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ABSTRACT
Motivation: Metabolite fingerprinting is a technology for
providing information from spectra of total compositions of
metabolites. Here, spectra acquisitions by microchip-based
nanoflow-direct-infusion QTOF mass spectrometry, a simple
and high throughput technique, is tested for its informative
power. As a simple test case we are using Arabidopsis thaliana
crosses. The question is how metabolite fingerprinting reflects
the biological background. In many applications the classical
principal component analysis (PCA) is used for detecting relev-
ant information. Here a modern alternative is introduced—the
independent component analysis (ICA). Due to its independ-
ence condition, ICA is more suitable for our questions than
PCA.However, ICA has not been developed for a small number
of high-dimensional samples, therefore a strategy is needed
to overcome this limitation.
Results:To apply ICA successfully it is essential first to reduce
the high dimension of the dataset, by using PCA. The number
of principal components determines the quality of ICA signi-
ficantly, therefore we propose a criterion for estimating the
optimal dimension automatically.The kurtosis measure is used
to order the extracted components to our interest. Applied to
our A. thaliana data, ICA detects three relevant factors, two
biological and one technical, and clearly outperforms the PCA.
Contact: scholz@mpimp-golm.mpg.de

INTRODUCTION
Mutations, natural variation, e.g. ecotypes, and environ-
mental conditions can all influence metabolic processes.
Understanding the link between these factors and the over-
all characteristics of an organism requires a large number
of individual analyses. All of these analytical approaches
cannot be done by full-composition metabolomic tests, but
instead call for a cheaper and faster first-round screening
method that groups data according to inherent biological
characteristics and distinguishes these from inherent, unre-
lated background noise. Such strategies, without individually
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determining metabolite identities, have been termed metabol-
ite fingerprinting (Fiehn, 2001) and were successfully applied
to discriminate strains of bacteria using time-of-flight mass
spectrometry (Vaidyanathan et al., 2001) or other techniques
such as infrared spectroscopy (Thomas et al., 2000). In bio-
medical fields, the same strategy is used by applying nuclear
magnetic resonance and termed metabonomics.

One of the main questions in metabolite fingerprinting is
what the major pieces of information provided by the spectra
are, and whether the information relates to the experimental
conditions or to some interfering signals.

Techniques for visualizing datasets and for extracting
important variables in a ‘blind’ unsupervised way are very
helpful for biologists to interpret the given data. Biological
background information such as the group affiliations (class
labels) are not used in unsupervised algorithms. Such tech-
niques are an attempt to present the major or global inform-
ation given by the dataset, unbiased from the experimental
target knowledge. An unnoticed supervising effect could
appear as well by adjusting some algorithm-parameters by
hand. Therefore, we define different criteria for automatic
analysis.

One well-established technique for dimensionality reduc-
tion and visualization is the classical principal component
analysis (PCA), where the extracted information is repres-
ented by a set of new variables, termed components or
features. Diamantaras and Kung (1996) give a good overview
of different PCA-algorithms.

In the field of metabolomics, PCA became a popular tool
for visualizing datasets and for extracting relevant informa-
tion (Ward et al., 2003; Urbanczyk-Wochniak et al., 2003).
However, PCA is only powerful if the biological question is
related to the highest variance in the dataset. If this is not
the case, other techniques of statistics or related fields may
be more helpful, depending on the biological question, as
shown by Goodacre et al. (2003) and Johnson et al. (2003)
for supervised techniques in combination with validation and
pre-processing.

More general questions about the underlying data struc-
ture are better investigated by an unsupervised concept of
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detecting relevant components, unbiased by the experimental
target knowledge. Such unsupervised concepts allow a better
understanding of how the spectral data reflect the biological
experiment. In addition to experimental characteristics, even
unexpected factors can be detected. This information can then
be used to optimize the experimental conditions.

Different techniques were developed to overcome the dis-
advantages of the original PCA. Several extensions are in
a non-linear way, such as a non-linear PCA (Scholz and
Vigário, 2002), or locally linear embedding (Roweis and
Saul, 2000). However, due to the limited number of samples
in high-dimensional datasets, linear alternatives might be
more reliable. A very promising linear technique is inde-
pendent component analysis (ICA). In ICA, an independence
condition is optimized, which often gives more meaningful
components than optimization of only the variance, as is done
by PCA. Because of this the components of ICA are termed
independent components (ICs), meaning that different ICs
represent different non-overlapping information.

For applying ICA we assume that the observed data have
been determined by some unknown fundamental factors,
which are independent of each other. By searching for com-
ponents as statistically independent as possible these required
factors can be detected. These fundamental factors are often
termed sources and the application field is called blind source
separation, BSS.

The concept of ICA was first proposed by Comon (1994),
with subsequent developments by Bell and Sejnowski (1995).
One of the first motivations for ICA was sound signal sep-
aration. Currently ICA has become more important for bio-
medical applications. Here, applications on time series like
EEG data (Makeig et al., 2002) have to be distinguished
from applications on rather static data like gene expression
(Liebermeister, 2002; Martoglio et al., 2002). There exists a
large variety of methods for performing ICA. For time series
ICA algorithms such as TDSEP (Ziehe and Müller, 1998)
have been developed, whereas algorithms such as FastICA
(Hyvärinen and Oja, 2000) are more suitable for static data.
Detailed descriptions about ICA are given in Hyvärinen et al.
(2001) and Cichocki and Amari (2002). Usually ICA is
applied to datasets having a large number of samples and
only a small number of variables. In contrast to that, in meta-
bolite fingerprinting we measure a large number of variables
(masses) compared to a relatively small number of samples.
Applying ICA directly to this high-dimensional dataset is
questionable and the results are usually of no practical rel-
evance. One way to avoid this is to reduce the dimensionality
before applying ICA. For this, PCA is a suitable technique. We
will show that ICA gives optimal results only in connection
with PCA as a pre-processing step.

ICA is able to extract as many ICs as the dataset has dimen-
sions (number of variables). For technical reasons the ICs
have to be sorted, as will be detailed below. In the interest-
ing work of Liebermeister (2002), the ICs were sorted by a

combination of a contrast function and a variance criterion.
Here we propose the capture of the relevant variances by PCA
at first, and subsequently the ICs can be extracted in ICA
and sorted without considering the variance. Here the kurtosis
distribution measure is used for sorting.

We set out to test the power of ICA compared to PCA using
an easy example: the classification of four genotypes of the
model plant Arabidopsis thaliana, two parent lines Col0 and
C24 and two reciprocal progeny lines with different patterns
of maternal inheritance, Col0 × C24 and C24 × Col0.
These crosses, the so-called F1 generation, display interest-
ing features such as higher growth, better fitness and improved
resistance against biotic and abiotic stress factors. This phe-
nomenon is called hybrid vigour or heterosis and is exploited
by classical breeding practices. Therefore, we expected to find
the largest distance between the F1 groups and the parents, the
second largest difference between the two parents and just a
small difference or none at all between the two F1 genotypes.

In a previous study (Taylor et al., 2002), we employed gas
chromatography–mass spectrometry (GC/MS) with super-
vised methods to discriminate these crosses. However, when
screening large populations of genotypes, GC/MS analysis
might be too slow and too expensive, if faster and cheaper
methods like fingerprinting would give the same results. We
therefore used the same crosses as in the previous work, but
now we applied direct infusion-QTOF mass spectrometric
fingerprinting, as shown in Figure 1.

DATA ACQUISITION
We have 12 samples from each of the four lines or crosses,
hence a total of 96 samples. The samples were presented to
a direct infusion mass spectrometer without chromatographic
separation. An automated nanoelectrospray system was used,
that selects the samples automatically from a microtitre plate.
Each spectrum reflects the composition of all metabolites, and
hence the overall characteristics of one sample (Fig. 1). The
highest peaks of the spectra are given as mass-intensity pairs,
which have to be assigned to a set of variables (Fig. 2).

Sample preparation
Plant leaf discs of 150 mg FW, homogenized in the frozen
state, were extracted with 500 µl acetone/isopropanol 1 : 1
at −15 ◦C. Cell debris was removed by centrifugation at
14 000 min−1. To 20 µl of the extracts, 20 ml of 70% meth-
anol (acidified with 1% v/v formic acid), and 160 ml of
acetone/isopropanol 1 : 1 were added.

Automated nanoelectrospray
The NanoMate (Advion BioSciences, Inc. Ithaca, NY), a
liquid handling robot, and the ESI Chip (Advion BioSciences,
Inc. Ithaca, NY), a microchip consisting of a 10 × 10 array
of nanoelectrospray nozzles, together form the automated
nanoelectrospray system. The ESI Chip is manufactured
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Fig. 1. Mass spectra comparison of different Arabidopsislines and their crosses. The intensities are plotted against the mass (mass-to-charge
ratios, m/z). From each group one sample is arbitrarily taken. The global structure of the spectra is very similar. However there are differences
between masses of smaller intensities. To select the relevant information is the challenge for our analysis.

115 115.5 116 116.5 117 117.5 118 118.5 119
mass

in
te

ns
ity

115 115.5 116 116.5 117 117.5 118 118.5 119
mass

de
ns

ity

Fig. 2. Combined spectral data. Above, the intensities are plotted against the mass (m/z) for all mass-intensity pairs (given by the highest peak
in the spectra) over all samples. Only the mass range of 115–119 amuof the total range of 50–1500 amuis shown. For assigning the mass
values to a set of variables a density function is used, shown below. The peaks of the density function (marked by a plus ‘+’) point to high
concentrations of mass values. The masses around one peak (marked by a circle ‘◦’) are assigned to one variable, the residual mass-intensity
pairs are removed.

from a monolithic silicon wafer by deep reactive ion etch-
ing, and other microfabrication techniques (Schultz et al.,
2000). Channels extend from the nozzles (8-µm id by 30-µm
od) through the microchip to an inlet on the opposing face.

Samples are presented to the NanoMate in 96-well microtitre
plates. Using proprietary software, ChipSoft (Advion Bio-
Sciences, Inc. Ithaca, NY), the NanoMate aspirates sample
from the microtitre plate with a disposable conductive pipette
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tip. The sample is delivered to the next unused inlet with
the pipette tip forming a pressure seal around the channel.
Nanoelectrospray was initiated by the application of voltage
and nitrogen head pressure, and a contact closure was sent,
activating the mass spectrometer. At the conclusion of the
experiment, the sample was either returned to the originat-
ing microtitre well and the pipette tip ejected, or the sample
and pipette tips were ejected as one. ChipSoft then selects the
next pipette tip and aspirates the requisite volume, repeating
the analysis, until the completion of the sample list.

Spectral analysis
NanoMate electrospray/QTOF mass spectra were acquired
under the following conditions: 0.09 psi nebulizer gas pres-
sure, 1.43 kV capillary voltage, cone temperature 60 ◦C, 3 µl
air gap, 1 s aspiration delay, 2 s voltage delay, 3 s equalization
delay, and 2 min mass spectra acquisition from 50–1500 amu
with a scan rate of 1 amu/ms and a mass resolution of
R = 6000 FWHM.

A set of mass-intensity pairs is given by the highest peaks
in the spectrum from each sample. The peak positions are
not identical for each sample. Thus, by combining the mass-
intensity pairs of different samples, we have to unify the mass
values. The n most significant masses have to be determ-
ined, then the mass values of each mass-intensity pair can
be assigned to the nearest significant mass.

The significant masses are determined by a density func-
tion. High density is related to a significant mass value. The
data are also weighted by the intensity. This weighted dens-
ity function is shown in Figure 2. The function is a Gaussian
function with σ = 0.02 and a sampling rate of 0.01. A number
of n = 1000 mass values of highest density (highest peaks of
the density function) are selected. All data within an inter-
val of ±0.02 amu are labelled by the density-peak-number
(1, . . . , n). These 1000 masses will be referred to as variables.

After removing variables containing missing values, 763
of 1000 variables were left. Due to some unusable spectral
measurements the number of samples was reduced to 92. The
complete dataset consists of 92 samples separated into four
groups (two parent-lines and two F1 cross-hybrids). Further-
more, the different masses are represented by 763 variables.
The values are mass intensities (m/z) given by metabolite
concentrations.

NORMALIZATION
In this study the dataset was normalized by scaling each
sample-vector x = (x1, x2, . . . , xd) to unit vector norm
xnormed = x

||x|| , d is the number of variables (masses). As
vector norm,

||x||p = p

√∑
i

|xi |p (1)

the l2 vector norm (p = 2) was taken, but similar results
were achieved by using simply the sum of absolute values,

no normalization

unit variance unit vector norm

Col0xCol0
C24xC24

Col0xC24
C24xCol0

Fig. 3. PCA on normalized data. In each plot the first two com-
ponents of PCA are plotted against each other. PCA is applied to
different normalized datasets. Without any normalization there is no
clear separation between the different groups. By scaling the meta-
bolites to unit variance, the parent generation can be separated from
the F1 generation. By scaling the samples to unit vector norm, even
the parent-lines can be separated.

termed l1 vector norm ||x||1 = ∑
i |xi |. The l2 vector norm is

also known as the Euclidean norm and can be geometrically
interpreted as a projection of the samples x to a hypersphere.
The length of this sample vector is scaled to one. By doing
this, the ratios between masses do not change. As in nearly
each normalization process some information is removed. It
is assumed that this information is not relevant to our problem
and by removing it, the relevant information can be uncovered.
In vector normalization we remove the intensity or power of
the sample, which is termed the norm of this sample vector.
Because of this, vector normalization is closely related to cor-
relation analysis. Highly correlated samples will be projected
close to each other.

Compared to a normalization of the variables (masses)
like unit variance, the sample-vector normalization (l2 vec-
tor norm) can achieve better results (Fig. 3) Note the main
difference, one is a row-wise and the other is a column-wise
normalization. Unit variance will unify the influence of each
variable and vector norm will unify the influence of each
sample.

PCA and ICA are linear techniques, but the l2 vector norm
is projecting the samples to a curved hypersphere. To avoid
this theoretical discrepancy the normalized data set could
be linearized by transforming from Cartesian to spherical
coordinates, where the angles have a kind of hierarchical
order. A symmetric transformation might be more suitable,
which can be done by using the arcsine element-wise xlinear =
arcsin(xl2normed). However, the influence on the ICA result
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Fig. 4. PCA on vector normalized data. The first three principal
components (PCs) are plotted pairwise against each other. Note that
the first PC (of highest variance) is not related to our problem of
separating the sample groups. Better results are given by components
of smaller variance, PC 2 and PC 3.

is relatively small, and to simplify matters, it is not further
considered in this article.

PCA—PRE-PROCESSING
The criterion that is optimized in PCA is the variance. By
applying PCA for visualization we have to assume that the
most interesting information is directly related to the highest
variance in the data. The best projection or visualization is
then given by the first two principal components (PCs) of
highest variance. Often this assumption does not hold and we
find interesting projections in later components (Fig. 4). We
can still assume that the interesting information is related to
a significantly high amount of variance but not to the highest
amount. PCA can still be used to reduce the high dimension
of the data to a relatively low dimension, which covers all
relevant variances. Such a pre-processing step should preserve
all of the relevant information and reduce only the noise given
by small variances.

ICA—INDEPENDENT COMPONENT
ANALYSIS
Once the relevant variances are discovered by PCA, on
this lower dimensional dataset, a technique can be applied
which optimizes other criteria than the variance. A promising
technique for this is ICA.

Similar to PCA, ICA gives a set of components. In con-
trast to PCA these components are constructed such as to
minimize the dependence and are therefore termed independ-
ent component (IC). Independence is a stronger condition
than uncorrelation in PCA. This allows detection of more

meaningful components than by PCA. These components are
not restricted to be orthogonal in ICA.

To achieve ICs, different criteria (contrast functions) can be
optimized: higher order dependencies, entropy or kurtosis.

In this article, ICA was performed by the widely-used
FastICA algorithm (Hyvärinen and Oja, 2000).

SIGNIFICANT COMPONENTS – KURTOSIS
ICA is able to extract as many components as the dataset has
dimensions. These components have no order. For practical
reasons we have to define a criterion for sorting these com-
ponents to our interest. One measurement which can match
our interest very well, is the kurtosis.

Kurtosis is a classical measure of non-Gaussianicity, and is
computationally and theoretically, relatively simple. It indic-
ates whether the data are peaked or flat relative to a Gaussian
(normal) distribution. A Gaussian distribution has a kurtosis of
zero. Positive kurtosis indicates a ‘peaked’ distribution (super-
Gaussian) and negative kurtosis indicates a ‘flat’ distribution
(sub-Gaussian).

kurtosis(z) =
∑n

i=1(zi − µ)4

(n − 1)σ 4
− 3 (2)

where z = (z1, z2, . . . , zn) is representing a variable or com-
ponent with mean µ and standard deviation σ , n is the number
of samples. The kurtosis is the fourth auto-cumulant after
mean (first), variance (second) and skewness (third).

From purely Gaussian distributed data no unique ICs can
be extracted, therefore, ICA should only be applied to data-
sets where we can find components that have a non-Gaussian
distribution.

Examples of super-Gaussian distributions (highly positive
kurtosis) are speech signals, because these are predominantly
close to zero. However, for metabolite data sub-Gaussian dis-
tributions (negative kurtosis) are more interesting. Negative
kurtosis can indicate a cluster structure or at least an uni-
formly distributed factor. The former can resolve between
two experimental conditions (high and low concentrations
of metabolites), whereas the latter can represent a continu-
ously changed experimental factor such as the temperature or
the light intensity. Thus the components with most negative
kurtosis could give us the most relevant information.

ICA ON EXPERIMENTAL DATA
First, the dataset is normalized to unit vector norm (l2 vector
norm). Second, PCA is used as a pre-processing step for redu-
cing the dimensionality to 6 dimensions, see next section for
details. The FastICA algorithm is applied and the extracted
ICs are sorted by their kurtosis.

Figure 5 shows the results of the ICA compared to PCA.
The two components of ICA with the most negative kur-
tosis, IC 1 and IC 2, clearly gave a greater separation
of the sample groups. Furthermore, the two ICs have a
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Fig. 5. ICA compared to PCA. The best PCA-visualization given by
PC 2 and PC 3 is plotted on the left. The different groups are only
partially separable. Compared to this the ICA result, given by the
two ICs of most negative kurtosis, IC 1 and IC 2, is shown on the
right. ICA gives a projection of the data with a greater separation
between the different groups.
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Fig. 6. The third component of ICA (IC 3) has no information about
the experimental groups (left). However, there is a relation to the
time, when the samples are measured, shown on the right. This
technical factor could not be detected by PCA.

biologically independent interpretation. The first compon-
ent separates between the parent and the F1 generation. The
second component separates between the parent lines.

As shown in Figure 7, three components with clearly neg-
ative kurtosis are detected. The third component (IC 3), an
almost uniformly distributed factor, has no relation to the
groups of our biological experiment. However, we could
detect a relation to the identifier of the samples, represent-
ing the order over time measured in the mass spectrometer
(Fig. 6). Hence IC 3 is an unintended technical factor. The
reason could be chemical contamination over time.

OPTIMAL PCA-DIMENSION
By using the PCA as a pre-processing step, the number of PCs,
hence the optimal reduced dimensionality is usually unknown.
Thus we have to find a way to estimate this dimension. Here,
the estimation is aligned with the aim of our analysis, i.e.
to find as many relevant components as possible. As a neg-
ative kurtosis indicates relevant components, the dimension,
where we can extract the highest number of ICs with negative
kurtosis is the optimal dimension.

On our experimental dataset we found optimal results with
five, six and seven PCs. Although ICA detects even 4 relevant
components using six PCs (Fig. 7), the fourth is close to zero
and so should not be counted. The first two ICs are plotted
in Figure 5. If the number of PCs is too small (<5), relevant
information will be removed by PCA. If the number of PCs
is too high (>7) the higher level of noise masks the relevant
information. In both cases the component for separating the
parents will be lost.

Alternative to counting simply the number of components
with negative kurtosis, the square sum over these negative
values can be used. This might be a more reliable criterion,
as a kurtosis close to zero has little effect. From the point of
information theory a measure based on entropy could be used
as well. However, such criteria are needed for an automated
analytical procedure.

INFLUENCE VALUES
If the components represent biological factors, it will be
important to know which masses are highly involved. Thus
the influences of each mass on each of the components have
to be calculated, which is often done in a similar way for PCA.
Such influence values are often termed loadings or weights.

We would expect that most of the masses are related to
specific biological factors, and hence the masses should
be assignable to different components. Only a small set of
masses (meta-masses) should be caused by several biological
activities, having a significant influence on more than one
component.

In Table 1 the influences are given for components of ICA
and PCA, which are not identical. In Figure 8 it becomes
apparent that ICA fits the expectation better, as different
masses are linked to different ICs. This can indicate that com-
ponents of ICA give us a better description of the biological
factors.

The influence values are given by the transformation
matrices of PCA and ICA. PCA transforms a d-dimensional
sample vector x = (x1, x2, . . . , xd)T into a usually lower
dimensional vector y = (y1, y2, . . . , yk)

T , where d is the
number of masses and k is the number of selected components.
The PCA transformation is given by the eigenvector matrix
V , y = V x. Similarly, ICA transforms this vector y to the
required vector z = (z1, z2, . . . , zk)

T , containing the inde-
pendent values zi for each IC i. For that a de-mixing matrix W

is estimated by ICA, z = Wy. V gives the influences of each
variable (mass) on each of the PCs, whereas W gives us the
influence of each PC on each of the ICs. We can combine both
matrices U = W ∗V to a direct transformation z = Ux, where
U gives vector-wise the required influences of each variable
on each of the ICs. For comparing these influences with the
influences of solely applying PCA (Table 1), the length of the
influence vector has to be scaled to one (l2 vector norm).
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the number of extracted ICs with negative kurtosis. By using the first 6 components of PCA, ICA can extract the highest number of interesting
ICs, whereas the kurtosis of IC 4 is close to zero. Right: For this 6 dimensional reduced dataset, the kurtosis of all extracted ICs are plotted.

Table 1. Mass influence

PC 2 PC 3 IC 1 IC 2
P ↔ F1 PCol ↔ PC24 P ↔ F1 PCol ↔ PC24

mass infl. mass infl. mass infl. mass infl.

769.2 0.46 785.1 −0.38 913.3 0.44 769.2 0.52
913.3 0.28 819.2 −0.26 911.2 0.29 803.2 0.42
915.2 0.25 769.2 0.24 915.2 0.24 770.2 0.25
770.2 0.21 913.3 −0.22 914.3 0.24 804.2 0.25
975.1 0.20 803.2 0.21 931.1 −0.20 975.1 −0.19
959.2 0.20 786.1 −0.17 912.2 0.18 819.2 −0.15
785.1 −0.19 820.2 −0.16 794.2 0.17 913.3 −0.15
797.2 0.19 911.2 −0.16 889.3 0.15 797.2 0.13
911.2 0.18 88.0 0.15 932.1 −0.14 911.2 −0.12
914.3 0.16 108.0 0.15 778.2 0.12 771.2 0.12

The 10 masses of highest influence are shown for different components. On the left the
masses given by the classical PCA are shown for PC 2 and PC 3. These are the PCs
which are closest to the first two ICs of ICA, shown on the right. The masses given by
ICA are different to these of PCA and are rather assignable to only one IC. These higher
mass separations are shown in Figure 8.

Note that informative influence values can only be determ-
ined if the dataset is adequately normalized beforehand. It is
also required that the variables have a mean of zero.

ICA does not attempt to cluster variables and thus is not a
cluster algorithm. However the variables can be assigned to
different components with respect to their influence values, as
is done in Table 1. The results are closely related to an over-
lapping clustering. Based on these influence values, distances
between masses could be calculated, and used for network
analysis.

OUTLIER DETECTION
The sensitivity of ICA to outliers can be seen as an advantage.
The outliers are indicated by a component with high positive
kurtosis. Thus ICA can be used to remove outlier-samples or
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Fig. 8. Mass influences. For each mass from Table 1 the absolute
influence on each component is plotted. The masses in PCA have a
greater influence on both components than the masses in ICA, which
are assigned more to one or to the other component.
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Fig. 9. Outlier detection by ICA. The last two components with the
most positive kurtosis are plotted against each other. The IC 6 clearly
indicates an outlier, marked by an arrow.

to correct those by moving it to the residual samples in the
direction of this component.

The assignment of an outlier to a separate component (IC 6)
(Fig. 9) reduces the negative effect to the required components
(IC 1 and IC 2). Thus, even without removing outliers, ICA
gives good results.
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CONCLUSION
The widely used assumption that the desired information is
related to the highest variance in the dataset does not hold for
our experiment. Thus sufficient results cannot be obtained by
solely optimizing the variance, as is done by PCA.

We have shown that ICA has a higher informative power
when it is combined with suitable pre-processing and evalu-
ation criteria. More precise biological features are detected,
and even a technical factor was found to influence the spectral
information, which could not be detected by PCA.

The kurtosis measure clearly denotes three ICs as signific-
ant. The first is usable for separating the Arabidopsiscrosses
from the background parental lines, and the second contains
information for discriminating the two parental lines. The
third component could be interpreted as a contribution of
chemical noise due to increasing contamination of the QTOF
skimmer along the analytical sequence.

ICA, together with the proposed criteria, forms an auto-
mated analytical procedure that offers a metabolite finger-
printing technique designed for high sample throughput.
We will make the approach described in this study avail-
able to the public by integrating it into MetaGeneAlyse
(http://metagenealyse.mpimp-golm.mpg.de), a web-based
tool for analysing biological data from metabolomics,
proteomics and transcriptomics.
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