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ABSTRACT

Motivation: Data from microarray experiments are usually in
the form of large matrices of expression levels of genes under
different experimental conditions. Owing to various reasons,
there are frequently missing values. Estimating these missing
values is important because they affect downstream analysis,
such as clustering, classification and network design. Several
methods of missing-value estimation are in use. The problem
has two parts: (1) selection of genes for estimation and (2)
design of an estimation rule.

Results: We propose Bayesian variable selection to obtain
genes to be used for estimation, and employ both linear and
nonlinear regression for the estimation rule itself. Fast imple-
mentation issues for these methods are discussed, including
the use of QR decomposition for parameter estimation. The
proposed methods are tested on data sets arising from heredit-
ary breast cancer and small round blue-cell tumors. The results
compare very favorably with currently used methods based on
the normalized root-mean-square error.

Availability: The appendix is available from http://gspsnap.
tamu.edu/gspweb/zxb/missing_zxb/ (user: gspweb; passwd:
gsplab).

Contact: edward@ee.tamu.edu

1 INTRODUCTION

Data from microarray experiments are usually in the form of
large matrices of gene expression levelsunder different exper-
imental conditions, and frequently there are missing values.
The missing-value phenomenon occurs for various reasons,
e.g. the Drosophila genes (Arbeitman et al., 2002), including
i nsufficient resolution, image corruption or simply dueto dust
or scratcheson the slide. Missing datamay also occur system-
atically asaresult of the robotic methods used to create them.
Data may be missing on account of an image quality metric
meant to delete low-quality spots (Chen et al., 2002).

*To whom correspondence should be addressed.

One solution to the missing data problem is to repeat the
experiment (Butte et al., 2001; Troyanskaya et al., 2001).
This strategy can be expensive, but has been used to validate
microarray analysis algorithms. Missing log-two or natural-
log datamay bereplaced by zeros (Alizadeh et al., 2001) or by
an average expression over the samples (‘row average'). Two
methods for missing-value estimation have been proposed
by Troyanskaya et al. (2001): a singular value decomposi-
tion method (SV Dimpute) and aweighted K -nearest neighbor
method (KNNimpute). The KNNimpute method is proposed
as a robust and sensitive method for missing-value estima-
tion (Troyanskayaet al., 2001). It uses the KNN procedure to
select genes, and uses weighted linear combinations to pre-
dict missing values. However, the genes selected by KNN are
not necessarily among the best choicesfor linear prediction of
the target gene because the gene selection and missing-value
estimation are treated as two independent procedures, namely
using two different models. With this as our motivation, we
approach missing-val ue estimation from the viewpoint of lin-
ear or nonlinear regression with Bayesian variable selection
(see Lee et al., 2003; Smith and Kohn, 1997, for Bayesian
variable selection). Whereas variable selection is often used
for classseparability, hereweneedtofind genesthat arehighly
correlated with each other, whichisakintothecluster analysis
problem.

In this study, we formulate the gene selection problem
as a linear or nonlinear regression with Bayesian variable
selection, and devise a Gibbs sampler to solve it. The pro-
posed linear and nonlinear regression techniqueswith variable
selection are computationally intensive. To mitigate the com-
plexity, we develop some procedures for fast implementation
of some key steps of the algorithms. We test our proposed
methods on breast cancer data (Hedenfalk et al., 2001) and
small round blue-cell tumor data (Khan et al., 2001). The
results show that the linear and nonlinear regression with
Bayesian gene selection offers substantialy better estima-
tion accuracy than the KNNimpute method in terms of the
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normalized root-mean-square (RMS) error for artificialy
introduced missing values. This is significant because, as
shown by Troyanskaya et al. (2001), KNNimpute com-
pares favorably with filling with zeros and row average, and
performs similar to SVDimpute.

Thepaperisorganized asfollows. In Section 2, wedevelopa
mi ssing-gene prediction algorithm based on linear regression
with Bayesian gene selection. In Section 3, we discuss some
implementation issues including some fast agorithms for
Bayesian gene selection. In Section 4, we develop a missing-
gene prediction algorithm based on nonlinear regression with
Bayesian gene selection. Section 5 provides experimental
analysisand comparisons. Section 6 containsthe conclusions.

2 LINEAR REGRESSIONWITH BAYESIAN
GENE SELECTION

2.1 Problem statement

Assumegene y hasonemissing valuein the (m + 1)-th experi-
ment. Missing-val ueestimation should find other geneshighly
correlated with y, based on the results from experiments 1
to m, that have values present in the (m + 1)-th experiment,
and use them to predict the (m + 1)-th value of y.
Assumetherearen + 1 genes, say z1, - - - Zn, Zn+1. Define
a complete data set Z = (7)) m+)x(n+1), 1.6 (m + 1)
experimental resultsfor (n + 1) genes, which is denoted by

[Genel Gene2 Genen Genen + 1]
711 71,2 e 1 Z1n+1
22,1 22,2 ce i2,n i2,n+1
Z = . . . .
Zm,1 im,2 ce Zm,n Zm,n+1
| im+11  Zm+12 Zm+1n Im+1n+1 |
1)
For notational convenience, let Z = [X,y] where

X denotes the first n column of Z and y denotes the last
column of Z. Without loss of generality, we assume the tar-
get gene with a missing value is the (n + 1)-th gene. Let
¥y = [y1,...,Ym yms1]" denote its expression profiles with
Ym+1 8 the missing value. The other n genes in the other
m experiments X are then used to find the similar genesto the
(n + 1)-th gene y. The data X from the first m experiments
are used to select genes among the n genesthat are highly cor-
related with the target gene y. Thefollowing linear regression
model isused to relate the gene expression level s of the target
gene and other genes:

vi=XiB+e, i=1...,m, 2
where X; is the i-th row of the matrix X,8 =
(B1, B2, ..., Bn) " is the vector of regression parameters and

thei.i.d. noise¢; followse; ~ N (0,02). Notethat g is fixed
over all m experiments. Sincetypically n islarge, to make an

accurate prediction, we must find a set of genesthat ishighly
correlated with y. The (m + 1)-th experiment of the most
relevant genesin X are then used to predict the value of the
(n + 1)-th genein the (m + 1)-th experiment, i.e. y,;+1.

2.2 Bayesian gene selection

Definey asthen x 1 vector of indicator variables y; such that
y; = 0if g; = 0 (the variable is not selected) and y; = 1if
B; # 0 (the variable is selected). Given y, let By consist of
al non-zero elements of g and let Xy be the columns of X
corresponding to those of p that are equal to 1.

To treat gene selection under the Bayesian framework,
we make the following assumptions on the priors of the
parametersin (2). Firstly, given y and o2, the prior for By is

By ~ N[O, coZ(XI,Xy)fl],

where we empirically set ¢ = 100 (Albert et al., 1993; Smith
and Kohn, 1997; Lee et al., 2003). Given y, the prior for
o2 isassumed to be a conjugate inverse-Gamma distribution,
p(o?ly) o« IG (vo/2,v0/2). When vg = 0 and vy = O,
we obtain Jeffrey’s uninformative prior, i.e. p(c?) « 1/02.
Bayesian gene selection using a binomial probit regression
model is discussed by Lee et al. (2003), where it is assumed
that o2 = 1. Moreover, {y; y1_, are assumed to be independ-
ent with p(y; = 1) = m;,j = 1,...,n, where rr; isthe
probability to select gene j. Obvioudly, if we want to select
10 genes from dl n genes, then 7; may be set as 10/n. In
this paper we empirically set 7; = 15/n for al genes, based
on the total sample number m = 22. If 7; is chosen to take
alarger value, then we found that often times (X}Xy)‘l is
singular.

Here, weintroducethe Bayesian variable selectionprinciple
(Smith and Kohn, 1997). A Gibbs sampler is employed to
estimate the parameters. Denote

A c _
S =¥y = Y Xy (X Xy) Xy, (3

where y = [y1,y2,...,yml'. Definen, = 37_, ;. Inthe
Appendix ontheassociated web site (al so see Smith and Kohn,
1997). We show that

pOIY) f { f p(31By. 02 p(B,l02dp(By) | p(0?) do?

14

o (L+ )28y, y)~™"/2. (4)
Then the posterior distribution of y is

pyly) x p(yl¥)p(»)

n
o (L+c) 28y, )P [ [ = A —mpt .
j=1

()

2303



X.Zhou et al.

In the Appendix, we show that the posterior distributions of

o2 and B are given respectively by
S 1
p(02|y,Xy)och (%’(YTJ))>' (6)
P(Bly. Xy,0%) < N(Vy Xy y,0°Vy), 7
where
a ¢ T -1
Vy = XX (8)

Finally, the Gibbs sampling algorithm for jointly estimating
y,B,o%isasfollows:

1. Draw y from p(y|y) in (5). In fact, we sample each y;
independently from

~(1y/2) 1
pily, vizj) < (L4+c) Y/ “ exp —ES()',J’)

xn;/’(l—nj)l_yf, j=1...,n.

(9)

2. Draw o2 from p(a2|y, y) in (6).
3. Draw B from p(Bly,y) in (7).

In this study, the initial parameters are randomly set.
T = 35000 iterations are implemented with the first 5000
as the burn-in period to obtain the Monte Carlo samples
{y®,02" B® t =1,..., T}. Wecount the number of times
that each gene appearsin {y®,r = 5001, ..., T}. The genes
with the highest appearance frequencies play the strongest
role in predicting the target gene.

2.3 Missing-value prediction using the
strongest genes

Now assume the genes corresponding to the non-zero ele-
mentsof y arethe strongest obtained by the Bayesian variable
selectionagorithm. Let X, 1, denotethe (m 4 1)-th expres-
sion profiles of these strongest genes. There arethree methods
to estimate B,, and predict the missing value y,,+1. Oneisto
just use least-squares, i.e. B, = (X X,) "' X y. Then y,,11
isestimated by 3,41 = Xm+1B, - A second isto adopt model
averaging in the gene selection step to get 8. However, since
during gene sel ection thenumber of genessel ected variesfrom
one Gibbs iteration to another, averaging the values of g cor-
responding to different models is problematic. We adopt the
following method. For fixed y, we again use a Gibbs sampler
to estimatethelinear regression coefficients B asfollows: first

draw B, according to (7), then draw o2 according to (6) and
iterate the two steps. 7 = 1500 iterations are implemented
with the first 500 as the burn-in to obtain the Monte Carlo
samples {8,652t = 501,...,T}. The missing value y,1
is estimated by

T
. 1 = (1)
Ym+1l = = Z Xm+1,yﬂy .
=501

Note that if no prior is applied to 8, we can use the least-
sguares method. We next definethenormalized RM Serror for
the predictor. Assume the missing values are y;; and the cor-
responding estimates are y;;,i = 1,...,N;,j = 1,...,N;.
Then the normalized RMSis

1 NN
Ni - N; YD Gi =it

i=1j=1

RMS =

3 FAST IMPLEMENTATION ISSUES

The computational complexity of the Bayesian variable selec-
tion algorithm is high. For example, if there are 3000 gene
variables, then for each iteration we have to compute the
inverse (XI,X),)*l 3000 times because we need to sample y;
for each gene according to (9). Our concerns about computa:
tional complexity are mitigated by the fact that missing-value
estimation need only be done oncefor aset of experimentsand
could beimplemented on a supercomputer; nevertheless, it is
possible to apply some procedures to speed up the computa-
tionwhilestill achieving good results. Infact, al experimental
results discussed in this paper have been obtained using the
computational speed-ups discussed in this section.

3.1 Pre-sdection

The pre-selection method selects genes with expression pro-
filessimilar to the target gene. If we consider gene y that has
onemissing valuein experiment m + 1, then the pre-selection
procedure finds u other genes, which have values in experi-
ment m + 1, with expression most similar to y in experiments
1 to m in the Euclidean distance sense. In this paper, we set
u = 200.

3.2 Computation of p(y;ly,vix;) in (9)

Because y; only takes O or 1, we can take a close look
a p(y; = ly,i # j)and p(y; = Oly,i # j). Let
)’1 = (Vla~--,1/j—1, V; = 1; )’j+1;-~-a)’n) and }’0 =
- Vi—1,vi = 0,%j41,...,¥a). After straightforward
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computation of (9), we have

1
Py =1y, vizj) 1rh (20)
with
m/2
1—m; S(yl,y)>
h = / ( 1+-ec. 11
i \S¥%y) (11

If y = 9 before yj is generated, that means we have
obtained S(y¥°, y), then we only need to compute S(y?, y),
and vice versa.

3.3 Fast computation of S(y,y) in (3)

The key is to compute S(y, y) fast when a gene variable is
added or removed from y. Denote

Ey.y) =y y—y Xy(X;Xy) X}y, (12)

Thiscan becomputed using thefast QR decomposition, QR-
delete and QR-insert algorithms when a variable is added or
removed (Seber, 1984, Ch. 10.1.1b). Now wewant to estimate
S(y,y) in (3). Comparing (12) and (3), one can obtain the
following equation:

Y Xy (X)Xy) X,y =[S, y) — E(r. p)lc + D).
(13)
Substituting (13) to (3), after straightforward computation,
S(y,y) isgiven by

Ty +cE(®y,
S(y.y) = %C(”) (14)

Thus after computing E(y,y) using QR decomposition,
QR-delete or QR-insert agorithms, we then can obtain
S(y,y). We summarize our fast Bayesian variable selection
algorithm as follows.

ALGORITHM 1: Fast Bayesian variable selection algorithm

e Pre-select genes based on the K-nearest neighbor
distance;
e Initidization: Randomly set initial parameters y©@,
2(0) (0)
o, B
e Forr=1,...,35000
— Drawy®.Forj=1,...,n
% Compute S(y ¥, y) using QR-delete or QR-insert;

x Compute p(y; = 1]y, yi(;)j) according to (11);
(1)

* Draw J/,-(” from p(y; =11y, v, 2))-

— Draw ¢2" according to (6).
— Draw B according to (7).
o Endfor

 Count the frequency of each gene appeared in y )t =
5001, . . ., 35000.

At each iteration, the number of selected genes depends
on the sampling outcome of ;. Although we set r; = 15/n
empirically, we cannot avoid the case that the number of selec-
ted genesisbigger than the sample size m. If thishappens, we
need to remove this case because (X}, Xy ) ~* does not exist.
The above agorithm is for single missing-value estimation.
When there are multiple missing values, the algorithm should
be applied to estimate each missing value.

4 NONLINEAR REGRESSIONWITH
BAYESIAN GENE SELECTION

In Zhou et al. (2003), we have found some genes show a
strong nonlinear property, so here we a so discuss the nonlin-
ear regression missing-value estimation. The problem is the
same as stated in Section 2. We denote y = [y1,...,yml",
X: =[xi1,...,xiplfori=1,...,m,andx = [x,...,x,]".
We use a nonlinear regression model composed of a linear
term plus a nonlinear term given by

v=Y aixi+y Bgixi,...x)+e  (15)
i=1 k=1

with

Gr(x1, ..., x0) = expl—Aglx — e}, k=1,...k

(16)

where ||| is the Euclidean norm; « = [o1,...,0,]", B =
[B1,...,Bc]" are the vectors of regression parameters; the
additive noise term e follows a normal distribution, i.e. e ~
N(©,0%); {n i1 arethecentersof the« clustersobtained by
using fuzzy-c means clustering; and the parameters {Ax};_;
are chosen empirically. Here, wesetk = 2and Ay = 2, k =
1,...,«,and have

y=Zia+Z8 +e, 7

wheree = [e1,¢2,...,en1",Z1 = [X1,..., X! 17, and

¢1(X1) b (X1)
Zy = ) )

¢1(Xm) ¢K (Xm)
Note that (17) can be further written as

y=Xé&+e, (18)
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where
X = (24,2,
X1 X2 -0 X1 $1(X1) ¢ (X1)
| vz e X 91(X2) ¢ (X2)
Xml Xm2 Xmn (pl(Xm) ¢K(Xm)
(19)

>

anda = [«",B"]".

Now we apply the same gene selection agorithm and
mi ssing-val ue estimation algorithm as discussed in Sections 2
and 3to (18). Although the problemisnonlinear intermsof X
inthisnonlinear case, itislinearintermsof ¢ (X), sothesame
formulacan be used. Notethat we can estimate the parameters
Uik =1,...,kin (16) using an MCMC technique similar
to the approach in (Zhou et al., 2003) if we want to obtain
better estimation performance at the expense of a significant
increase in computational complexity.

5 EXPERIMENTAL RESULTS

We consider hereditary breast cancer data (Hedenfak et al.,
2001). Application to a small, round blue-cell tumor (Khan
et al., 2001) data set is given on the associated web site.
Considering the high computational complexity of the new
methods, we assess the performance of the KNNimpute, lin-
ear regression and nonlinear regression methods from three
aspects: number of selected genes used for different methods
(from 1to 18 genesfor thebreast cancer data; and 1to 20 genes
for SRBCT data); comparison of the three methods based on
estimation performance on different amounts of missing data,
from 1 to 5%; distribution of errors for the three methods for
fixed K = 7 at 1% of data missing.

In Hedenfalk et al. (2001), cDNA microarrayswere used in
conjunction with classification algorithms to show the feasib-
ility of using differencesin global gene expression profilesto
separate BRCA1 and BRCA2 mutation-positive breast can-
cers. The hereditary breast cancer data can be downloaded
from the original author’s web page (Hedenfalk et al., 2001).
Twenty-two breast tumor samples from 21 breast cancer
patients were examined: seven BRCA1, eight BRCA2 and
seven sporadic. 3226 geneswere used for each tumor sample.
We test algorithm performance using the natural log of the
breast cancer ratio data over different values of K. Some per-
centage of data is randomly deleted and then estimated by
each missing-value algorithm. The results are the average of
50 experiments using cross-validation.

Figure 1 shows the normalized RM S errors when using the
linear and nonlinear regression methods, and the KNNimpute
procedure over 1 and 5% data missing. The nonlinear regres-
sion method performs best over the range of K, and the linear
regression method preformsslightly poorer. Both significantly

—+— KNNimput: 1% missing

034 -0~ KNNimput: 5% missing

- linear method: 1% missing
—%— linear method: 5% missing
0.32 —%— nonlinear method: 1% missing
-0 nonlinear method: 5% missing

0.3,

Normalized RMS error

o o o o

Y N N N

N I =) @
T T T T

o
N

o
o
©

0.16 i i i o i i i i
2 4 6 8 10 12 14 16 18

Number of genes

Fig. 1. Effect of the number selected genes used for different
methods in Experiment 1.

outperform the KNNimpute method. The performances of the
linear regression and nonlinear regression predictors degrade
more quickly when the number of selected genes exceeds 14.
This degradation results from severa reasons. (X ;X ,,)‘1
gradually becoming singular, greater difficulty to estimatethe
model parameterswhen gene variablesareincreased; and pre-
selection of 200 genes to speed-up the regression algorithms
(which can be mitigated by employing less speed-up). Infact,
degradationfor increasing K isnotimportant becauseall three
algorithms achieve close to their best performancesin alarge
range of K, and in practice we would use a K from that
range, say K = 7, to obtain good performance while keeping
K small for computational purposes and centered within the
range of good performance for robustness.

Further illustration of the improved accuracy of the lin-
ear and nonlinear regression methods is given in Figure 2,
which showsthe histogramsfor the distribution of normalized
RMS errors for the three methods. The two new agorithms
(as well as KNNimpute) are robust relative to increasing the
percentage of missing values, This is shown in Figure 3
with the percentage of missing values between 1 and 5% and
K=T1.

6 CONCLUSION

This paper proposes two new methods for missing-value
estimation: linear and nonlinear regression with Bayesian
gene selection. We have analyzed their performance on data
from hereditary breast cancer and from small round blue-
cell tumors. The results show that the linear and nonlinear
approaches with Bayesian gene selection compare favorably
with the KNNimpute method in terms of the normalized RMS
error. Thiscomparison has added significance since, asshown
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KNNimpute:1% entries missing
300

Linear regression: 1% entries missing

250 Nonlinear regression: 1% entries missing
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Count of errors in range
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(b)
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100

Count of errors in range

50
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0.7 0.8 0.9 1 0

0.1

0.2 03 0.4 05 0.6 0.7

Normalized RMS error range

(c)

0.5 0.6 0.8 0.9 1

Fig. 2. Error histograms of different estimation methods and 1% data missing rate: (a) the KNNimpute, (b) the linear regression and (c) the

nonlinear regression.

B genes selected for missing values estimation

T . — .
O~ KNNimpute
" #= linear regression
& nonlingar regression
0.3
o2s |
e m e mm = === ==
026 — — = —— "~ -f-=-— =" W i
2
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EENS |
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Z022f |
g —
5 - T
02—
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L i L ; x ;
1 1.5 2 25 3 a5 a a5 s

Percent of entries missing

Fig. 3. Performance comparison of the KNNimpute, the linear and
nonlinear regression methods under different different data missing
percentages in Experiment 1.

by Troyanskaya et al. (2001), KNNimpute compares favor-
ably with filling with zeros and row average, as well as
SVDimpute.
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