
21 Mar 2003 21:39 AR AR184-PP54-26.tex AR184-PP54-26.sgm LaTeX2e(2002/01/18)P1: GJB
10.1146/annurev.arplant.54.031902.135014

Annu. Rev. Plant Biol. 2003. 54:669–89
doi: 10.1146/annurev.arplant.54.031902.135014

Copyright c© 2003 by Annual Reviews. All rights reserved

METABOLOMICS IN SYSTEMS BIOLOGY

Wolfram Weckwerth
Max-Planck-Institut f̈ur Molekulare Pflanzenphysiologie, 14424 Potsdam, Germany;
email: weckwerth@mpimp-golm.mpg.de

Key Words integrative biochemical profiling, quantitative proteomics, dynamic
networks, system modeling, stochastic noise, fluctuation

■ Abstract The primary aim of “omic” technologies is the nontargeted identifica-
tion of all gene products (transcripts, proteins, and metabolites) present in a specific
biological sample. By their nature, these technologies reveal unexpected properties of
biological systems. A second and more challenging aspect of omic technologies is the
refined analysis of quantitative dynamics in biological systems.

For metabolomics, gas and liquid chromatography coupled to mass spectrome-
try are well suited for coping with high sample numbers in reliable measurement
times with respect to both technical accuracy and the identification and quantita-
tion of small-molecular-weight metabolites. This potential is a prerequisite for the
analysis of dynamic systems. Thus, metabolomics is a key technology for systems
biology.

The aim of this review is to (a) provide an in-depth overview about metabolomic
technology, (b) explore how metabolomic networks can be connected to the under-
lying reaction pathway structure, and (c) discuss the need to investigate integrative
biochemical networks.

CONTENTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
PLANT SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
METABOLOMICS: GENOTYPE/PHENOTYPE CLASSIFICATION
AND PATTERN RECOGNITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

TECHNICAL AND BIOLOGICAL VARIABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . 675
SYSTEM MODELING AND STOCHASTIC NOISE. . . . . . . . . . . . . . . . . . . . . . . . . 676
DIFFERENTIAL METABOLOMICS BY SNAPSHOT ANALYSIS . . . . . . . . . . . . . 677
CAUSAL CONNECTIVITY AND SNAPSHOT CORRELATION
NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

INTEGRATIVE PROFILING OF BIOLOGICAL SAMPLES . . . . . . . . . . . . . . . . . . 680
CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

1040-2519/03/0601-0669$14.00 669



21 Mar 2003 21:39 AR AR184-PP54-26.tex AR184-PP54-26.sgm LaTeX2e(2002/01/18)P1: GJB

670 WECKWERTH

INTRODUCTION

In the context of functional genomics, the nontargeted profiling of metabolites in
biological samples is now regarded as a viable counterpart to protein and transcript
profiling technologies (6, 31, 98, 99). The integration of methods based on gas
chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass
spectrometry (LC/MS) for the comprehensive identification and, particularly, the
accurate quantification of metabolites has attained a technical robustness that is
comparable or even better than conventional mRNA or protein profiling technolo-
gies (24, 25, 72, 73, 78, 96, 106).

Most promising is the driving force of this technology to move from qualitative
to comparative quantitative approaches. However, many critical parameters, such
as the discrepancy between the low number of detected metabolites versus the real
number of possible metabolites in plants, the extraction process, the bias against
compound classes, and, most importantly, the overlap of many compartmentalized
metabolic processes in tissue samples, are still unresolved and complicate the
interpretation of metabolite profiles.

Nevertheless, the accurate identification and the relative quantification of a
high number of metabolites in a multitude of samples make it possible to study
dynamic metabolomic networks and are thus leading to observations unattainable
using classical methods. Analysis of these network topologies and their control
with respect to specified environmental or genetic perturbations will permit the
investigation of dynamic interactions in metabolic networks and the discovery of
new correlations with biochemically characterized pathways as well as pathways
hitherto unknown.

Owing to our incomplete knowledge of quantitative mRNA-protein-metabolite
interactions, integrative profiling approaches combining metabolomics, proteomics,
and transcriptomics will greatly enhance our ability to determine relationships
among components of plant systems. Furthermore, integrating quantitative data
regarding growth stage and environmental conditions into analyses of the biolog-
ical system is essential (12, 16). This comprehensive approach will play a major
role in understanding regulation and biochemical interactions in plant metabolism
at a systems level.

PLANT SYSTEMS

Plants are sessile systems unable to escape environmental pressures. As a result,
they have evolved a dazzling array of flexibility in their responses to environmental
conditions such as light/dark, drought, temperature, nutritional supply, microbial
invasion, etc. Thus, the plant system comprises a genotype by environment re-
sponse, producing a specific geno-phenotype relationship that is heavily depen-
dent on the growth stage (12, 16). Accordingly, a gene’s function should ideally
be defined in the context of the systems state and environment.
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Owing to this complexity, following systems responses at the molecular level
using transcript and protein profiling (for instance, when a single plant gene is
manipulated) is difficult. However, these primary omic technologies have been
applied at the whole and subsystem levels to identify individual genes or proteins
that show differential expression in response to systematic perturbation (66, 111).
In most studies to date, changes in metabolite levels in response to altered gene
and protein expression have not generally been monitored. This is at least in part
due to the underlying paradigm that genes drive the system, whereas gene products
(proteins and metabolites) are merely along for the ride. This model is inadequate
because the regulation and control of metabolic fluxes clearly occur on all levels,
as shown in a case study for the regulation of glycolysis (94).

Since the completion of the genome sequence, the gene annotation ofArabidop-
sis thaliana (http://luggagefast.stanford.edu/group/arabprotein/; http://mips.gsf.
de/proj/thal/; http://www.tigr.org/tdb/e2k1/ath1/) provides a reasonable framework
upon which to construct a theoretical metabolic pathway network. The situation is
complicated by the fact that the function of more than 40% of these genes remains
unknown (84). Consequently, metabolic reconstructions only provide pieced to-
gether bits of biochemical networks with many missing links. On the other hand,
these reconstructions point the way to hypothetical pathways and connections
(80, 81). What is missing in these model networks is a preferred pathway structure
(61), which is constantly changing in response to developmental needs, environ-
mental conditions, intra- and intercellular transients, etc. (Figure 1).

Plant tissues consist of heterogeneous cell populations and multiple cell com-
partments. Consequently, multiple metabolite concentration gradients and du-
plicate pathways are present in tissue samples. Moreover, the term steady state
may be a misnomer because plants exhibit constantly changing, transient beha-
vior in response to diurnal, circadian, and seasonal cycles (39, 42, 90, 93). These
plant-specific properties of highly compartmentalized metabolic networks and
the resulting complexity of metabolite connectivity present great challenges for
metabolomics.

METABOLOMICS: GENOTYPE/PHENOTYPE
CLASSIFICATION AND PATTERN RECOGNITION

The aim of metabolomic analysis in plant biochemistry/biotechnology is to pro-
vide comprehensive insight into the metabolic state of the plant by detecting the
metabolome—the full suite of metabolites expressed in a plant (65, 100). There is
a long tradition of and extensive knowledge about metabolite analysis. The appli-
cation of GC/MS and LC/MS profiling to plant phenotyping (24, 25, 72, 73, 78, 96,
106) for the simultaneous detection of individual compound classes with a com-
plex diversity of chemical properties/behavior was a major step in the development
of metabolomic technology.

An excellent introduction to the field and a definition of the terms target meta-
bolite profiling and metabolic fingerprinting are given in Reference 23. Metabolite
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Figure 1 Amplification of a metabolic network and feedback regulation in response to
developmental and environmental conditions.

target analysis utilizes specialized protocols for difficult analytes such as phytohor-
mones, whereas metabolite profiling aims at quantifying a number of predefined
targets (for example, all the metabolites of a specific pathway or a set of metabolites
shared among different pathways). In contrast, the goal of metabolomic approaches
is the unbiased identification and quantitation of all the metabolites present in a
specific biological sample from a plant grown under defined conditions. This is
different from metabolic fingerprinting, which focuses on collecting and analyzing
data from crude metabolite mixtures to rapidly classify samples instead of sepa-
rating individual metabolites by physical parameters. Thus, metabolomics is best
suited for the investigation of metabolic networks via the quantitation of individual
metabolites without a bias concerning the choice of targets to be analyzed.

The number of metabolites present in the plant kingdom is estimated to ex-
ceed 200,000—an enormous number indicating a great deal of compound struc-
tural diversity. Owing to this diversity, metabolomic approaches must apply ade-
quate tissue sampling, homogenization, extraction, storage, and sample preparation
methods in order to maintain an unbiased process. Currently, no comprehensive
comparisons of extraction techniques that show high reproducibility, robustness,
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and recovery for all classes of compounds have been published. For example, mul-
tiple components from homogenized tissues often are extracted using alcohols or
water/alcohol mixtures (48, 91), but no systematic and rigorous validation (55) for
extremes in plant tissues (such as leafs, roots, or needles) has been published. The
same is true for other extraction techniques such as pressurized liquid extraction
(8), supercritical fluid extraction (10, 14, 45), sonication (77), subcritical water ex-
traction (26), microwave techniques (62), and pervaporation (85). Additionally, it
is unclear what factors most affect robustness, which is defined by minimal an-
alytical errors if protocols are carried out under slightly altered conditions. Such
alterations may include subtle differences in extraction times, temperatures, sol-
vent compositions and qualities, staff skills, tissue/solvent ratios, and others, with
the potential to cause severe problems in reproducing results.

Numerous techniques exist for metabolite detection. It is questionable if data
acquisition of a single physical parameter can fulfil the minimal requirements of
metabolomic approaches, i.e., comprehensiveness, selectivity, and sensitivity. MS
seems to be the primary candidate to fulfill these criteria, as much work has demon-
strated its suitability for metabolite detection in complex matrices. However, it is
well known that GC/MS, for example, is not suitable for organic diphosphates, co-
factors, or metabolites larger than tri- to tetrasaccharides. Capillary electrophoresis
(CE) coupled to MS provides a feasible method for the separation of ionic com-
pounds and, hence, represents a complementary technology to reversed phase
separation focusing on lipophilic compounds (83).

In a recent elegant analysis of oligosaccharides and sugar nucleotides in phloem
exudates, LC/MS coupling was achieved using hydrophilic interaction chromatog-
raphy, resulting in better peak shapes compared with normal phase LC (96). A
comparative study using negative electro spray ionization (ESI) and LC/MS/MS
revealed the diversity of saponins in differentMedicagospecies (41). These authors
concentrated on segregating the metabolome into several subclasses followed by
parallel analysis utilizing the selectivity of MS. Alternatively, LC/LC coupling of
different chromatographic columns prior to metabolite detection might work for
metabolomic approaches; however, no method has been developed that is as suc-
cessful as coupling ion exchange to reverse phase LC in peptide mixture analysis
(105, 110).

It is obvious that GC/MS, LC/MS, LC/LC/MS, and CE/MS approaches have
intrinsic biases against certain classes of compounds. For example, simple ter-
penes, carotenoids, or aliphatics are semi-inert to ESI, the standard technique used
in conjunction with LC. Such hydrocarbons, however, are often volatile and can
therefore easily be detected by a combination of GC and MS, for example, by
using classical electron impact ionization. In this regard, a combination of GC/MS
and LC/MS methods is adequate for analyzing a wide range of metabolites. How-
ever, especially for LC/MS, one must not forget the effects of ion suppression
due to matrix effects (15, 88). Ion suppression can only be partly circumvented by
reducing the size of liquid droplets (5), and it might invalidate any metabolomic
approach that fails to properly preseparate metabolites prior to MS detection. Loss
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of information by ion suppression and matrix effects can be circumvented by using
methods complementary to MS detection in parallel. This can be accomplished by
splitting LC flows (e.g., to electrochemical detection), nuclear magnetic resonance,
or infrared, ultraviolet, or fluorescence spectroscopy. Ultraviolet and fluorescence
detection are well-known, nondestructive tools for use in metabolite target analysis
or for profiling selected classes of compounds such as amines (11), isoprenoids
(74), or unsaturated fatty acids (28). Coulometric electrochemical array detectors,
which are powerful and sensitive detectors of carotenoids (21), polyphenols (13),
and flavonoids, could also be applied to circumvent the limitations of MS. No-
tably, these detectors also enable distinction of metabolite isomers (20) by spectral
information, which is often hard to do using MS.

Alternatively, one might consider nuclear magnetic resonance spectroscopy
(NMR). Although these approaches lack sensitivity for multiparallel analysis of
hundreds of metabolites for generations of large metabolic networks, NMR has
a high potential for unraveling metabolic fluxes in branched, short pathways
if carried out with isotope labeling and metabolic flux balancing calculations
(75, 92, 108).

Using matrix algebra and the assumption that the system reaches a steady state
simplifies the formulation and the solution of complex networks. The resulting
balance equations yield a predicted set of isotopomer balances for a given flux
distribution. Fluxes can be iteratively modified until the flux distribution is in
closest accordance with experimental observations (75).

In addition, NMR (69) spectroscopy has high discriminatory power on the level
of metabolic fingerprints, for example, for rapidly assessing the mode of action of
plant protectants (2). A disadvantage is that most metabolites result in several to
many signals in NMR, causing a large problem in resolving individual metabo-
lites if no chromatographic separation is performed before NMR detection and
identification. Therefore, only limited information can be derived from NMR fin-
gerprints with respect to individual metabolites. For instance, silent yeast mutants
were readily discriminated from wild-type genotypes using NMR fingerprinting
(69), but the data have to be complemented by classical enzyme assays to derive
any biochemically meaningful conclusion. Besides NMR, direct-infusion MS is
ideally suited for high-throughput classifications of sample origins (101). In such
applications, partial ion suppression in electro spray ionization may eventually be
helpful because it can amplify slight matrix differences, in addition to metabolites
that are more abundant or unique in one of the sample populations under study.

For the metabolomic approach, GC/MS profiling of plant extracts has reached a
high degree of accuracy in respect to extraction, modification, time of measurement
and identification, and quantification of individual metabolites (24, 25, 30, 72, 73,
106). Recent advances with respect to fast acquisitions as well as accurate mass
determinations have been achieved by applying time-of-flight (TOF) technology
(103). Additionally, powerful deconvolution algorithms (86, 87, 97) have been de-
veloped to find peaks without prior knowledge of their abundance, mass spectral
characteristics, or retention time. Such deconvolution algorithms still do not work
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in LC/MS but are urgently needed for the unbiased analysis of arbitrary complex
mixtures.

Owing to a relative short acquisition time per sample (the actual time is 30 min)
and automated peak identification and quantification based on characteristic com-
pound identifier, the accurate measurement of a high number of replicates is pos-
sible using a GC/TOF system. Conceptually, this technique allows high sample
throughput (103, 106). High numbers of samples are a prerequisite for generat-
ing statistically significant data. Most importantly, this instrumentation allows the
accurate quantification of all co-eluting compounds irrespective of whether they
are identified, unknown, or classified on the basis of characteristic fragment masses
in the spectrum (86, 103). This is similar to the classical proteomics approach in
which proteins are first profiled at the highest attainable resolution [up to 10,000
spots per two-dimensional gel (P. Jungblut, personal communication)], and then
qualitative and quantitative differences are compared to reveal key response points
to genetic or environmental perturbations (49, 56, 68, 79).

Consequently, GC/MS-based identification and quantification of individual
compounds, as well as data from metabolic fingerprinting, can be used for pattern
recognition and classification analysis. Recent work (24) demonstrated the dis-
criminating power of this approach. The largest metabolic variations were found
between naturalArabidopsisaccessions (ecotypes), not between mutants and their
corresponding background lines. The detection of a huge number of unknown
metabolites was achieved in parallel with the accurate identification and quan-
tification of known metabolites. Clear matrix effects were observed for accurate
quantifications of standards. However, owing to the unambiguous ability to dis-
criminate among different mutant plants and ecotypes, the information content
of each individual metabolite is characteristic of the underlying metabolic reg-
ulation. Accordingly, these methods, in contrast to fingerprinting methods, have
the potential to link biological questions with involved individual compounds
(24, 25, 51, 72, 73, 106) and to indicate compound interrelatedness to surrounding
components (see Integrative Profiling of Biological Samples, below).

TECHNICAL AND BIOLOGICAL VARIABILITY

The components of dynamic biochemical networks exhibit high biological vari-
ability owing to the inherent noise, fluctuations, transients, and oscillations that
are part of plant homeostasis (7, 42, 52, 95, 104). Using metabolomic technology,
one is capable of analyzing biological variability in samples in a nonbiased way.

The overall relative technical standard deviation for metabolite quantification
is found to be∼10% with a novel standardized GC/TOF analysis (W. Weckwerth
and O. Fiehn, unpublished data). In that respect, arabidopsis samples show a much
larger biological fluctuation in their metabolite levels—up to several fold variances.
This phenomenon is usually neglected in biological systems using average metabo-
lite levels from an adequate number of samples assuming that the same genotype
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ideally should produce the same steady state or reach the same equilibrium under
highly controlled conditions. However, stochastic fluctuations of metabolites as
well as proteins and mRNA might account for deviations from steady state. These
biological variations have to be considered within independent samples of the
same genotype (112). One of the most important applications in omic technology
is to compare two types of samples, a control sample and a treated or genetically
modified sample, to identify individual components showing differential behavior
and to therefore account for the responses of the system to the applied perturba-
tion. This comparative analysis relies on the statistically significant detection of
differences between sample groups (112). A high biological variation of individual
compounds within a set of samples from the same background will hamper this
approach unless a high number of replicates are used. Can we make use of this
high variability in the same genotype under controlled environmental conditions
for network analysis?

SYSTEM MODELING AND STOCHASTIC NOISE

Metabolites are linked via anabolic and catabolic reaction networks. By using
metabolic reconstruction based on genome annotation or biochemical knowl-
edge, researchers can investigate theoretical networks and their structural fea-
tures (1, 19, 46, 47, 80). However, these predications fall short because regula-
tory events are precluded (although protein modifications such as phosphoryla-
tion reactions can be included into the theoretical network). Thus, we are still
searching for the metabolic network that comprises the real cell state, the instan-
taneous active pathway, in a complex theoretical network under certain conditions
(32, 61).

In any case, theoretical reaction and/or regulatory networks provide the primary
background for any system modeling approach. Vance et al. (102) demonstrated
how fluctuations in metabolites propagate through a theoretical reaction network,
enabling the investigation of causal connectivity and overall network structure.
This work is based on an approach by Arkin et al. (4) in which fluctuating input
concentrations of metabolites into a small in vitro reaction network were used
to examine time-dependent correlations among levels of metabolites (4). The de-
termined correlations enabled metabolic distance maps of the entire system to
be constructed, providing evidence for the structure of the underlying reaction
network.

In a series of papers these inherent properties of stochastic fluctuation, noise,
and/or oscillation as a special case in metabolic networks are analyzed in-depth in
reference to all levels of metabolism (7, 34, 42, 52, 95, 105).

Particularly exemplary for plant systems biology is the investigation of circadian
regulation in crassulacean acid metabolism (CAM) switching from net malic acid
accumulation to net malic acid mobilization. Most surprising was the finding that
CAM is also a free-running process under constant environmental conditions,
raising the question of this biological clock’s mechanisms (58). In conjunction
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with this question Rascher et al. (70) showed that the circadian rhythm of the
metabolic cycle of malate accumulation and mobilization is expressed as dynamic
patterns of independently initiated variations in photosynthetic efficiency within
a single leaf. This patchiness of photosynthetic activity correlated with malate
accumulation and mobilization, and the resulting CO2 concentration gradients
in the tissue led to the identification of spatiotemporal variations of metabolism
responsible for the switch of metabolic states. A further step was the investigation
of stochastic noise and its influence on the regular oscillating modes of CAM
(7). In a system in which endogenous rhythmicity is produced by a beat oscillator
acting on a feedback-coupled metabolic pool, noise produces unexpected dynamic
behavior, alternating between regular and irregular time structures. This effect can
lead to phase uncoupling of a set of coupled oscillators, the single cells, producing
spatiotemporal patterns.

Another example of the impact of stochastic processes in metabolism is pre-
sented by Arkin et al. (3) in a detailed stochastic model for the initial decision be-
tween two developmental pathways (lysis and lysogeny) by bacteriophage lambda.
In this investigation, researchers assumed the chemical kinetics of the operator
fluctuations were fast. This assumption allowed the operator states to be treated
deterministically using a quasi-steady-state approximation.

The role of noise has also been considered when engineering gene networks.
Here, fluctuations were added post-hoc to deterministic rate equations; therefore,
the noise strength was an adjustable parameter (33, 35).

In the following sections, I explore ways in which we can make use of biolog-
ical variability in samples of the same genetic background to construct metabolic
networks. These networks are presented in light of their connectivity to the instan-
taneous pathway structure.

DIFFERENTIAL METABOLOMICS BY SNAPSHOT ANALYSIS

Transgenic or mutant plants provide an excellent means by which to look at changes
in metabolic network connectivity through the specific perturbation of a gene of
interest using metabolomics.

We investigated potato plants suppressed in the expression of a specific su-
crose synthase isoform proposed to be active in phloem metabolism (57). For a
high number of sample snapshots of the control plant and the antisense plant, the
set of identified and quantified metabolites was systematically searched through
for Pearson’s correlations. These correlations provide the basis for constructing
connectivity networks of metabolites based on the Pearson’s correlation coeffi-
cient (shown in Figure 2). This coefficient was used to quantify the distance of
the biological connectivity of all the measured metabolites and enabled the con-
struction of metabolite distance maps that can be visualized. Using this approach
both the wild-type and the antisense plants showed metabolite connectivity net-
works, which can then be investigated with respect to the altered behavior of their
individual constituents (106). Principle component analysis alone was not able
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Figure 2 (A) Typical GC/TOF chromatogram resolving several compound classes from a
crude plant extract. (B) Examples of metabolite scatter plots using metabolite data from 44
potato-tuber samples of the same genotype grown and sampled under controlled conditions
and at the same developmental stage. (C) Connectivity network comprising the subset of
metabolites from exampleB. Glucose and mannitol are negatively correlated to the highly
connected amino-acid cluster.
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Figure 2 (Continued)

to differentiate between the wild-type and antisense plants. However, using the
distance maps and connectivity of metabolites, we found alterations in the anti-
sense plants in comparison to the wild-type plants. As expected, sucrose as well
as fructose and glucose and their corresponding phosphates showed an alteration
concerning the number of correlations with a specified threshold and, more impor-
tantly, concerning the distance to other metabolites comparing the wild-type and
antisense plants (W. Weckwerth and O. Fiehn, unpublished data). This alteration
is consequently an effect of a suppressed sucrose synthase II expression.

These metabolic networks are difficult to understand but contain the inherent
information of causal connectivity in the underlying reaction network (4, 76, 103).
Although we are not able to provide a complete interpretation of the results yet,
owing to fundamental lack of knowledge concerning biochemical network dynam-
ics, as discussed above, it is feasible to define key points in metabolic networks as
a response to specified gene alteration.

CAUSAL CONNECTIVITY AND SNAPSHOT
CORRELATION NETWORKS

To gain information from differential metabolic network analysis we must con-
nect these experimental data to their underlying regulatory network structures.
In the following section, I provide a simple theoretical model for the analysis of
metabolite snapshot correlation networks.

Can we assume that each plant leaf tissue sample provides the average metabo-
lite level of millions of metabolically coupled cells? As shown by studies of CAM
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metabolism (58, 70; see System Modeling and Stochastic Noise), we can dissect
leaf-cell photosynthesis to reveal an assembly of coupled individual oscillators
indicating a high level of synchronization between the cells and tissue as a whole
(70). In studies with yeast Richard et al. (71) investigated the oscillation of gly-
colytic metabolites. Based on experimental data and kinetic modeling this system
was shown to explain intracellular as well as intercellular network connectivity
resulting in the synchronization of billions of yeast cells (9, 17, 18, 109). Here, the
postulate of communicators and “mere slaves” was stated defining key substances
such as ATP/ADP and NAD/NADH to mediate network fluctuation/oscillation.

Simplifying that plant tissues can be understood as coupled cellular units with
defined pathway structures, we investigated exemplarily the actions of a small
theoretical network of yeast glycolysis (89) by introducing a fluctuating glucose
input. Using numerical solutions of the rate equations and simulating snapshot
sampling as described above, we found metabolite scatter plots resulting from
propagating metabolite-level fluctuation through a complex network (see Figure 3).
According to Vance et al. (102), the fluctuation is attenuated a few steps into the
reaction network. Most surprisingly, we observed strong correlations (rxy = 0.9)
between intermediates that are linearly connected but far from each other (i.e.,
separated by a high number of reactions) (see Figure 3B). This might be understood
as the connectivity of the intermediates of a network such as G6P and F6P and the
efflux of compounds such as acetaldehyde (ACA) and the connectivity of these
compounds via cofactors such as ATP/ADP and NADH/NAD (Figure 3A) (also
see System Modeling and Stochastic Noise, above).

The mean of the steady-state level in this model is unchanged. This is a pre-
requisite for the simple assumption that a snapshot correlation network includes
information regarding the underlying regulated biochemical network.

Based on the proposed model of intrinsic noise or fluctuation in a biochemical
network, a single gene perturbation inevitably leads to a changed correlation ma-
trix of the metabolic snapshot network (for instance, Pearson’s correlation). This
change enables the comparison of a control and a treated plant on the basis of their
metabolite snapshot correlation matrices and, consequently, the resulting network
topology (1, 19, 47, 54, 106).

However, interpretation of these metabolic networks is most precarious owing
to the paucity of knowledge about the underlying gene and protein expression net-
work. For this reason, we propose an integrated approach to investigate a biological
system as a whole.

INTEGRATIVE PROFILING OF BIOLOGICAL SAMPLES

Besides a qualitative description of proteins expressed in an organism, the need
for quantitation of protein abundance in response to specific perturbations is a
prerequisite in systems biology. Protein quantification is especially important be-
cause correlations between RNA levels and protein levels are remarkably low in
all studies published to date (29, 44, 82).
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Figure 3 (A) Metabolite scatter plots as a result of in silico snapshot sampling in a
theoretical pathway network corresponding to the model by Hynne et al. (43). Fluctu-
ation of glucose input is propagated through the network of yeast glycolysis. The rate
equations are adapted from Reference 43, and samples are collected independently for
analysis of metabolite-metabolite correlations. It is interesting to note that a high cor-
relation of G6P, F6P, and ACA is observed, whereas almost no correlation is found for
phosphoenolpyruvate (PEP), which is a precursor of ACA (for details see text). (B) The
complete Pearson matrix of metabolite correlations is used to construct a snapshot
metabolite correlation network. Metabolites are placed according to their correlation
coefficient: The higher the coefficient is, the closer the metabolites are, e.g., F6P, G6P,
and ACA (for details see text).

681
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In that respect, posttranslational regulation is considered a major regulatory
event in metabolism, but techniques to identify and quantify posttranslational mod-
ification of proteins on a systems level are still at a preliminary state of development
(22, 59, 60, 63, 64, 107).

The idea of correlating transcript RNA and protein levels can be extended to
the metabolite level: Which increase or decrease of metabolite levels is connected
to which protein expression level and/or posttranslational modification via linear
or nonlinear correlation? Answers to questions such as these point the way to
hypothetical or known biochemical relationships able to explain flux alterations
or increasing metabolite pool size.

Owing to the arguments above and our technical inability to either resolve
metabolic compartments accurately or unambiguously dissect the underlying net-
work of reactions, we propose an integrative extraction for metabolites, proteins,
and mRNA from one biological sample to reveal correlations inside of complex
fluctuating biochemical networks. Figure 4 shows the principle of this idea.

We used ESI-LC/LC/MS/MS to analyze the protein fraction (53, 105). We iden-
tified a set of∼300 proteins online via a data-dependent run on an ion trap MS
and a subsequent database search (W. Weckwerth, unpublished data).

For instance, using this method, we analyzed two differentArabidopsiseco-
types, C24 and Col2, with respect to their metabolite and protein content and

Figure 4 Extraction procedure enabling the cross-correlation analysis of metabolites, pro-
teins, and mRNA from a single sample. Owing to high variances among component levels in
samples, dynamic networks can be constructed from a high number of samples (replicates)
and analyzed with respect to control sample networks (for details see text).
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Figure 5 Cross-correlation of metabolites and proteins within leaf tissue. In principle
component analysis, twoArabidopsisecotypes, col2 and C24 (each with a set of 10
snapshot samples), can be clearly discriminated.

defined the variance within one set of samples. Owing to a well-defined technical
error (∼10%), we assigned the values indicating the variation between protein
levels (∼39 %) and metabolite levels (∼ 42%) in approximation to biological vari-
ances. Furthermore, these variances were specific for the corresponding genotype
and, using principle component analysis, led to clear discrimination between the
two ecotypes (Figure 5) (W. Weckwerth, unpublished data).

This principle is not restricted to metabolites, proteins, or mRNA. The system-
atic description of a biological system also requires the quantitative information of
growth stage, environmental parameters, and/or diurnal and circadian rhythmicity.
Only when these combined data of a plant system are known with respect to linear
or nonlinear co-regulations can we assign functions to genes at a systems level.

CONCLUSION

In this review, two important aspects of comprehensive nontargeted profiling tech-
nologies are described: (a) the identification of previoulsy unknown components
and the investigation of their relation to biochemical processes and (b) the quanti-
tation of components. Using this process, we can expect to discover real dynamics
of a biological system in response to specific perturbations. Metabolomics is best
suited for this systems biology approach owing to its comprehensive information
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content concerning dynamic metabolic networks. However, the discrepancy of de-
tected compounds compared with the number of proposed compound structures in
plants is disillusioning. High-resolution MS (40) and high-resolution chromatog-
raphy must be combined to increase the number of detectable metabolites in an
unbiased way. A further drawback of metabolomic technology yet to be overcome
is the vast number of unknown compound structures. Combinations of NMR and
MS can be used for structure elucidation to slowly remedy this shortcoming.

Despite great progress at these levels, it remains to be seen if models can be
extended to anything more than approximate predictions of a narrow range of
metabolism (50). Rather pessimistic is the finding that small changes in protein
expression or flux alteration may affect all correlations in a metabolic network.
Because we do not yet know the exact rate equations, in vivo constants, and con-
nectivity, we are not able to calculate these system changes (27). Nevertheless,
collecting quantitative data at the metabolite, protein, and mRNA level and corre-
lating this with quantitative descriptions of developmental stage and environment
will give a phenomenological description of the whole system. Time-dependent
snapshot sampling will reveal directed correlations of metabolic processes.

Using empirical observations, we try to establish models able to describe and
predict the behavior of systems. Whether we model the reality or only a shadow
of it (67), we form a better understanding of the intricate biochemical processes
and their scattering in living systems.
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