
BIOINFORMATICS Vol. 19 no. 17 2003, pages 2302–2307
DOI: 10.1093/bioinformatics/btg323

Missing-value estimation using linear and
non-linear regression with Bayesian gene
selection

Xiaobo Zhou1, Xiaodong Wang2 and Edward R. Dougherty1,3,∗

1Department of Electrical Engineering, Texas A&M University, College Station,
TX 77843, USA, 2Department of Electrical Engineering, Columbia University, New York,
NY 10027, USA and 3Department of Pathology, University of Texas M.D. Anderson
Cancer Center, Houston, TX 77030, USA

Received on January 17, 2003; revised on February 23, 2003; accepted on June 11, 2003

ABSTRACT
Motivation: Data from microarray experiments are usually in
the form of large matrices of expression levels of genes under
different experimental conditions. Owing to various reasons,
there are frequently missing values. Estimating these missing
values is important because they affect downstream analysis,
such as clustering, classification and network design. Several
methods of missing-value estimation are in use. The problem
has two parts: (1) selection of genes for estimation and (2)
design of an estimation rule.
Results: We propose Bayesian variable selection to obtain
genes to be used for estimation, and employ both linear and
nonlinear regression for the estimation rule itself. Fast imple-
mentation issues for these methods are discussed, including
the use of QR decomposition for parameter estimation. The
proposed methods are tested on data sets arising from heredit-
ary breast cancer and small round blue-cell tumors.The results
compare very favorably with currently used methods based on
the normalized root-mean-square error.
Availability: The appendix is available from http://gspsnap.
tamu.edu/gspweb/zxb/missing_zxb/ (user: gspweb; passwd:
gsplab).
Contact: edward@ee.tamu.edu

1 INTRODUCTION
Data from microarray experiments are usually in the form of
large matrices of gene expression levels under different exper-
imental conditions, and frequently there are missing values.
The missing-value phenomenon occurs for various reasons,
e.g. the Drosophila genes (Arbeitman et al., 2002), including
insufficient resolution, image corruption or simply due to dust
or scratches on the slide. Missing data may also occur system-
atically as a result of the robotic methods used to create them.
Data may be missing on account of an image quality metric
meant to delete low-quality spots (Chen et al., 2002).

∗To whom correspondence should be addressed.

One solution to the missing data problem is to repeat the
experiment (Butte et al., 2001; Troyanskaya et al., 2001).
This strategy can be expensive, but has been used to validate
microarray analysis algorithms. Missing log-two or natural-
log data may be replaced by zeros (Alizadeh et al., 2001) or by
an average expression over the samples (‘row average’). Two
methods for missing-value estimation have been proposed
by Troyanskaya et al. (2001): a singular value decomposi-
tion method (SVDimpute) and a weighted K-nearest neighbor
method (KNNimpute). The KNNimpute method is proposed
as a robust and sensitive method for missing-value estima-
tion (Troyanskaya et al., 2001). It uses the KNN procedure to
select genes, and uses weighted linear combinations to pre-
dict missing values. However, the genes selected by KNN are
not necessarily among the best choices for linear prediction of
the target gene because the gene selection and missing-value
estimation are treated as two independent procedures, namely
using two different models. With this as our motivation, we
approach missing-value estimation from the viewpoint of lin-
ear or nonlinear regression with Bayesian variable selection
(see Lee et al., 2003; Smith and Kohn, 1997, for Bayesian
variable selection). Whereas variable selection is often used
for class separability, here we need to find genes that are highly
correlated with each other, which is akin to the cluster analysis
problem.

In this study, we formulate the gene selection problem
as a linear or nonlinear regression with Bayesian variable
selection, and devise a Gibbs sampler to solve it. The pro-
posed linear and nonlinear regression techniques with variable
selection are computationally intensive. To mitigate the com-
plexity, we develop some procedures for fast implementation
of some key steps of the algorithms. We test our proposed
methods on breast cancer data (Hedenfalk et al., 2001) and
small round blue-cell tumor data (Khan et al., 2001). The
results show that the linear and nonlinear regression with
Bayesian gene selection offers substantially better estima-
tion accuracy than the KNNimpute method in terms of the
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normalized root-mean-square (RMS) error for artificially
introduced missing values. This is significant because, as
shown by Troyanskaya et al. (2001), KNNimpute com-
pares favorably with filling with zeros and row average, and
performs similar to SVDimpute.

The paper is organized as follows. In Section 2, we develop a
missing-gene prediction algorithm based on linear regression
with Bayesian gene selection. In Section 3, we discuss some
implementation issues including some fast algorithms for
Bayesian gene selection. In Section 4, we develop a missing-
gene prediction algorithm based on nonlinear regression with
Bayesian gene selection. Section 5 provides experimental
analysis and comparisons. Section 6 contains the conclusions.

2 LINEAR REGRESSION WITH BAYESIAN
GENE SELECTION

2.1 Problem statement
Assume gene y has one missing value in the (m+1)-th experi-
ment. Missing-value estimation should find other genes highly
correlated with y, based on the results from experiments 1
to m, that have values present in the (m + 1)-th experiment,
and use them to predict the (m + 1)-th value of y.

Assume there are n + 1 genes, say z1, . . . , zn, zn+1. Define
a complete data set Z = (zij )(m+1)×(n+1), i.e. (m + 1)

experimental results for (n + 1) genes, which is denoted by

Z =




Gene 1 Gene 2 · · · Gene n Gene n + 1
z1,1 z1,2 · · · z1,n z1,n+1

z2,1 z2,2 · · · z2,n z2,n+1
...

...
. . .

...
...

zm,1 zm,2 · · · zm,n zm,n+1

zm+1,1 zm+1,2 · · · zm+1,n zm+1,n+1




.

(1)

For notational convenience, let Z = [X, y] where
X denotes the first n column of Z and y denotes the last
column of Z. Without loss of generality, we assume the tar-
get gene with a missing value is the (n + 1)-th gene. Let
y = [y1, . . . , ym, ym+1]T denote its expression profiles with
ym+1 as the missing value. The other n genes in the other
m experiments X are then used to find the similar genes to the
(n + 1)-th gene y. The data X from the first m experiments
are used to select genes among the n genes that are highly cor-
related with the target gene y. The following linear regression
model is used to relate the gene expression levels of the target
gene and other genes:

yi = Xiβ + ei , i = 1, . . . , m, (2)

where Xi is the i-th row of the matrix X, β =
(β1, β2, . . . , βn)

T is the vector of regression parameters and
the i.i.d. noise ei follows ei ∼ N (0, σ 2). Note that β is fixed
over all m experiments. Since typically n is large, to make an

accurate prediction, we must find a set of genes that is highly
correlated with y. The (m + 1)-th experiment of the most
relevant genes in X are then used to predict the value of the
(n + 1)-th gene in the (m + 1)-th experiment, i.e. ym+1.

2.2 Bayesian gene selection
Define γ as the n×1 vector of indicator variables γj such that
γj = 0 if βj = 0 (the variable is not selected) and γj = 1 if
βj �= 0 (the variable is selected). Given γ , let βγ consist of
all non-zero elements of β and let Xγ be the columns of X

corresponding to those of γ that are equal to 1.
To treat gene selection under the Bayesian framework,

we make the following assumptions on the priors of the
parameters in (2). Firstly, given γ and σ 2, the prior for βγ is

βγ ∼ N
[
0, cσ 2(XT

γ Xγ )−1
]
,

where we empirically set c = 100 (Albert et al., 1993; Smith
and Kohn, 1997; Lee et al., 2003). Given γ , the prior for
σ 2 is assumed to be a conjugate inverse-Gamma distribution,
p(σ 2|γ ) ∝ IG (v0/2, ν0/2). When v0 = 0 and ν0 = 0,
we obtain Jeffrey’s uninformative prior, i.e. p(σ 2) ∝ 1/σ 2.
Bayesian gene selection using a binomial probit regression
model is discussed by Lee et al. (2003), where it is assumed
that σ 2 = 1. Moreover, {γj }nj=1 are assumed to be independ-
ent with p(γj = 1) = πj , j = 1, . . . , n, where πj is the
probability to select gene j . Obviously, if we want to select
10 genes from all n genes, then πj may be set as 10/n. In
this paper we empirically set πj = 15/n for all genes, based
on the total sample number m = 22. If πj is chosen to take
a larger value, then we found that often times (XT

γ Xγ )−1 is
singular.

Here, we introduce the Bayesian variable selection principle
(Smith and Kohn, 1997). A Gibbs sampler is employed to
estimate the parameters. Denote

S(γ , y)
�= yTy − c

c + 1
yTXγ (XT

γ Xγ )−1XT
γ y, (3)

where y = [y1, y2, . . . , ym]T. Define nγ = ∑n
i=1 γi . In the

Appendix on the associated web site (also see Smith and Kohn,
1997). We show that

p(y|γ ) ∝
∫

σ

{∫
βγ

p(y|βγ , σ 2)p(βγ |σ 2)dp(βγ )

}
p(σ 2) dσ 2

∝ (1 + c)−nγ /2S(γ , y)−m/2. (4)

Then the posterior distribution of γ is

p(γ |y) ∝ p(y|γ )p(γ )

∝ (1 + c)−nγ /2S(γ , y)−m/2
n∏

j=1

π
γj

j (1 − πj )
1−γj .

(5)
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In the Appendix, we show that the posterior distributions of
σ 2 and β are given respectively by

p(σ 2|y, Xγ ) ∝ IG
(

m

2
,
S(γ , y)

2

)
, (6)

p(β|y, Xγ , σ 2) ∝ N (V γ XT
γ y, σ 2V γ ), (7)

where

V γ
�= c

1 + c
(XT

γ Xγ )−1. (8)

Finally, the Gibbs sampling algorithm for jointly estimating
γ , β, σ 2 is as follows:

1. Draw γ from p(γ |y) in (5). In fact, we sample each γj

independently from

p(γj |y, γi �=j ) ∝ (1 + c)−(nγ /2) exp

[
−1

2
S(γ , y)

]

× π
γj

j (1 − πj )
1−γj , j = 1, . . . , n.

(9)

2. Draw σ 2 from p(σ 2|y, γ ) in (6).

3. Draw β from p(β|γ , y) in (7).

In this study, the initial parameters are randomly set.
T = 35 000 iterations are implemented with the first 5000
as the burn-in period to obtain the Monte Carlo samples
{γ (t), σ 2(t)

, β(t), t = 1, . . . , T }. We count the number of times
that each gene appears in {γ (t), t = 5001, . . . , T }. The genes
with the highest appearance frequencies play the strongest
role in predicting the target gene.

2.3 Missing-value prediction using the
strongest genes

Now assume the genes corresponding to the non-zero ele-
ments of γ are the strongest obtained by the Bayesian variable
selection algorithm. Let Xm+1,γ denote the (m+1)-th expres-
sion profiles of these strongest genes. There are three methods
to estimate βγ and predict the missing value ym+1. One is to
just use least-squares, i.e. βγ = (XT

γ Xγ )−1XT
γ y. Then ym+1

is estimated by ŷm+1 = Xm+1βγ . A second is to adopt model
averaging in the gene selection step to get β. However, since
during gene selection the number of genes selected varies from
one Gibbs iteration to another, averaging the values of β cor-
responding to different models is problematic. We adopt the
following method. For fixed γ , we again use a Gibbs sampler
to estimate the linear regression coefficients β as follows: first

draw βγ according to (7), then draw σ 2 according to (6) and

iterate the two steps. T̃ = 1500 iterations are implemented
with the first 500 as the burn-in to obtain the Monte Carlo
samples {β̃(t)

, σ̃ 2(t)

, t = 501, . . . , T̃ }. The missing value ym+1

is estimated by

ŷm+1 = 1

T̃

T̃∑
t=501

Xm+1,γ β̃
(t)

γ .

Note that if no prior is applied to β, we can use the least-
squares method. We next define the normalized RMS error for
the predictor. Assume the missing values are yij and the cor-
responding estimates are ŷij , i = 1, . . . , Ni , j = 1, . . . , Nj .
Then the normalized RMS is

RMS
�=

√√√√√ 1

Ni · Nj

Ni∑
i=1

Nj∑
j=1

(yij − ŷij )2.

3 FAST IMPLEMENTATION ISSUES
The computational complexity of the Bayesian variable selec-
tion algorithm is high. For example, if there are 3000 gene
variables, then for each iteration we have to compute the
inverse (XT

γ Xγ )−1 3000 times because we need to sample γj

for each gene according to (9). Our concerns about computa-
tional complexity are mitigated by the fact that missing-value
estimation need only be done once for a set of experiments and
could be implemented on a supercomputer; nevertheless, it is
possible to apply some procedures to speed up the computa-
tion while still achieving good results. In fact, all experimental
results discussed in this paper have been obtained using the
computational speed-ups discussed in this section.

3.1 Pre-selection
The pre-selection method selects genes with expression pro-
files similar to the target gene. If we consider gene y that has
one missing value in experiment m+1, then the pre-selection
procedure finds u other genes, which have values in experi-
ment m+ 1, with expression most similar to y in experiments
1 to m in the Euclidean distance sense. In this paper, we set
u = 200.

3.2 Computation of p(γj |y, γi �=j ) in (9)
Because γj only takes 0 or 1, we can take a close look
at p(γj = 1|y, i �= j) and p(γj = 0|y, i �= j). Let
γ 1 = (γ1, . . . , γj−1, γj = 1, γj+1, . . . , γn) and γ 0 =
(γ1, . . . , γj−1, γj = 0, γj+1, . . . , γn). After straightforward
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computation of (9), we have

p(γj = 1|y, γi �=j ) ∝ 1

1 + h
, (10)

with

h = 1 − πj

πj

(
S(γ 1, y)

S(γ 0, y)

)m/2 √
1 + c. (11)

If γ = γ 0 before γj is generated, that means we have
obtained S(γ 0, y), then we only need to compute S(γ 1, y),
and vice versa.

3.3 Fast computation of S(γ , y) in (3)
The key is to compute S(γ , y) fast when a gene variable is
added or removed from γ . Denote

E(γ , y)
�= yTy − yTXγ (XT

γ Xγ )−1XT
γ y. (12)

This can be computed using the fast QR decomposition, QR-
delete and QR-insert algorithms when a variable is added or
removed (Seber, 1984, Ch. 10.1.1b). Now we want to estimate
S(γ , y) in (3). Comparing (12) and (3), one can obtain the
following equation:

yTXγ (XT
γ Xγ )−1XT

γ y = [S(γ , y) − E(γ , y)](c + 1).
(13)

Substituting (13) to (3), after straightforward computation,
S(γ , y) is given by

S(γ , y) = yTy + cE(γ , y)

1 + c
. (14)

Thus after computing E(γ , y) using QR decomposition,
QR-delete or QR-insert algorithms, we then can obtain
S(γ , y). We summarize our fast Bayesian variable selection
algorithm as follows.

Algorithm 1: Fast Bayesian variable selection algorithm

• Pre-select genes based on the K-nearest neighbor
distance;

• Initialization: Randomly set initial parameters γ (0),
σ 2(0)

, β(0);

• For t = 1, . . . , 35 000
— Draw γ (t). For j = 1, . . . , n

∗ Compute S(γ (t), y) using QR-delete or QR-insert;

∗ Compute p(γj = 1|y, γ (t)
i �=j ) according to (11);

∗ Draw γ
(t)
j from p(γj = 1|y, γ (t)

i �=j ).

— Draw σ 2(t)

according to (6).

— Draw β(t) according to (7).

• Endfor

• Count the frequency of each gene appeared in γ (t), t =
5001, . . . , 35 000.

At each iteration, the number of selected genes depends
on the sampling outcome of γj . Although we set πj = 15/n

empirically, we cannot avoid the case that the number of selec-
ted genes is bigger than the sample size m. If this happens, we
need to remove this case because (XT

γ Xγ )−1 does not exist.
The above algorithm is for single missing-value estimation.
When there are multiple missing values, the algorithm should
be applied to estimate each missing value.

4 NONLINEAR REGRESSION WITH
BAYESIAN GENE SELECTION

In Zhou et al. (2003), we have found some genes show a
strong nonlinear property, so here we also discuss the nonlin-
ear regression missing-value estimation. The problem is the
same as stated in Section 2. We denote y = [y1, . . . , ym]T,
Xi = [xi1, . . . , xin] for i = 1, . . . , m, and x = [x1, . . . , xn]T.
We use a nonlinear regression model composed of a linear
term plus a nonlinear term given by

y =
n∑

i=1

αixi +
κ∑

k=1

βkφk(x1, . . . , xn) + e, (15)

with

φk(x1, . . . , xn)
�= exp{−λk‖x − µk‖}, k = 1, . . . , κ ,

(16)

where ‖·‖ is the Euclidean norm; α = [α1, . . . , αn]T, β =
[β1, . . . , βκ ]T are the vectors of regression parameters; the
additive noise term e follows a normal distribution, i.e. e ∼
N (0, σ 2); {µk}κk=1 are the centers of the κ clusters obtained by
using fuzzy-c means clustering; and the parameters {λk}κk=1
are chosen empirically. Here, we set κ = 2 and λk = 2, k =
1, . . . , κ , and have

y = Z1α + Z2β + e, (17)

where e = [e1, e2, . . . , em]T,Z1 = [XT
1 , . . . , XT

m]T, and

Z2 =



φ1(X1) · · · φκ(X1)
...

. . .
...

φ1(Xm) · · · φκ(Xm)


 .

Note that (17) can be further written as

y = X̂α̂ + e, (18)
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where

X̂
�= [Z1, Z2]

=




x11 x12 · · · x1n φ1(X1) · · · φκ(X1)

x21 x22 · · · x2n φ1(X2) · · · φκ(X2)
...

...
. . .

...
...

. . .
...

xm1 xm2 · · · xmn φ1(Xm) · · · φκ(Xm)


 .

(19)

and α̂
�= [αT, βT]T.

Now we apply the same gene selection algorithm and
missing-value estimation algorithm as discussed in Sections 2
and 3 to (18). Although the problem is nonlinear in terms of X

in this nonlinear case, it is linear in terms of φ(X), so the same
formula can be used. Note that we can estimate the parameters
µk , k = 1, . . . , κ in (16) using an MCMC technique similar
to the approach in (Zhou et al., 2003) if we want to obtain
better estimation performance at the expense of a significant
increase in computational complexity.

5 EXPERIMENTAL RESULTS
We consider hereditary breast cancer data (Hedenfalk et al.,
2001). Application to a small, round blue-cell tumor (Khan
et al., 2001) data set is given on the associated web site.
Considering the high computational complexity of the new
methods, we assess the performance of the KNNimpute, lin-
ear regression and nonlinear regression methods from three
aspects: number of selected genes used for different methods
(from 1 to 18 genes for the breast cancer data; and 1 to 20 genes
for SRBCT data); comparison of the three methods based on
estimation performance on different amounts of missing data,
from 1 to 5%; distribution of errors for the three methods for
fixed K = 7 at 1% of data missing.

In Hedenfalk et al. (2001), cDNA microarrays were used in
conjunction with classification algorithms to show the feasib-
ility of using differences in global gene expression profiles to
separate BRCA1 and BRCA2 mutation-positive breast can-
cers. The hereditary breast cancer data can be downloaded
from the original author’s web page (Hedenfalk et al., 2001).
Twenty-two breast tumor samples from 21 breast cancer
patients were examined: seven BRCA1, eight BRCA2 and
seven sporadic. 3226 genes were used for each tumor sample.
We test algorithm performance using the natural log of the
breast cancer ratio data over different values of K . Some per-
centage of data is randomly deleted and then estimated by
each missing-value algorithm. The results are the average of
50 experiments using cross-validation.

Figure 1 shows the normalized RMS errors when using the
linear and nonlinear regression methods, and the KNNimpute
procedure over 1 and 5% data missing. The nonlinear regres-
sion method performs best over the range of K , and the linear
regression method preforms slightly poorer. Both significantly
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Fig. 1. Effect of the number selected genes used for different
methods in Experiment 1.

outperform the KNNimpute method. The performances of the
linear regression and nonlinear regression predictors degrade
more quickly when the number of selected genes exceeds 14.
This degradation results from several reasons: (XT

γ Xγ )−1

gradually becoming singular, greater difficulty to estimate the
model parameters when gene variables are increased; and pre-
selection of 200 genes to speed-up the regression algorithms
(which can be mitigated by employing less speed-up). In fact,
degradation for increasing K is not important because all three
algorithms achieve close to their best performances in a large
range of K , and in practice we would use a K from that
range, say K = 7, to obtain good performance while keeping
K small for computational purposes and centered within the
range of good performance for robustness.

Further illustration of the improved accuracy of the lin-
ear and nonlinear regression methods is given in Figure 2,
which shows the histograms for the distribution of normalized
RMS errors for the three methods. The two new algorithms
(as well as KNNimpute) are robust relative to increasing the
percentage of missing values, This is shown in Figure 3
with the percentage of missing values between 1 and 5% and
K = 7.

6 CONCLUSION
This paper proposes two new methods for missing-value
estimation: linear and nonlinear regression with Bayesian
gene selection. We have analyzed their performance on data
from hereditary breast cancer and from small round blue-
cell tumors. The results show that the linear and nonlinear
approaches with Bayesian gene selection compare favorably
with the KNNimpute method in terms of the normalized RMS
error. This comparison has added significance since, as shown
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Fig. 2. Error histograms of different estimation methods and 1% data missing rate: (a) the KNNimpute, (b) the linear regression and (c) the
nonlinear regression.

Fig. 3. Performance comparison of the KNNimpute, the linear and
nonlinear regression methods under different different data missing
percentages in Experiment 1.

by Troyanskaya et al. (2001), KNNimpute compares favor-
ably with filling with zeros and row average, as well as
SVDimpute.
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