to the structure of
the expression profiles. Moreover, the essential features of a given
set of expression profiles are captured using just a small number of
characteristic modes. This leads to the striking conclusion that the
transcriptional response of a genome is orchestrated in a few
fundamental patterns of gene expression change. These patterns
are both simple and robust, dominating the alterations in expres-
sion of genes throughout the genome. Moreover, the characteristic
modes of gene expression change in response to environmental
perturbations are similar in such distant organisms as yeast and
human cells. This analysis reveals simple regularities in the seem-
ingly complex transcriptional transitions of diverse cells to new
states, and these provide insights into the operation of the under-
lying genetic networks.

The recent development of DNA microarray technology has
enabled the genome-wide measurement of temporal changes

in gene expression levels (1, 2). Analysis of the expression
patterns obtained with large gene arrays has revealed the
existence of groups or ‘‘clusters’’ of genes with similar expression
patterns (3–6). Not surprisingly, gene clusters often contain
genes that encode proteins required for a common function, and,
hence, co-clustering has been helpful in identifying the functions
of unknown gene products. However, such cluster analyses
provide little insight into the relationships among groups of
co-regulated genes or the behavior of biological networks as a
whole.

In this paper, we report the results of subjecting several large
published gene expression data sets to singular value decompo-
sition (SVD), a standard and straight-forward analytic proce-
dure. We show that highly complex sets of gene expression
profiles can be represented by a small number of ‘‘characteristic
modes’’ that capture the temporal patterns of gene expression
change. These modes are somewhat analogous to the character-
istic vibration modes of a tuned violin string. The tone produced
by the vibrating string can be entirely specified by the contribu-
tions of its characteristic vibration modes. We show here that a
gene expression profile, similarly, can be precisely represented
by specifying the magnitude and sign of the contribution of each
of its characteristic modes. This type of ‘‘spectral’’ analysis yields
a hierarchical interpretation of the expression data and provides
insights into the nature and behavior of genetic networks.

Methods
The mathematical analysis is carried out straightforwardly by
using SVD (7). The gene expression data of n genes, each
measured at m discrete time points, may be written as an n 3 m
matrix, A. Following the procedures outlined in ref. 6, we have
polished the data by requiring that the rows and columns have
a zero mean by subtracting the mean values of the raw data and
carrying out an iterative normalization procedure for the rows

and columns, ending with the row normalization. The SVD
theorem (7) states that the matrix A can be written as

A 5 USVT,

where U (an n 3 n matrix) and V (an m 3 m matrix) are
orthogonal and S is an n 3 m matrix with a specific form that
we will specify later. The superscript T denotes the transposed
matrix.

We now outline the procedure (7) for determining U, S, and
V that satisfies the SVD. The r non-zero eigenvalues of AAT and
ATA are the same and positive, and their square roots (called the
singular values), when rank-ordered, are denoted by
s1 $s2 $ z z z s $ sr . 0. (r, the rank of the matrix A, is no larger
than m 2 1 because of the data polishing.) The matrix elements
of S are all zero except for Si,i 5 si for i 5 1, r. The columns of
V, denoted Vi, are the eigenvectors (corresponding to these rank
ordered eigenvalues) of the matrix ATA for i 5 1, r. The columns
of U, denoted Ui, are determined by the formula Ui 5 (1ysi) AVi
for i 5 1, r. The other columns of U and V prove to be irrelevant
because of the form of S.

We define the vectors, Xi(t), i 5 1, r, to be the first r rows of
the matrix SVT, where the different columns in the SVT matrix
correspond to the times at which the corresponding expression
data are measured. The vectors Xi(t) are the characteristic modes
associated with the matrix A. The temporal variation of any gene
j can then be written exactly as a linear combination of these r
characteristic modes as

Aj~t! 5 O
i51

r

Uj,i Xi~t!. [1]

One can show that, for any gene, j, Si51
r (Uj,i si)2 5 1. The

contribution of the first k modes to the temporal pattern of a
gene may then be quantified by Cj

(k) 5 Si51
k (Uj,i si)2, and its

average over all of the genes is given by

C# ~k! 5
1
n O

j51

n

Cj
~k!. [2]

Results and Discussions
SVD analysis of the published yeast cdc15 cell-cycle (3) and
sporulation (5) data sets, as well as the data set from serum-
treated human fibroblasts (4), yields spread out singular values
(Table 1). The first two values are significantly greater than the
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others for all three data sets. The smaller scale fluctuations, as
well as experimental noise, are represented by the higher order
modes. This allows a hierarchical representation of the contri-
butions of the different characteristic modes. We have carried
out tests of this procedure with random data sets containing the
same number of rows (genes) and columns (time points) as in the
experiments. Random data sets yield similar singular values
because all characteristic modes contribute about equally (Table
1). Hence, the singular values obtained from randomly generated
profiles do not allow a hierarchical description of the contribu-
tion of the normal modes. By contrast, if all of the genes were
characterized by purely periodic expression data, say, of the form
sin(vt 1 f), with the same v but differing f values, there would
be only two contributing characteristic modes, sin(vt) and
cos(vt). The actual gene expression data sets yield singular
values of sufficiently different magnitude so that only the first
few modes are required to capture the essential features of the
expression data in most cases.

A gene expression data set with m time points has rank r 5
m 2 1 and thus generates m 2 1 characteristic modes. Each
characteristic mode is the product of a normal mode and a
singular value, the latter giving the characteristic mode its
amplitude. The characteristic modes for the three gene expres-
sion data sets we have analyzed are shown in Fig. 1 a–c, and those
for a random data set are shown in Fig. 1d. The magnitude of the
singular value is reflected in the amplitude of each mode. The
characteristic modes reflect the genome-wide expression pattern
and are not gene-specific. The temporal pattern of variation in
expression of a given gene is precisely expressed mathematically
as a linear combination of the characteristic modes with gene-
specific coefficients. The contribution of each mode to the final
gene expression profile progressively diminishes from the lower
to the higher order modes for the gene expression data sets but
is approximately equal for the random data set. The structure of
the two dominant modes is rather simple for all of the gene
expression data sets, with 1 or 2 nodes (the modes are more
complex for the cell cycle data only because they are derived
from multiple cell cycles). As we demonstrate below, this means
that the major features of the overall genetic response of the cells
is contained in a combination of just a few different patterns.

The periodicity in the expression patterns of the roughly
800-cell cycle-regulated genes selected by Spellman et al. (3) is
evident in Fig. 1a. The two dominant modes are approximately
sinusoidal and are out of phase with respect to each other. As the
cells enter the third cycle, they become progressively less syn-

chronized. This asynchrony is manifested in the increasing noise
in the data in the last three columns. When the last three data
points are neglected, the third highest singular value declines to
a magnitude comparable to those derived from the correspond-
ing random data set (Table 1), and this results in a reduction in
the contribution of the third mode to the final profile. However,
the shapes of the first two dominant modes do not change
significantly upon removal of the last three time points, revealing
their robustness. Not surprisingly, analysis of the genome-wide
data set reveals a third dominant mode that reflects monotonic
changes in gene expression with respect to the reference time
point. Analysis of the yeast sporulation and the human fibroblast
data sets similarly reveals that two characteristic modes make a
significantly greater contribution to the final profiles than the
others (Table 1; Fig. 1 b and c). We have analyzed both the
sporulation-up-regulated genes identified by Chu et al. (5) and
the complete data set of more than 6,000 genes with similar
results (Fig. 1b).

The expression profiles for the subsets of data selected by the
original authors as typifying sporulation-activated, cell cycle-
regulated, and serum-induced genes are reconstructed in Figs.
2–4 by using Eq. 1 and truncating the summation at k terms, with
k 5 1, 2, 3, 4, and 5. The sixth panel shows a reconstruction using
all r terms in the summation and is identical to the original data
set (3–6). It can readily be seen in the second panel of each figure
that a representation comprising just the first two modes cap-
tures many of the essential features of the overall array of
expression patterns. A quantitative measure of this is provided
by C# (2) (Eq. 2), which equals 0.62, 0.69, and 0.72 for the cdc15,
fibroblast, and sporulation data sets respectively. The remaining
modes describe minor elements in the patterns, a considerable
fraction of which may be attributable to small scale (albeit
possibly systematic) f luctuations and experimental noise. Al-
though this uncovers an underlying simplicity in the genetic
response patterns of cells, it does not imply that other patterns
of gene expression lack significance. Several types of exceptions
to the overall patterns are discussed below.

The coefficients associated with the two dominant modes are
plotted against each other in Fig. 5 a–c for the three data sets
represented in Figs. 2–4, respectively. The coefficients are a
measure of the contribution of each mode to the structure of the
expression profile of a given gene. Remarkably, the data points
are fairly densely concentrated near the perimeter of a circle or
an ellipse, with the interior rather sparsely populated. By con-
trast, when the coefficients for a random data set are plotted in

Table 1. Singular values extracted from gene expression and random data sets

cdc15, 12 points cdc15, 15 points spo, selected spo, full fibr

Experiment Random* Experiment Random* Experiment Random* Experiment Random* Experiment Random*

15.81 8.65 14.47 7.66 15.20 9.61 49.54 32.29 14.10 7.40
13.10 8.56 12.37 7.58 10.53 9.17 37.40 32.22 12.49 7.06
8.68 8.17 10.45 7.44 7.18 9.01 29.88 32.01 5.65 6.94
7.34 8.04 6.80 7.33 5.67 8.83 23.43 31.93 5.47 6.84
5.45 7.97 6.71 7.20 5.43 8.73 22.36 31.67 5.12 6.78
5.00 7.82 4.52 7.09 4.67 8.06 17.97 31.47 4.65 6.67
4.51 7.57 4.36 6.97 4.01 6.52
4.26 7.53 4.15 6.93 3.19 6.37
3.66 7.41 3.89 6.76 3.03 6.32
3.33 7.33 3.39 6.64 2.67 6.12
3.08 7.14 3.05 6.49 2.31 5.85

2.89 6.47 2.17 5.68
2.75 6.38
2.57 6.28

*Random data sets contained the same number of rows and columns as the corresponding gene expression data sets. The data were generated randomly from
a uniform distribution between 0 and 1 and then were polished.
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the same way, they describe a filled circle (Fig. 5d). The genes
corresponding to points on the perimeter are ones that are
accurately represented by just the two dominant modes. Thus,
the concentration of points near the perimeter of the circle or
ellipse in Fig. 5 a–c simply reflects the relative importance of the
first two modes.

Strikingly, expression profiles clustered by more conventional
methods correspond well to groups of genes with similar coef-
ficients. The correspondence is brought out in Fig. 5 by using
symbols of different colors to represent the genes identified as
members of a cluster by conventional clustering algorithms in
previous publications (3–5). This correspondence is not surpris-
ing because SVD provides a general and objective method for
identifying similarities among expression patterns. However,
inspection of Fig. 5 a and b immediately reveals that previously
identified clusters appear in adjacent sectors on the perimeter of
the circle in the order of their temporal progression in the cell
cycle and in the course of sporulation (3, 5).

How might we understand both the regularities revealed by the
present analysis of gene expression data and exceptions to them?
First, it follows from the dominance of the first two modes and
their very simple structure that most genes undergo either just
one or just two ‘‘changes of expression phase’’ (on to off or off
to on) in the course of a single cell cycle or in the course of
responding to an environmental perturbation. That is, a majority
of the genes transition from active to inactive or inactive to active
at most once or twice. Although there are more complex
expression patterns, these are sufficiently few so that they do not
dominate the system’s overall response. Second, the observation
for both the cell cycle and fibroblast data that the points fall near
the perimeter of a circle, rather than an ellipse, means that the
contributions of the two dominant modes are roughly equal.
Third, the observation that the perimeter is fairly evenly popu-
lated for these two data sets (Fig. 5 a and b) implies that the
coefficients vary continuously. This, in turn, implies that the
expression ‘‘peaks’’ and ‘‘valleys’’ of the underlying genes change

Fig. 1. Characteristic modes (Xi(t)) for the gene expression and random data sets. (a) Yeast cell cycle data (3). The circles correspond to the 15 time-point series,
and the squares in the first five panels correspond to a truncated time series with only 12 time points. The bottom panel is an overlay of modes 6–15 for the 15
time-point series only. (b) Yeast sporulation data (5). The circles correspond to modes generated from sporulation specific genes whereas the squares correspond
to modes generated from genes in the complete data set (entire yeast genome). (c) Human fibroblast data (4). The format is the same as in a, except that the
bottom panel is an overlay of modes 6–12. (d) Random data with the same number of genes and time points as the sporulation data.
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continuously in time, a conclusion that is also underscored by the
diagonal light and dark columns in the representation of the
yeast cell cycle gene data shown in Fig. 2, taken from ref. 3. The
simple periodic structure of the dominant modes for the cell
cycle data has the further implication that most of the cell
cycle-regulated genes tend to be expressed for roughly the same
length of time.

The uniform distribution of genes around the perimeter of the
circle in Fig. 5a focuses attention on the regularity and continuity
of change in gene expression around the cell cycle and has
important implications for the underlying mode of transcrip-
tional regulation. The first is that the cell cycle progression is a
smooth function, with roughly equal numbers of genes being
activated and inactivated per unit time and a regular succession
in time of gene expression peaks. The mitotic cycle is conven-
tionally divided into the synthesis (S) phase (bounded by gaps
designated G1 and G2), in which chromosomes replicate, and
mitosis (M), in which cells divide and chromosomes are segre-
gated to daughter cells. The sequential expression of the many
proteins required for these processes is orchestrated at the
genetic level by changes in the activity of cyclin-dependent
kinases, which are central components of the transcriptional
regulation machinery. The transcription factor substrate speci-
ficity and the kinase activity are characteristic of a particular
cyclinycyclin-dependent kinase pair and can be modified addi-
tionally by phosphorylation at multiple sites, as well as interac-
tions with other proteins (8). Transcription factor phosphoryla-
tion and dephosphorylation are probably the major, although
likely not the only, molecular modifications at the heart of the
cell-cycle system’s integrative mechanism, permitting the collec-
tion of inputs from signal transduction wires and transmitting the
integrated signal through the resultant kinase activities of the
cyclinycyclin-dependent kinases complexes. The smooth evolu-

tion of gene expression patterns in time revealed in Fig. 5 is
consistent with the operation of such a subtle and continuous
regulatory system.

The dense clusters of genes around maximal values of mode
1 and minimal values of mode 2 in the representation of the yeast

Fig. 3. A reconstruction of the expression profiles for the yeast sporulation
data set from the characteristic modes. The format is the same as in Fig. 2. The
last panel uses all six characteristic modes and exactly reproduces the original
data set. The genes are ordered as in ref. 5.

Fig. 4. A reconstruction of the expression profiles for the human fibroblast
data set from the characteristic modes. The format is the same as in Fig. 2. The
last panel uses all 12 characteristic modes and exactly reproduces the original
data set. The genes are ordered as in ref. 4.

Fig. 2. A reconstruction of the expression profiles for the yeast cell cycle data
set from the characteristic modes. Panels 1–5 show the results of a hierarchical
reconstruction of the expression profiles using only the first 1, 2, 3, 4, and 5
characteristic modes. The last panel uses all 14 characteristic modes and
exactly reproduces the original data set. Each row in each of the panels
represents a different gene, and each column represents a different time
point. The gray scale ranges from white (maximal expression) to black (min-
imal expression). The genes are ordered as in ref. 3.
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sporulation data shown in Fig. 5b invite special attention. The
ellipticity of the plot and the unequal distribution of genes along
the perimeter are a direct reflection of the fact that the second
singular value is significantly smaller than the first (Table 1). A
consideration of the biology of sporulation provides some
insights. Yeast sporulation is a simple developmental process
triggered by nitrogen starvation in which the cells undergo
meiosis and form cell walls. Genes encoding proteins involved in
meiosis are repressed by the Ume6 transcriptional repressor,
which binds the upstream repression sequence (URS1). Ume6
becomes a transcriptional activator of sporulation-specific genes
upon binding of Ime1, in turn dependent on phosphorylation
that is triggered by starvation (9). The dense cluster of genes at
12 o’clock on the diagram in Fig. 5b comprises what the authors
refer to as ‘‘metabolic’’ and ‘‘early (I)’’ genes, a significant
fraction (.30%) of which contain upstream URS1 motifs (5).
This cluster is therefore likely to comprise genes induced by the
activation of preexisting transcription factors. The central point
is that the network is poised for a fast response by mechanisms

that activate preexisting proteins through structural and confor-
mational changes.

A second dense cluster at about 6 o’clock corresponds to the
‘‘middle’’ genes induced between 2 and 5 h after sporulation
commences. Many of these genes are involved in meiotic division
or spore morphogenesis, and a different common binding site
(MSE) is detected in the upstream regions of 70% of such genes
(5). The MSE sequence is recognized by the Ndt80 transcription
factor (10). Hence, this dense cluster may be attributable to the
activation of many genes by a single transcription factor. Indeed,
if the rate-limiting step for a large group of genes is the
accumulation (or activation) of a single transcription factor or
transcription factor complex, such dense clusters are to be
anticipated.

The coefficients of the ‘‘early-mid’’ group of genes in the yeast
sporulation data set do not form a cluster in the representation
of the data shown in Fig. 5b, nor do the data points lie near the
perimeter of the ellipse, as do the coefficients of a majority of
the genes. This means that characteristic modes other than the

Fig. 5. Plot of the coefficients for characteristic mode 1 against the coefficients for characteristic mode 2. Symbols of different colors and shapes are used for
genes that belong to the different clusters identified by the original authors (3–5). (a) cdc15 data (first 12 time points). (b) Sporulation data (7 time points). (c)
Fibroblast data (13 time points). (d) random data (7 time points).
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first two contribute significantly to the expression profiles of
these genes. It is evident in Fig. 3 that expression patterns of this
group of genes is less regular than those of the others. Curiously,
little is known about the regulation of these genes (5), and it
appears likely to be more complex than is the regulation of the
majority of genes activated during sporulation.

As noted earlier, SVD analysis of the human fibroblast data set
(4) reveals the same kinds of regularities as did the other two
data sets. Two of the singular values are significantly higher than
the others but rather similar to each other. As a result, the plot
of the mode 1 against the mode 2 coefficients is circular, and the
points are largely near the circle’s perimeter. Once again,
previously identified gene clusters describe arcs on the circle’s
perimeter, although these were not ordered temporally by Iyer
et al. (4). The coefficients for genes that were not clustered by
the more conventional approach are primarily in the center of
the circle, implying that modes other than 1 and 2 contribute
significantly to their expression patterns. In the absence of
growth factors, fibroblasts do not divide and maintain a low
metabolic activity level. Addition of serum induces proliferation
and expression of many wound-inducible genes (4). The results
of our analysis reveal that despite the evolutionary distance
between yeast and humans, the genetic responses of cells to
perturbations are both simple and similar, reflecting the fact that
most genes undergo just one or just two phase changes in the
course of the response.

At a coarse level of resolution, the temporal ordering of gene
expression for the genes involved in implementing the changes
under study in each of the systems examined unfolds through the
sequential addition of new transcription factors to preexisting
factors, in some cases replacing them to activate new subsets of
genes. At a fine level, the progressive changes in gene expression
are uniform and continuous. Thus, genes are generally not
activated in discrete groups or blocks, as historically implied by
the division of the cell cycle into phases or the sporulation
response into temporal groups. Although dense clusters of genes
with a common expression profile are observed, our analytical
approach brings out the continuity in the patterns of gene

expression change. In the case of the yeast cell cycle, there is
substantial evidence that the fine levels of regulation are medi-
ated by cyclin-dependent kinases, whose kinase activity is mod-
ulated by interactions with other proteins and by phosphoryla-
tion and which, in turn, modulate the activity of transcription
factors by phosphorylation.

In summary, we have shown that the behavior of the widely
disparate gene systems analyzed here is dominated by a small
subset of the characteristic modes and that a linear combination
of just a few modes provides a good approximation of the
behavior of the entire system in most cases. That is, the complex
‘‘music of the genes’’ is orchestrated through a few simple
underlying patterns of gene expression change. Extending the
musical analogy, it is as if the genes in a given microarray
comprise a set of identically tuned strings and the characteristic
modes are common to the entire set. The vibration of an
individual string is represented by a linear combination of these
characteristic modes. The music produced by the set of strings is
then entirely specified by the contributions of each of these
characteristic modes. Because just a few modes dominate and
because their structure is not complex, the expression profiles of
most genes are simple and typified by a small number of phase
changes. The continuous variation in the gene-specific coeffi-
cients specifying the contributions of the modes reflects the
continuous change in composition of the active and inactive gene
subsets. More importantly, the linearized analysis inherent in
SVD, combined with the dominant contributions of a small
number of modes, opens the possibility of identifying causal
connections among gene responses.
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