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ABSTRACT
Motivation: Typical analysis of microarray data has
focused on spot by spot comparisons within a single
organism. Less analysis has been done on the compar-
ison of the entire distribution of spot intensities between
experiments and between organisms.
Results: Here we show that mRNA transcription data
from a wide range of organisms and measured with a
range of experimental platforms show close agreement
with Benford’s law (Benford, Proc. Am. Phil. Soc., 78,
551–572, 1938) and Zipf’s law (Zipf, The Psycho-biology of
Language: an Introduction to Dynamic Philology, 1936 and
Human Behaviour and the Principle of Least Effort, 1949).
The distribution of the bulk of microarray spot intensities
is well approximated by a log-normal with the tail of the
distribution being closer to power law. The variance, σ 2, of
log spot intensity shows a positive correlation with genome
size (in terms of number of genes) and is therefore
relatively fixed within some range for a given organism.
The measured value of σ 2 can be significantly smaller than
the expected value if the mRNA is extracted from a sample
of mixed cell types. Our research demonstrates that useful
biological findings may result from analyzing microarray
data at the level of entire intensity distributions.
Contact: david.c.hoyle@man.ac.uk

INTRODUCTION
Microarray experiments provide a way of studying the
RNA expression levels of tens of thousands of genes
simultaneously. Typically these experiments compare
different cell types, for example normal versus diseased
cells, to identify genes which are differentially expressed.
Robust statistical methodologies are required to determine
which genes are differentially expressed, and which sets
of genes behave in similar ways—for example for use in
guilt-by-association studies—and this has been the focus
of extensive research (see, for example, Quackenbush
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(2001) for a recent review of the issues surrounding com-
putational analysis of microarray data). The information
that can be obtained from examining the distribution of
spot intensities itself is a much less studied area. Figure 1
shows a typical microarray spot intensity distribution. The
data was supplied to us by Aventis and obtained using
Affymetrix oligonucleotide chips and mRNA extracted
from human tissue. Several features are immediately
obvious, for example the distribution is heavily skewed
with most spots having a low intensity, whilst a few have
very high intensities.

A number of questions arise naturally:

• Is there a generic form for the distribution, independent
of chip technology or the species being studied?

• If there is a generic form, what are the appropriate
statistics to describe it?

• Can we use a knowledge of the spot intensity distribu-
tion to assist in tasks such as quality control?

• By quantifying the generic features of the spot inten-
sity distributions can we uncover biological behaviour
that may not be apparent to more conventional analysis
tools?

We will focus primarily upon the first two questions. In
this paper we have examined spot intensity distributions
obtained from microarray analyses of a wide range of
species and tissues (listed in Table 1). Importantly, the
data analysed has been generated using a wide range
of different microarray technologies. Addressing the first
question we demonstrate that microarray data belongs
to the large class of systems showing good agreement
with Benford’s law (Benford, 1938), and that the bulk
of the data from a microarray experiment generally has
a log-normal distribution. The tail of the distribution of
microarray data shows good agreement with Zipf’s law
(Zipf, 1936, 1949), suggesting a power law tail. The width
of the distribution is positively correlated with the number
of genes in the genome of the organism being studied.
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Fig. 1. Distribution of corrected spot intensities for one of the human data sets supplied by Aventis. The left hand plot shows the distribution
of raw values ŝ and the right hand plot shows the distribution of (log ŝ − µ)/σ . ŝ is the average difference between positive matches and
mis-matches in the Affymetrix system. µ and σ 2 are mean and variance respectively of log(ŝ) evaluated only over positive values of ŝ. The
solid line in the right hand plot is the standard normal N (0, 1).

Table 1. Table showing microarray data sets analysed and their agreement with Benford’s law

Typical no. of No. of χ2 Average variance Average inter-quartile
Data set reference Organism Type of array spots on array samples 1st digit logged data ± 1SD range logged data ± 1SD

Aventisa Human Oligonucleotide 7 129 36 1.677 × 10−3 2.82 ± 0.24 1.99 ± 0.18
Alon et al. (1999) Human Oligonucleotide 7 464 62 5.120 × 10−3 2.29 ± 0.12 2.06 ± 0.10
Aventisa Rat Oligonucleotide 8 822 570 1.222 × 10−3 2.72 ± 0.37 2.18 ± 0.20
Renovob Rat Oligonucleotide 8 806 3 9.158 × 10−4 2.94 ± 0.15 2.13 ± 0.04
Brutsche et al. (2001) Human Membrane 588 49 2.611 × 10−2 1.66 ± 0.44 1.46 ± 0.22
Diehn et al. (2000) Human Glass slide 6 720 1 1.302 × 10−2 1.38 ± 0.01 1.51 ± 0.06
Perou et al. (1999) Human Glass slide 5 777 26 2.026 × 10−1 0.88 ± 0.35 1.35 ± 0.42
Ross et al. (2000) Human Glass slide 10 000 66 4.318 × 10−3 2.26 ± 0.32 2.14 ± 0.17
Gracey et al. (2001) Fish Glass slide 5 472 26 2.269 × 10−2 2.73 ± 0.75 2.49 ± 0.46
Schaffer et al. (2001) Arabidopsis Glass slide 12 619 17 4.015 × 10−3 1.85 ± 0.33 1.73 ± 0.18
Reinke et al. (2000) C. elegans Glass slide 13 323 29 2.882 × 10−3 2.26 ± 0.31 1.67 ± 0.17
White et al. (1999) Drosophila Glass slide 6 240 19 3.676 × 10−3 1.47 ± 0.31 1.54 ± 0.16
Hayesc Yeast Glass slide 6 272 2 1.526 × 10−2 1.43 ± 0.14 1.41 ± 0.08
DeRisi et al. (1997) Yeast Glass slide 6 153 7 7.165 × 10−2 0.64 ± 0.05 1.03 ± 0.06
Diehn et al. (2000) Yeast Glass slide 8 448 1 5.032 × 10−2 1.28 ± 0.35 1.08 ± 0.09
Gasch et al. (2000) Yeast Glass slide 8 990 159 9.115 × 10−3 1.39 ± 0.40 1.46 ± 0.24
SMD E. coli Glass slide 4 807 64 3.921 × 10−2 1.09 ± 0.37 1.27 ± 0.33

aData from Affymetrix oligonucleotide chips supplied by Aventis.
bData from Affymetrix oligonucleotide chips supplied by Renovo Ltd.
cYeast data from PCR-generated oligonucleotides spotted onto glass slides, supplied by Professor Stephen Oliver and Dr Andrew Hayes.

THEORY AND RESULTS

Characterization of microarray spot intensity
distributions
Benford’s law. Ever since Newcomb (1881) noted that
books of log tables were always much grimier at the
start than the end it has been known that the distribution
of the first significant digit of many data sets does not

follow a uniform distribution. Later Benford (1938) also
conjectured that the occurrence of the first significant
digit follows a particular probability distribution such that
the number 1 comes up about 30% of the time, whereas
9 only occurs 5% of the time. It is now known that this
distribution—Benford’s law—is found in many data sets
from American league baseball statistics (Benford, 1938),
to areas of rivers (Benford, 1938) and financial accounts
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Fig. 2. Plot of 1st significant digit frequencies. The data consists of
20 samples of 7129 spot intensities from Affymetrix oligonucleotide
chips. The mRNA was extracted from Human cells. The solid line
is Benford’s law. The circles are the experimental result.

(Nigrini, 1996). The idea that data from complex pro-
cesses naturally satisfy Benford’s law has more recently
been put on a firm theoretical basis by Hill (1995).

The measurement of microarray spot intensities is
the end product of a set of complex biological and
experimental processes. It is therefore reasonable to ask
whether there is any correspondence with Benford’s law
in raw intensity values from microarray experiments. The
distribution of 1st significant digits is given by Benford’s
law (in base 10) as,

P(D) = log10(1 + D−1). (1)

Figure 2 shows 1st significant digit frequencies fD aver-
aged over 20 samples from Affymetrix oligonucleotide
chip experiments (supplied by Aventis). Agreement with
Benford’s law invariably improves when significant digit
frequencies are averaged over several samples (Raimi,
1976). However we have found almost the same degree
of correspondence with Benford’s law for each of the
individual samples studied in this data set, as for the total.

We have also examined several other data sets of
microarray spot intensities for correspondence with
Benford’s law. The data sets are a mixture of those
supplied to us and publicly available data sets mainly
obtained from Stanford University’s MicroArray Database
(SMD; http://genome-www4.stanford.edu/MicroArray/
SMD). The results of our analysis are summarized in
Table 1 by quoting the average (over samples) of the

χ2
1st digit statistic. For a single sample χ2

1st digit is given as,

χ2
1st digit =

D=9∑
D=1

(log10(1 + D−1) − fD)2

log10(1 + D−1)
. (2)

For the two-label data we have treated the intensity
values (corrected for background) from each channel as
separate samples. Where it is possible to identify them,
we have eliminated from our analysis those spots which
are used for control purposes, empty, or flagged as being
suspect. For data from Affymetrix oligonucleotide chips
we have used the average difference values and ignored
the Present/Absent call. This is an attempt to make the
treatment of Affymetrix data comparable to that from two-
label experiments.

A natural question to ask is—what distribution gives
rise to Benford’s law? Since Benford’s law (1) is scale
free any underlying distribution must also be scale free,
e.g. power law. Pietronero et al. (2001) demonstrate that
for power law distributions P(x) ∼ x−α then Benford’s
law (1) results automatically for α = 1, and a generalized
Benford’s law for α �= 1. However as the example distri-
bution in Figure 1 clearly shows it cannot be power law
throughout its entire range. Indeed computer simulation
reveals that the χ2

1st digit values calculated here, although
small, are highly statistically significant. Sampling
N = 6000 digits from the Benford distribution (1) gives
the probability of observing χ2

1st digit > 9.1 × 10−3 (the
average value obtained from the data sets of Gasch et
al. (2000)) as p < 0.0002. The observed χ2

1st digit values
indicate that typically the observed distributions of 1st
significant digits are genuinely distinguishable from the
Benford distribution (1), but very close to it. We are
then led to ask what scale dependent distributions show
approximate but close agreement with Benford’s law.
Leemis et al. (2000) show that for any random variable
W whose fractional part is uniformly distributed, U (0, 1),
then 10W will satisfy Benford’s law; for example if W
is distributed symmetrically about an integer and has
a probability density function that is piecewise linear
between successive integers. If one requires a smooth
distribution then if W has a symmetric distribution of
large variance σ 2, one can see that 10W will approximate
Benford’s law well, with exact agreement in the limit
σ 2 → ∞. If one constrains the distribution of W no
further then the obvious (maximum entropy) choice of
smooth distribution is a Gaussian, and thus Y = 10W is
distributed log-normally. In Figure 1 we have also plotted
the observed distribution of scaled logged spot intensities.
The comparison to the standard normal N (0, 1) is good.
We conclude that microarray data is at least consistent
with having come from a log-normal distribution. In the
absence of a generative model one cannot categorically
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Fig. 3. Plot of log χ2
1st digit against log σ 2 for the data sets listed in

Table 1 (average values of χ2
1st digit and σ 2 have been used).

say that the distribution of spot intensities is definitely
log-normal. However we stress that a log-normal is an
extremely good approximation to the bulk of the data,
particularly for the higher eukaryotes. In general the
agreement with a log-normal distribution improves in
going from lower eukaryotes to higher eukaryotes.

Increasing agreement with Benford’s law is expected
with increasing variance, σ 2, of the logged data. Plotted
in Figure 3 are the average χ2

1st digit values against average

σ 2 values for each data set. A clear negative correlation
is present. It should be noted that the variances of logged
data are only calculated using spots with strictly positive
intensities.

As a final cautionary note it is worth stating that the
generic statistical features we have focused on will only
be present in microarray data sets if spot intensities
are taken from an unbiased sample of genes. Biased
samples of genes can occur by focusing only on genes
of particular interest, e.g. genes known to be associated
with a particular clinical condition, or if genes only from
a limited number of functional groups or biochemical
pathways are expressed by the organism.

Zipf’s law. The agreement of microarray data with
Benford’s law suggests the log-normal distribution as a
potential distribution for normalization of the bulk of
the corrected spot intensities. Certainly microarray data
should be analysed on a log scale. However we have
already noted that power law distributions are also capable
of reproducing Benford’s law and such distributions may
be a more appropriate description of the tails of spot
intensity distributions. Many examples exist where real
data sets show a log-normal like distribution of values
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Fig. 4. Plot of log(corrected spot intensity) against log(rank) for the
top 500 spots in one channel in one of the data sets of Ross et al.
(2000). The solid line is the fit to Zipf’s law.

for the bulk of the data but also show power law tails
(Montroll and Shlesinger, 1982; Stanley et al., 1999).
When spot intensities Ir are ordered by rank r , from the
highest I1 to the lowest, we observe approximate Zipf’s
law behaviour for the highest intensities in microarray data
sets from various human tumour samples. Zipf’s law is a
linear relation,

log Ir = log I1 + ν log r, ν < 0 (3)

noted by Zipf (1936, 1949) to apply to various data sets
including word frequencies in passages of text and to sizes
of cities. It is a trivial matter to show that a Zipf’s law tail
and a power law tail, P(x) ∼ x−α , are inter-changeable
with ν = 1/(1−α). Plotted in Figure 4 is log spot intensity
against log rank for the 500 largest spot intensities from
one of the data sets of Ross et al. (2000). Approximate
Zipf’s law behaviour is clearly seen for the largest spot
intensities and a value of ν = −0.32 is extracted by
fitting (3). Similar plots can be made for all the data sets
we have analysed.

Some curvature in the plot shown in Figure 4 is apparent
to the eye. For all the data sets of Ross et al. (2000) we
have found the magnitude of the curvature, determined by
fitting log Ir = log I1 + ν log r + ζ(log r)2 to the data, to
be statistically significant (p < 0.001) but always much
smaller than the term linear in log r . Thus the data displays
only an approximate, although very good, agreement with
Zipf’s law.

One must be careful when looking for power law
behaviour in the tail of a distribution close to log-normal.
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As has often been noted (Montroll and Shlesinger, 1982;
Sornette, 2000) the tail of a log-normal distribution can
do a very good impression of a power law. The density
function of a log-normal can be written (Sornette, 2000),

P(x) dx = 1√
2πσ 2

x−1 exp

(
− 1

2σ 2
(log x − µ)2

)
dx

= e−µ

√
2πσ 2

(xe−µ)−1−η(x) dx (4)

where η(x) = 1
2σ 2 (log x − µ). With η(x) being a slowly

varying function of x due to the log, the log-normal can
approximate a power law for log x > µ. Typically the full
log-normal structure of the tail would only be apparent
when examining the probability density over a range of
log x extending more than 2σ standard deviations beyond
µ (i.e. η(x) changing by O(1) over this range). With
the average value of σ � √

2.26 � 1.5 for the data
sets of Ross et al. (2000), 2σ takes us well into the tail
of any log-normal and would require sampling of many
more points than there are on a typical microarray to
accurately estimate the probability density in this region.
The data shown in Figure 4 has σ � 1.49 and extends from
about 1.47–2.88 standard deviations of log spot intensity
above the mean value. Thus distinguishing by eye between
the tail of a log-normal distribution and a power law is
difficult for the typical number of data points available to
us from a microarray experiment. However the variation
in slope observed in Figure 4 is actually considerably
less than would be expected from a log-normal with the
same mean and variance of log spot intensity. Secondly
the local effective Zipf’s law exponent from a log-normal
tail would be ν ∼ −1/η(x). Thus to observe an exponent
ν � −0.32 would require η(x) � 1 i.e. σ−1(log x−µ) �
2σ . With σ � 1.49 for the data in Figure 4, then to
observe such a small Zipf’s law exponent ν from a log-
normal tail would require values of log spot intensity
approximately 3 or more standard deviations above the
mean value. This is certainly not the case. Therefore we
conclude that the tail of the spot intensity distribution is
something close to a genuine power law and is less likely
to be the tail of a log-normal. The detected curvature may
be due to: (i) Mandelbrot’s modified form of Zipf’s law
(Mandelbrot, 1966) may be a more appropriate description
of the data; or (ii) a genuine power law tail may be the
asymptotic form of some limiting process that has not
been reached due to the finite genome sizes and finite
number of microarray spots.

Extraction of biological information from
characteristics of spot intensity distributions
So far we have been discussing the characteristics of
the distribution of spot intensities from microarray
experiments. How do these characteristics relate to the

characteristics of the underlying mRNA abundance
distribution? Individual spot intensities cannot be taken as
a precise measure of mRNA abundance, although work
by Ishii et al. (2000) reveals that corrected spot intensities
from oligonucleotide chips can be taken as reasonable
estimates of mRNA abundance. In a two fluor microarray
experiment we can take the spot intensity Ii , for gene i ,
as being a mixture of biological signal Bi and system-
atic but gene specific effects Ei . Thus we can model,
Ii,G = Bi,G Ei , Ii,R = Bi,R Ei , where the subscripts G, R
refer to the two fluorescent labels. A similar (single label)
model can be used for oligonucleotide spot intensities. The
systematic gene effect Ei is typically assumed to be inde-
pendent of, or only weakly dependent on, the fluorescent
label so that typically the factor Ei can be eliminated by
considering the ratio Ii,G/Ii,R . We see that, Var(log IG) =
Var(log BG) + Var(log E) + 2Cov(log BG, log E) and
likewise for the other label. E is considered to be
systematic, determined largely by the specific gene
sequence. However, Wagner (2000) has found little
correlation between differential gene expression and
sequence similarity. We may therefore reasonably take
Cov(log BG, log E) to be small in comparison to the
other two contributions to Var(log IG). We assume that
Var(log BG) is the dominant contribution to Var(log IG)

(and similarly for Var(log IR)). Ishii et al. (2000) have
compared data from Affymetrix oligonucleotide chips and
SAGE (serial analysis of gene expression), using identical
mRNA samples obtained from human blood monocytes
and granulocyte-macrophage colony-stimulating factor
induced macrophages. A correlation of r = 0.817
was found between log(corrected spot intensity) of the
oligonucleotide chips and log(tag frequency) of the SAGE
analysis. If we consider SAGE analysis to provide a more
quantitatively accurate estimate of mRNA abundance
then the analysis of Ishii et al. (2000) suggests an upper
estimate of around 33% for the contribution of Var(log E)

to Var(log I ) in the case of oligonucleotide chips. The
consistency between the values of Var(log I ) obtained
from Affymetrix chips and those obtained from arrays of
spotted clones for Human data suggests a similar sized
contribution of Var(log E) to Var(log I ) may be valid for
two fluor experiments.

The major contributions to the systematic effect E are
often attributed to: (a) the specific secondary structure
of the mRNA interfering with its ability to hybridize to
the probe on the array. However it has been suggested
(Southern et al., 1999) that this is not an important effect
for arrays of spotted clones or PCR products where the
hybridization conditions are stringent enough to melt most
secondary structure. For hybridization to oligonucleotide
arrays this may not be true. Most of our analysis has
concentrated on arrays of spotted clones, although for the
Human data, as we have already noted, there is reasonable
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consistency between the values of Var(log I ) obtained
from Affymetrix chips and those obtained from arrays
of spotted clones. (b) The number of label molecules
attached to the mRNA being proportional to length of
the reverse transcription products since label molecules
are attached internally and not just at the sequence ends.
We might therefore expect a possible correlation between
spot intensity and length of spliced open reading frame.
Reverse transcription of the mRNA is not always fully
complete and so any correlation would be expected to
be strongest for the shortest genes. For the data sets of
Gasch et al. (2000) the correlation between spot intensity
and gene length is negligible. For spliced open reading
frames of Saccharomyces cerevisiae with a length less
than 250 bp the average (over both channels and all
the samples) correlation coefficient for this data set is
|r | = 0.087.

Given the above considerations we continue our anal-
ysis of the data sets viewing σ 2 = Var(log I ) as a noisy
estimate of Var(log mRNA abundance) for the sample
from which the mRNA was extracted. Any large scale
changes in σ 2 we consider to be due to large scale
changes in Var(log B). Certainly we have no a priori
reason to believe that when using similar experimen-
tal protocols Var(log E) would significantly change
between organisms. Note that we are not assuming a
direct correspondence between spot intensity and mRNA
abundance. The contribution of Var(log E) to Var(log I )
is non-negligible. Therefore for any specific gene the size
of the systematic effect E will most likely be too large to
consider spot intensity as a precise (up to a global scale
factor) estimate of mRNA abundance for that gene. How-
ever a well defined and significant statistical correlation
can still exist between spot intensity and mRNA abun-
dance. Therefore we consider the Zipf’s law tail of the
spot intensity distribution to infer a Zipf’s law tail for the
underlying mRNA abundance distribution. The approxi-
mate log-normal shape of the spot intensity distribution
raises the possibility of the underlying mRNA abundance
distribution being approximately log-normal, although
we acknowledge that at this stage we cannot discount
the possibility that the left hand tail of the spot intensity
distribution is a measurement artefact. Where an explicit
form for the underlying mRNA abundance distribution
is required we shall assume a log-normal form. We have
avoided using Var(log(IG/IR)) to estimate Var(log B)

since with few genes being highly up or down regulated
between different samples Cov(log BG, log BR) is typi-
cally on the same scale as Var(log BG) and Var(log BR),
with the consequence that Var(log(IG/IR) will be small
and not well correlated with Var(log BG) + Var(log BR).

Having obtained values of σ 2 for several data sets and
several organisms we wish to ascertain if there is any
biological information in these values. Is the value of σ 2

unique to a given organism and is there any general trend
in σ 2 as one moves from lower to higher eukaryotes?
There is some support for these ideas if we look at
individual data sets. For example, for the data set of Ross
et al. (2000) the average variance of logged data across the
66 different chips is approximately 2.26 with a standard
deviation of only 0.32, despite the 66 chips representing
cell lines derived from tumours and normal tissues of
widely different origin (breast, colon, etc.). This average
value of 2.26 is clearly distinct from the average values
obtained for lower eukaryotes such as S. cerevisiae or
Drosophila melanogaster.

Variance of the log-normal and the effect of mixed cell
types. At first sight the differing variances observed in
the data sets of Perou et al. (1999) and Ross et al. (2000) is
perplexing given that both studies included mRNA derived
from human tumour specimens. However the work of Ross
et al. (2000) used cell lines derived from tumours, whilst
that of Perou et al. (1999) used primary tumour tissue
directly. As noted by Perou et al. (1999) their samples
could potentially contain not just carcinoma cells but also
epithelial cells, stromal cells, adipose cells, endothelial
cells and infiltrating lymphocytes. If the experimental
sample consists of mixed cell-types then the observed spot
intensities will consist of sums of several approximately
log-normally distributed variables, one for each cell-type
in the sample, which may have widely differing means
and variances. We can easily simulate this situation by
writing R = ∑M

i=1 ri with log ri ∼ N (µi , σ
2
i ). We take

M = 10 and µi ∼ U [3, 8], σ 2
i ∼ U [0.6, 2.6] to reflect

the range of mean and variances observed in the data sets
in Table 1. Sampling 1000 points for R and repeating this
process 1000 times gives Var(log R) = 0.464. Thus in this
simple simulation the observed variance of the logged data
from a mixed cell-type sample is considerably less than
the average variance (over the individual cell types) of 1.6,
and is even less than the lower bound of 0.6 on the variance
from a single cell-type. A similar reduction in variance
may also occur during the process of actually scanning the
hybridized array since, when reading the intensity value
from a given spot, neighbouring spots can also contribute
to some degree.

Can we quantify this effect of having mRNA extracted
from mixed cell types? Consider R = ∑M

i=1 ri with
log ri ∼ N (µi , σ

2
i ). We take µi , σi , i = 1, . . . , M

to be i.i.d random variables. In general M will not be
sufficiently large for the Central Limit Theorem (CLT)
to apply. Sums such as these, of log-normal distributed
random variables, frequently occur in the field of mobile
communications (Fenton, 1960; Schwartz and Yeh, 1982).
Typically R is considered to be well approximated by
another log-normal (Fenton, 1960; Schwartz and Yeh,
1982). Thus we take log R to have mean µmc and variance
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σ 2
mc (the subscript mc denoting mixed cell type values) and

approximate log R ∼ N (µmc, σ
2
mc). One can match first

and second moments of R and
∑M

i=1 ri to give (Fenton,
1960),

σ 2
mc = log

[
1 +

∑
i e2µi +σ 2

i (eσ 2
i − 1)( ∑

i eµi + 1
2 σ 2

i
)2

]
. (5)

If the ri , i = 1, . . . , M contributing to R are in fact i.i.d,
i.e. µ1 = µ2 = · · · = µM = µsc and σ1 = σ2 = · · · =
σM = σsc (the subscript sc denoting single cell type), then
one has,

σ 2
mc = log[1 + M−1(eσ 2

sc − 1)] (6)

� M−1(eσ 2
sc − 1) + O(M−2) M → ∞. (7)

The accuracy of determining µmc and σ 2
mc by matching

first and second moments decreases with increasing M .
More accurate recursive numerical procedures exist
(Schwartz and Yeh, 1982) however the above formula is
useful from an illustrative point of view. From (7) we can
see that there is an increasing reduction in the variance
of the logged data (log R) as the number of contributing
log-normal distributions, M , increases. Strictly speaking
the justifications for (7) will not be valid as M → ∞,
and at any rate if the ri , i = 1, . . . , M are i.i.d then the
approximation of R by a log-normal distribution must be
replaced by a Gaussian as M → ∞. One still obtains
Var(log R) � M−1(eσ 2

sc − 1) if the CLT is used for
M → ∞, primarily because in applying the CLT we
are still focusing on the first and second moments of R.
The pre-factor of M−1 can be derived through a simple
perturbative argument, irrespective of the form assumed
for the distributions of the components ri , i = 1, . . . , M
that comprise R (other than having finite first and second
moments). We can take the value of σ 2

sc � 2.26 obtained
from the data of Ross et al. (2000) as being the appropriate
underlying value for the samples of Perou et al. (1999)
for which we set σ 2

mc � 0.88. Applying (6) we obtain
M � 6, i.e. 6 different cell types present in the samples
of Perou et al. (1999). Whilst we consider this estimate of
M to be very approximate it is certainly not an unrealistic
figure, and intriguingly is the number of cell types listed
by Perou et al. (1999) as possibly contributing to their
extracted mRNA. The fact that we using σ 2, the variance
of log(spot intensity) as a crude measure of log(mRNA
abundance) will obviously also limit the accuracy of our
estimate of number of cell-types present. Although the
derivation may appear complex there is a clear implication
of the above result. The ratio,

exp(σ 2
mc) − 1

exp(σ 2
sc) − 1

(8)

provides an estimate of the number of cell types contribut-
ing to the extracted mRNA. Obviously in using (8) we are
assuming that each cell type present contributes an equal
amount of mRNA. This is unlikely to be the case and so (8)
should be viewed as the effective number of cell types
present. Many more small scale contaminants may actu-
ally be present than is estimated by (8) but if their contri-
bution to the total mRNA is negligible we can effectively
consider them to be absent.

Variance of the log-normal and genome size. If we
concentrate on data sets where mRNA has not been
extracted from mixed cell types then is any trend in the
values of σ 2 discernible? Plotted in Figure 5 is σ 2 against
approximate genome size (in terms of number of genes).
Where data sets are available for the same organism from
different laboratories we have taken a simple average,
weighted only by the number of samples in each data
set. If the source of the mRNA in a given data set is
known to be from a mixed cell type population then
we have omitted that data set from the average. Thus
in calculating a value of σ 2 for Human we have used
only the data sets supplied to us by Aventis and those of
Alon et al. (1999) and Ross et al. (2000). We have used
approximate genome size since for most of the organisms
studied here a precise value is not known. However
this does not affect the clear underlying trend present
in Figure 5 which shows increasing σ 2 with increasing
genome size. With σ 2 generally increasing with genome
size we would expect better agreement with Benford’s law
for organisms with larger genomes. A large amount of the
scatter in Figure 5 is due to the fact that σ 2 has been
estimated from the corresponding sample variance and
that estimation of the underlying signal for low expressed
gene is significantly affected by the noise in the spot and
background intensity values. More accurate estimation of
σ 2 can be done by fitting a presumed parametric form
for the underlying distribution of spot intensities to the
data from just the highest expressed genes. However to
avoid using a presumed distribution we have kept the naive
estimates of σ 2, which, as Figure 5 shows, are still capable
of revealing the underlying biological trend. A similar
trend is obtained if one plots IQD2 against genome size,
where IQD is the inter-quartile distance of the sample
distribution of log spot intensities, again calculated using
only positive values. The inter-quartile distance is often
considered to be a more robust estimator of the scale of a
distribution (Huber, 1981).

CONCLUSIONS
Our research in this paper has focused on the analysis
of microarray experiments, not at the level of multiple
spot-by-spot comparisons, but at the level of entire spot
intensity distributions. We have started the process of
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comparing microarray data and spot intensity distributions
between organisms. Analysis of microarray data sets
covering many different organisms and different chip
technologies has shown that microarray data generically
shows good agreement with the laws of Benford and Zipf.
Do such discoveries help us to answer the questions posed
at the beginning of this paper?

• Analysis of several microarray data sets shows that
a log-normal distribution is a good approximation
for the distribution of the large majority of the
spot intensity values. In general the tails of spot
intensity distributions show good agreement with
Zipf’s law, suggesting a power law may be a more
appropriate description for the tail. From this we
infer an approximate Zipf’s law tail and possible log-
normal shape for the underlying mRNA abundance
distribution.

• From microarray data one should calculate χ2
1st digit,

quantifying the agreement with Benford’s law. From
positive spot intensities one should calculate the vari-
ance σ 2 and inter-quartile distance IQD, of log spot
intensity. From positive values the Zipf’s law expo-
nent ν can also be calculated. The central region of the
spot intensity distribution can be characterized by σ 2

or IQD. The information in the tails of the distribution
can be characterized by the Zipf’s law exponent ν.

• σ 2 appears to be a roughly fixed characteristic for
a given organism and given experimental protocol.
This raises the possibility using σ 2 as a measure
for quality control. The true value of σ 2 can be
affected by a variety of different factors such as
whether the mRNA has been extracted from mixed
cell types, but in a manner that is well understood.

Data sets with a weak underlying signal compared
to the background intensity can lead to a higher than
expected proportion of intensities close to zero after
correcting for the background. On logging the data
this leads to a heavy left hand tail and consequently
a value of σ 2 significantly greater than that expected.
Therefore differing chip technologies, with differing
noise profiles, can produce differing values of σ 2 even
for the same biological sample.

• Our analysis of σ 2 across several different organ-
isms reveals a general trend of increasing width, to
the log(spot intensity) distribution, with increasing
genome size. Such a general trend is unlikely to be
have been uncovered using more conventional analysis
of microarray data. From this we infer a general trend
of increasing variance of log(mRNA abundance) with
genome size.
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