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ABSTRACT

Motivation: Detailed comparison and analysis of the out-
put of DNA gene expression arrays from multiple samples
require global normalization of the measured individual gene
intensities from the different hybridizations. This is needed
for accounting for variations in array preparation and sample
hybridization conditions.

Results: Here, we present a simple, robust and accurate pro-
cedure for the global normalization of datasets generated with
single-channel DNA arrays based on principal component ana-
lysis. The procedure makes minimal assumptions about the
data and performs well in cases where other standard proced-
ures produced biased estimates. It is also insensitive to data
transformation, filtering (thresholding) and pre-screening.
Contact: Christos.Patriotis@fccc.edu

INTRODUCTION

array datasets be normalized to correct for the inherent exper-
imental differences. The critical element in this process is the
discrimination of the interesting, biological variation from
the obscuring variation, which is related to the experimental
conditions (Harteminlet al., 2001). This is why the initial
attempts towards normalization of array datasets relied on the
concept that a group of genes could be identiéigiori and
serve as ‘housekeeping’ genes, assuming that their expres-
sion will reflect directly the obscuring experimental variation.
As discussed in detail below, if such a subset of genes could
be identified reliably, then well-defined normalization factors
could be estimated to within the accuracy inherentin the meas-
urements. Unfortunately, as shown by others (Battal.,
2001; Selvewt al., 2001) and by us in this report, this simple
concept works only in very limited cases. (Here and in the
rest of the paper, we will refer to tha priori specified
housekeeping genes as ‘designated’ in order to distinguish
them from those determined to be the ‘true’ housekeeping

lThe. ddevelgprgﬁ; orf] hlgh-d?nslty. DZIA arrat))/_? (OHQOI:UC' genes. The latter represent the subset of genes whose expres-
eotide and ¢ ) has revolutionized our ability to char- sion is invariant to the particular biological and/or experi-

acterize biological _processes and samples genetlcally_ b|¥1ental variables in the multiple microarray experiments being
monitoring the relative expression of thousands of genes Sm}:’ompared )

ultaneously (Bowtell, 1999; Debouck and Goodfellow, 1999; The realization that in most of the cases the ‘designated’

Dugganet al., 1999; Lander, 1999). To meet the ChalIengeshousekeeping genes cannot be used for reliable normaliza-

for interpretation of this complex data, sophisticated SOft'tion has spurred the development of alternative approaches for

ware pa_ckagesf_rllave be(;]omesavailzblel for aréglysis ofdtr|13e 9 Srmalization. The majority of these approaches determine
expression protiies, such as scanAnalyze (Eisen an 'OWHormalization factors on the basis of averages over the beha-
1999), ArrayExplorer (Patriotist al., 2001) and ImaGene vior of the entire set of genes measured (Schuchtetralt,

(Biodiscovery, Inc.). An important, but still unresolved, |ssue2000). Typically, these methods utilize the mean or median of

is associated with the normalization of the relative expression?ne array intensities (Quackenbush, 2001) and linear (Golub
of genes across a series of migroarray experimgnts: n order.g? al., 1999) or orthogonal regression (Sapir and Churchill,
compare the results from multiple samples, which is the U|t"|2000). A variety of non-linear techniques were also proposed
mate goal of these studies, it is obligatory that the individua(Schadet al., 2000, 2001; Li and Wong, 2001; Bolsteihl

2003).
*To whom correspondence should be addressed. There is also a series of methods that identify a subset of
tPresent address: Emory University, GDBBS, 1462 Clifton Road, DentaENES in the data that can be assumed as housekeeping (Zien
Bldg, Suite 314, Atlanta, GA 30322, USA. etal.,2001; Kepleetal., 2002). All these approaches perform
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PCA-assisted normalization of microarray data

satisfactorily when the following two assumptions about theconstants (relative since unless at least one af;gis known,
data are met: it is impossible to normalize the data absolutely).
We now turn to the problem of identifying the genesSn

(1) the majority of the genes (in the fitting segment for theThe obvious method is to calculate the densities in the cloud
non-linear approaches, or overall) are not affected by

: . . f n data points in the:-dimensional data space, which rep-
the experlmen_tal variables, i.e. they can all be regarde$esent the directions afgene levels in the: observations. In
as housekeeping genes; and reality, this is difficult because there are approximatefy—*
(2) the subset of differentially expressed genes are ‘activdirections for examining if each orientation is divided ino
ated’ symmetrically, i.e. the overall intensity change of segments. In order to reduce the dimensions of the space that
up- and down-regulated genes is similar. needs to be examined, we use PCA to identify the directions

Here we present a novel normalization approach that peﬁ‘long which the principal variations of the genetic expressions

forms satisfactorily even when the conditions above are noqe.In the or|g|nglm-d|men3|onal space. We project the datq

met, which is the most commonly observed scenario. In conEJOIntS ont.o the f|.rst two of thesp d!rect!ons and examme'th.elr
trast to the methods requiring the selection of a baseline arra ,ngular dt'sltl”btmiﬁnttg] deter{”"r}el_ i a I|tnhe tfhrIT)ugh the or:jgln i
this method analyses the entire dataset simultaneously, and, ggresent. Note that Ihe onginatiine in the Tull Space heed no

such, it is considered a complete data method (Bokttal I!e in this plane as.|t_s projection into the plane will also be a

2003). The goal of the technique is to determine in a multi-IIne through the origin.

array experimentifthere is a subset of genes whose expressionpcA is used commonly for reducing the dimensionality of

may be considered unaffected by the ‘interesting’ (biological)_Complex data_ (A”deTSO”' 1971) and has peen used prewou_sly
sources of variation and if there are such, to identify this set of” the analysis of microarray data from tlm_e-cqurse exper-
specific, ‘data-driven’ housekeeping genes and use them fdpents (Alteret_aj., 200.0’ 2003), for nqrmahzathn of gene
normalization. Briefly, if the results from each array meas-EXPression ratios obtained from two different microchips of

urement are represented in a multi-dimensional vector Spa(%vo-channel arrays (Nielseet al., 2002) and for partition-

where each axis is a different sample, then the entire exper‘pg large-sample mi_croarray-l_aased gene expression prof_iles
ment can be represented as a series of points corresponding(Feterson’ 2003). Itis also an inseparable part for exploration
large genomic datasets (Miseh al., 2002). Previously,

the strength of each gene’s expression in each sample meas-

ured. If a set of genes with an unchanged relative expres:sioWe have applied the PCA technique for removing ‘unwanted

is present, their intensity levels will represent points along a\zlgggt)lon in multi-spectral datasets (Stoyanova and Brown,

straight ine through the origin. We present a principal com- Briefly, PCA identifies the directions of the largest vari-

ponent analysis (PCA)-based method for identifying such at_ i the data via th incipal ts (PC d
line, if one exists. The factors determined from the expressior"?1 lons n the data via the principal components ( s), an
resents the data in a coordinate system defined by the

. P
of these genes can be used to normalize the gene ex ressBe@ 2
X ° P S (P1, P2, ...), as follows:

in the individual array datasets.
D=RiP1+ R2P2+ R3P3+ ---+ R, Py, (2)

MATERIALS AND METHODS wheref’j (I1xm)andR; (n x 1) are row and column matrices;
Theory R; contain the projections of the data along the PCs<(
Consider a gene expression dataset Consisting drrays 1,. .. ,m), genel’ally called scores. BeIOW, some of the relevant
with n genes each. LeD be the data matrix containing in Properties of the PCs are listed.

its rows the measured expression levels, anglebe the

. : (1) ﬁj are eigenvectors of the data-covariance matrix (cal-
measured expression level of th¢h gene in thej-th array

culated around the origin, rather than around the mean)

i=1,..,n,j=1,...,m). We seek to identify a subse, and are orthonormal. i.e.

of s genes { < n) whose expression remains constant over

the experimental conditions of the study. Mathematically, for P .p. — 0 ifiz#j
the genes irs the following equations hold: L 1 ifi=j.

(2) The PCs are ordered by the decreasing amount of vari-

‘o= c:  Of L= . i ) .
q;j8ij = Ci gij = ¢i/q; ation in the data they explain. Lety, As,..., A,

whereg; is the j-th normalization constant andl is the true be the eigenvalues of the covariance mati (>
concentration of thé-th gene, which is constant across the Az > --- > A,). Each PC explains a portion of the
samples. If we plot the pointg; in anm-dimensional space, tqtal variance ofD, proportional to its corresponding
we can see that they lie along a line through the origin, which eigenvalue.

has projections along the axes{tfq,}. If we can find such a (3) The magnitude oR; is proportional to its correspond-
line, we will have identified our desired relative normalization ing eigenvalueA ;.
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(4) D can be represented sufficiently with fewer than correspond to a one-sided test with a type-I error of 2.5%.
PCs [Equation (1)]. PCA provides a representation ofHowever, in most cases, due to different procedures for
the data in a lower-dimensional space of significantmicroarray image quantification as well as the specific pre-
variables. filtering of the data, the distribution af; is unknown. In

(5) The PCs are a linear combination of the original datacases where a normal distributionépfcannot be assumed, it
The coefficients of this linear combinatioR,) are IS recommended that their histogram be examined;aie
typically referred to as loadings and represent the proSet appropriately. For added stringency of the test, the genes

jections of the PCs along the axes of the originalin segmenty are assumed to be housekeeping genes only if
m-dimensional space. Or+1 of the neighbouring segment; 1 is also tested signific-

eant. Then the genes in the two segments are merggdiie.
S = sk U sge1. If the angular density of the genes of further
contiguous segments is detected to be significant, then these
Fromthe lastthree properties, it follows thatthe loadings of theggenes are added & After all segments are tested, PCA is
first PC may serve as normalization coefficients of the arraysapplied toS and the reciprocal values of the loadings of the
In many cases, when the assumptions (1) and (2) (see Introdutssultant first PC are used as normalization coefficients.
tion) are met, as discussed in detail below, PCA can provide If the procedure failed to identify at least two significant
directly the normalization coefficients sought. In other casesgontiguous segments, then either all the genes in the data can
we can use the first two PCs to detect linear behavior in a sulie assumed to be housekeepifig= D), or, in the extreme
set of genes§ (s < n) that are the ‘true’ housekeeping genes. situation, the housekeeping genes are either too few to be
PCA applied only to the genes 8will identify the appropri-  detected or not existers& @). In the first case, the loadings
ate normalization line in the entire-dimensional data space. of the first PC from the initial PCA ob are the true normal-
Its projections can then be used as normalization factors. ization coefficients and can be used for direct normalization.
The procedure [dubbed PCA(line)] tests automaticallyThere is not very much to be done in the second case—the
for the existence of and detects the group of genes, whicRCA-derived normalization would be as erroneous as the ones
are distributed ‘tightly’ along a line in the plane defined by produced by any other linear technique. Lgbe the fraction
the first two PCs. We chose this plane because by definiin per cent) of the first eigenvalua,, from the total variance
tion it contains the largest variations in the expression levelsn the data. In this case, a low (in our experience<60%)
Although the actual straight line of the desired normaliza-will be indicative of a lack of normalizing genes.
tion may not lie completely in this plane, its projection in _. .
the plane is also a straight line and will serve to identify theBiological samples (datasets)
desired set of genes. To identify such a line, we divide the paftiuman ovarian surface epithelial cell lines Microarray
of the plane that contains all the points into small angular segdatasets obtained from experiments with RNA of human
ments and determine the number of data points (genes) in eaoharian surface epithelial (HOSE) cells were analyzed using
segment. The segment(s) containing the data-driven housétlas 1.2 Human arrays (ClonTech). The details of array pre-
keeping genes will contain a disproportionally large densityparation and data extraction are described elsewhere (Patriotis
of points. This procedure is described below and given iret al., 2001). Briefly, the HOSE cells were derived from
detail in Appendix 1. a short-term primary cell culture obtained from one of
Initially, we assumésis an empty set§ = @). In the plane  the ovaries of an individual predisposed to ovarian cancer.
defined byP; andP,, we partition the angle through the origin The short-term HOSE cell culture was transduced with a
defined by the genes with maximal and minimal component&€ytomegalovirus-based vector expressing the Simian Virus-
on P, in p equal angular segments. Lst (k = 1,...,p) 40 large T-antigen. As a result, the vitro lifespan of the
be the subset of genes i that belong to thé-th segment cells, while still ‘mortal’ (118M), was considerably extended,
(s1Us2U---Us, = D). We recommend that be set initially leading to the spontaneous outgrowth of an ‘immortal’/non-
to contain on average at least 10 genes per segmengy Let transformed cell line (118Im). Following multiple passages
be the angular densities defined as the number of genes in culture, the 118Im cell line gave rise spontaneously to
each segmenty, andM (6;) andV (6;) be, respectively, the cells that acquired anchorage-independent growth character-
sample mean and variancetf Then, the density of the-th istics and, ultimately, the potential to grow tumotumsvivo

(6) The PCsminimize the squared distances of the variabl
(gene-expression levels) and themselves.

segment is considered to be significant if when inoculated in nude mice (118NuTu) (Frolov,&\al.,
unpublished data). In the first experiment, the cDNA probes
O > MOy) + 1/ V(6r), (2)  were derived from total RNA purified from 118M, 118Im and

118NuTu. In the second experiment, microarray data were
where . is a parameter indicating the number of standardobtained from 118NuTu cells treated for different lengths of
deviations above the mean that is required for significance. lfime (0, 24, 48 and 72 h) with the synthetic retinoic acid
a normal distribution ob is assumed, thep = 1.96 will  derivative Fenretinide (4-HPR) (Moat al., 1979).
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Lymphoma data (L D) ‘Signal’ dataset 1
The dataset was constructed from the supplementary datase®gnal’ dataset 1 (SD1) contained two pairs of simulated
of Golub et al. (1999). The microarray measurements werearrays. The first pair satisfied conditions (1) and (2) (see Intro-
performed with RNA of samples obtained from bone marrowduction) by choosing a substantial number of the genes to be
and peripheral blood from patients with acute lymphoblastichousekeeping (250) and the number and magnitude of change
leukemia (ALL) or acute myeloid leukemia (AML) at the time of up- and down-regulated genes to be equal. The second pair
of diagnosis using high-density oligonucleotide Affymetrix was constructed to illustrate a scenario where these assump-
arrays. In the paper referred to, the data were normaltions are not met; the housekeeping genes (150) were not
ized by pair-wise linear regression (LR) between the firsta majority, and more genes were ‘up-regulated’ (200) than
sample (baseline) and the rest of the samples in the dat&ddown-regulated’ (150) (the details about the simulated up-
set. Only genes with satisfactory quality (marked with ‘P’ and down-regulation are given in Appendix 2). Two independ-
in the datasets provided) in each pair were considered for thent sets of random noise were added to each array, generated
regression. The normalized datasets, as well as the normalias the sum of half of both gene-dependent and -independent
ation factors, are supplied at http://www-genome.wi.mit.eduhoise [Equation (3)], i.e%(Nl + N2).
cgi-bin/cancer/datasets.cgi. The data used here were non-. ,
processed and ‘non-normalized’, and the combined datasets'9nal’ dataset 2
resulted in a data matrix containing 72 arrays and 7129 genessignal’ dataset 2 (SD2) contained eight arrays with 500 genes

. each. The first array in SD2 was generated randomly, as
Simulated data described above. The gene expression levels of the remain-
The values in the simulated datasets were chosen to be reghy seven arrays were generated with the idea of recreating
istically probable, based on our experience with data obtaineg scenario where progressive changes occur in the studied
with the Atlas 1.2 CLONTECH arrays (Patriotsal., 2001).  samples (e.g. time-response to treatment or undergoing a pro-
The number of genes was set to 500, in agreement witBess of immortalization and malignant transformation). The
our observation that between 30 and 50% of the genes agfetails of simulation parameters for up- and down-regulation
expressed in any of the samples investigated in our lab. lare given in Appendix 3. The arrays were multiplied with
the first array, the expression levelg; [in arbitrary units  coefficients generated at random between 0.3 and 3. Finally,

(a.u.)], were simulated using the relatign = 2, wherex  random noise, generated as described for SD1, was added to
is uniformly distributed between 1 and 16. each array.

In all simulated datasets of pairs of arrays a multiplication

factor of 1.2 was applied to the second array, equivalent t‘hESULTS

g1 = 1 andg, = 1.2. Gene intensities were assumed to be . )

background-corrected, and (unless noted otherwise) signaldousekeeping genesin HOSE cells

with intensities less than 200 were zeroed (thresholded).  Figure 1(a) depicts the correlation plot of the ‘designated’

‘Noise' data housekeeping genes in the first experiment with HOSE cells:
118M onthex-axis, and on thg-axis 118Im (black series) and

The sources of noise in microarray datasets are multiple angh gNyTU (gray series). The expression of these genes is well

complex, and they contribute simultaneously with variablecorrelated K2 = 0.96), and, in this case, they can be used for

amounts to the total variance in the data. Generally, the totg}ormalization of the data. Figure 1(b) depicts the correlation

noise contribution to the measured signal represents a var,jﬂot of the expression of the same set of housekeeping genes

able mixture of the contribution of two components: one isj, the 118NuTu, untreated (0 k;axis) and treated with 4-

independent of gene intensity and affects the expression of alipR for 24, 48 and 72 hyéaxis; black circles, gray triangles

genes equally, and the other is gene-dependent and increasggy shaded squares, respectively). In this case, the correla-

with the magnitude of the gene expression. To investigatgon petween the expression of the ‘designated’ housekeeping

the contribution of noise to the process of normalization, Weyenes is quite pooR? = 0.43, 0.81 and 0.85, respectively).

simulated two pairs of replicate arrays, as described aboverom these data, it is clear that the expression profiles of the

Random noise was added to each array. In the first set, thesignated’ housekeeping genes are changed non-uniformly

noise was gene independeyf—uniformly distributed ran- i the cells in response to the drug treatment.
dom noise betweer 2500 and 2500—and in the second set,

a gene-dependentvg), uniformly distributed noise whose ‘Noise’ data

magnitude was=10% of the gene intensities. Formally, Figure 2(a) and (b) (left panels) depict the correlation between
the data in the two pairs of simulated arrays in this dataset

N1 = —2500+ 5000u together with the linear trendline through the origin. Note that
gi1,2(2u — 1 u=U(0,1). @) the regression coefficient in both cases is very close to the true

Np = —/—= Lo o .
2 10 value of the multiplication factor 1.2. The fit is slightly tighter
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0 50000 100000 150000 200000 (a.u.) 0 50000 100000 150000 200000 (a.U.)
118M 118NuTu(0 h)

Fig. 1. Correlation plots of the intensities of the ‘designated’ housekeeping genes in two microarray experia)d¢th@SE cell lines at

different stages of malignancy, on theaxis 118M, and on the-axis, 118Im (black) and 118NuTu (gray). Regression lines are indicated in
black and gray, respectivelyp118NuTu cell line following treatment with Fenretinide, on thaxis & 0 h and on the-axis after 24 (black

circles), 48 (gray triangles) and 72 h (squares) of treatment. Regression lines are indicated in black solid, black dashed and gray, respectivel
(note that the black solid and black dashed regression lines are overlapping).

for the second dataseRf = 0.986 versusk? = 0.992), PC, Py, is along the regression line of this rotated version
which reflects the smaller contribution of the noise in theof Fig. 3(b)]. The procedure for automatic detection of the
overall gene intensities. Figure 2(c) (left panel) depicts thehousekeeping genes is schematically illustrated in Figure 4(b).
correlation between two replicate array datasets obtained frorihe angle encompassing all data points (between 1.069 and
118M. The genes depicted by gray squares represent the ‘dez-438 radians) was divided into 50 segments. The histogram
ignated’ housekeeping genes. On the right panels in Figure @f the angular densitie®, (k = 1, 2,...,50) is presented in

the correlation of the logarithmic transforms of the data fromFigure 4(c) M (6;) = 5.92 and\/V (6;) = 5.18]. Foru =

the left panels are presented (due to the restriction of the logat-. 96, three contiguous segments, startingat 22, contained
ithmic function to only positive numbers, for this comparison, points with a significantly higher density [Equation (2)]. A
only genes that are expressed simultaneously in the two arraystal of 63 points (subse&) from these segments were extrac-
are used). Comparison of the graphs of simulated [Fig. 2(aded. These genes (orange points), together with the original set
and (b)] and real [Fig. 2(c)] noise indicates the similarity in of housekeeping genes (in green), are presented in Figure 4(d).
the overall distributions, although the real data have a greatérhe collinearity between the identified genes and the house-

variance. keeping genes is apparent. Thirty-two of the gen&hialong
to the original set of 76 housekeeping genes in the analyzed
‘Signal’ dataset SD1 data, indicating that the procedure recovered successfully a

The graphs of the two pairs of arrays in this dataset, togethésrubStamial fraction of them _(:_32/ 76, 510%). Moreover, the )
with the regression line through the origin, are presented ifrocedure detected an additional 31 genes whose expression
Figure 3. The housekeeping genes are marked in green. ﬁpanges in accordance with a housekeeping gene behavior.

the case of the first pair [Fig. 3(a)], it is clear that the regresT’ CA Was applied to the data i8 (11 = 99%), and the
sion line is along the line of normalization and, therefore,fIrSt PC loading factors werg; = 0.635 andg> = 0.773,

all the above reference normalization methods will performcorrespondlng to a relative normalization factor of 1.217.

well. Obviously, this is not the case with the second data-__

set [Fig. 3(b)], and we applied the PCA (line) procedure forSimulated dataset SD2

determining the subset of housekeeping genes. PCA was applied to 205 genes with non-zero intensities in
After thresholding, 296 genes were found with non-zeroall eight arrays (88 up-regulated, 52 down-regulated and 64

intensities simultaneously in both arrays (132 up-regulatedhousekeeping)Ay = 96%). The points in theP; and P,

88 down-regulated and 76 housekeeping). PCA was applieplane were within 1.079 and 1.938 radians. As in the case of

to this set £1 = 96%). The representation of the data alongSD1, the densities of points in 50 segments were calculated

the first two PCs is shown in Figure 4(a) [note that the first(M (6;) = 4.08 and\/V (6;) = 5.21). Foru = 1.96, three
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Fig. 2. Correlation plots of gene intensities in replicate arrays, displayed on untransformed (left panels) and logarithmic scales (right panels)
with indicated LR line (gray):4) simulated data, containing gene-independent ndiesihulated data, containing gene intensity-dependent

noise; €) two replicate arrays of 118M cell line. The genes shown in gray squares represent the designated housekeeping genes included in
the arrays by the manufacturer.

1777



R.Stoyanova et al.

a. b.
(a.u.) (a.u.)
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g g
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0 -Z‘«;M T : T . R . .
0 20000 40000 60000 (a.u.) 0 20000 40000 60000 (a.u.)
Array 1 Array 1

Fig. 3. Correlation plots of gene intensities of two simulated array datasets (SD1) with indicated housekeeping genes (green squares) anc
indicated LR line (orange)a] ‘'symmetric’ case, where the majority of the genes are housekeeping and the number and magnitude of up-
and down-regulated genes is simildy) the housekeeping genes are of a relatively smaller number, and the up-regulated genes dominate the
distribution.

contiguous segments containing a total of 64 points (su®)set atotal of 77 genes, were determined to have significant angu-
contained a significant number of points. The majority oflar densities. The overwhelming majority of genes (55) in this
the points inS belonged to the original set of housekeep-set belonged to the original set of housekeeping genes. The
ing genes analyzed (44, or 69%), and the remaining 20 werbousekeeping gene sets derived by PCA (line) on thresholded
split between the 12 up-regulated and eight down-regulatednd unfiltered data were strongly overlapping—all but four
genes. PCA was applied to the dat&ith; = 99%), and the  were identical to the 64 housekeeping genes determined with
normalization coefficientg;(j = 1,...,8) were calculated the thresholded data. Finally, the PCA-determined normaliz-
as the loadings of the first PC. ation factors in this case were virtually identical to the ones
We compared the accuracy of the PCA(line)-estimated nordetermined with the thresholded data.
malization factors with the ones estimated by LR and mean
(MEAN). We scaled all normalization factors so that their Lymphoma Data
sum was equal to 1, and the correlation between the truBCA was applied to all 7129 genes in the dataget £
values §-axis) and the estimated valueséxis) are presen- 88.31%). All loadings ofP; were scaled by the first one,
ted in Figure 5(a). Although the overall correlation betweenresulting in a normalization factor of 1 for the first array.
the true and estimated normalization factors is quite goodrigure 6(a) depicts the comparison between LR- and PCA-
[R? = 0.9964, 0.9862 and 0.9726 for PCA(line), LR and derived (yellow circles) values. The high correlatidk?(=
MEAN estimates, respectively], it is clear that PCA(line) 0.99) between the two series is apparent. Further, we applied
provides the best estimates. We also calculated the error fahe PCA(line) procedure. Three contiguous segments (from a
each individual array, defined as the percentage differencimtal of 200), containing 1095 genes, were above the threshold
of the estimated from the true normalization factor, and thg M (6;) = 35.64,/V (6;) = 72.21,u = 4]. PCAwas applied
minimum, maximum and average error values are presentetd the intensities of the genes$f1; = 93.85%) and the load-
in Figure 5(b). This analysis indicated that the error of theings of P; rescaled appropriately and compared with the LR
PCA(line)-derived estimates is on average lower by a factoresults [Fig. 6(a), black circles]. While showing an overall
of 2 and 3 as compared with the ones derived by LR andjood agreement with the LR-derived resulf? (= 0.92),
MEAN, respectively. they also indicate, in some individual cases, substantial dif-
We further investigated the effect of data thresholding on théerences with the PCA(line)-estimated values. The average
PCA(line) procedure. We re-analyzed SD2 by applying PCAabsolute value of the relative difference between LR- and
to all 500 genes in the dataset. Since some of the scores aloRLA-derived factors was 7.52%, with a range of 0.07-30.84%
P, were negative, the data points spanned the entire plana the case of array #65 [Fig. 6(a), marked with an arrow]. We
(between 0.03 and 6.27 radians). In this case, wp se200  then examined the correlation of the intensities of the genes
andu = 4. Two consecutive segments [Fig. 5(c)], containingmarked with ‘P’ (those of satisfactory quality) in arrays # 1
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Fig.4. (a) The data from Figure 3b, presented in the PC-planes¢hematic illustration of segmentation of the part of the PC-plane containing
the data; €) histogram of the angular densities of the segmenistiue’ (green) and PCA(line)-detected housekeeping genes (orange).

and # 65 [Fig. 6(b)]. The normalization lines [represented inthe coefficient of variation (COV) between the five series of
orange and blue, respectively, for LR and PCA(line)] indicateestimates. The average COV for the 72 normalization factors
that in the case of LR, a handful of strongly expressed genesas 1.71%.
are driving the normalization. A similar graph was obtained
with arrays #1 and #58, which also showed a large difference
between the two normalization procedures. DISCUSSION

To determine how the number of segments in the plan&ormalization of gene intensities in multi-array experiments
impacts the estimated normalization coefficients, we ran thés crucial for the ultimate biological interpretation to be
procedure withp = 100, 300, 400 and 500. In all cases, meaningful (Hoffmanret al., 2002). Only after proper nor-
the procedure extracted essentially the same subset of namalization can changes in expression of a given gene amongst
malizing housekeeping genes. The number of genes for eathe studied samples in the experiment be characterized quant-
p was 1410, 1192, 1092 and 1162, respectively. We estimitatively. Conversely, erroneous (or no) normalization may
ated a (5« 5) correlation matrix of the derived normalization lead to inaccurate estimation of the changes in gene expres-
factors for each value gi. All coefficients in the correlation  sion including wrong conclusions with regard to their up- or
matrix were greater than 0.994, indicating the high degreelown-regulation. While optimal normalization is still a sub-
of reproducibility between the derived normalization factorsject of discussion, individual investigators are faced daily
for different numbers of segmentp)( We also estimated with many questions about the analysis of these complex
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data. For example, should the array data be logarithmicminimal assumptions about the data and does not require any
ally transformed prior to normalization; should low intensity pre-processing, pre-screening or filtering of the data.
spots be discarded, and, if so, what is the right cut-off The need for alternative normalization techniques arose
limit for this operation; should the mean or median intens-with the realization that genes assumed as housekeeping and
ity of the arrays be used for normalization; or alternat-‘designated’ by the manufacturers as such on arrays are not
ively, do ‘designated’ housekeeping genes play reliably theireliable for accurate data normalization. In the first experiment
assigned role? with HOSE cells, investigating a set of three cell lines with

In this report, we address all these questions and presentctose genetic origin, the ‘designated’ housekeeping genes
simple procedure for normalization of datasets generated withhange in a coordinated fashion, and it is likely that they
single-channel arrays based on PCA. The procedure makéslfill their role as normalizing genes. Thisresultis anticipated
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since the three cell lines were cultured under standard growtit increases the relative contribution of the gene-independent
conditions and the observed differences in the global genaoise in genes expressed at low levels. Because of these
expression profiles are related to only a small subset of geneslverse effects, and the fact that by estimating the numbers
associated with the sequential transition of the cells througlof genes in the segmented plane the PCA(line) procedure
the process of malignant transformation. Conversely, in thallows low-expressed genes to be taken into consideration,
second experiment, the ‘designated’ housekeeping gen&ge chose to implement our normalization procedure on raw
appear to change differentially in response to treatment witlfuntransformed) data.
Fenretinide. This is consistent with the dramatic biochem- The described procedure is also insensitive with respect to
ical changes associated with the process of cells undergoirefiltering (thresholding) of the data, given that the para-
programmed cell death (Querec, Tdbal., manuscriptin pre- meteru [Equation (2)] is adjusted appropriately. In the case
paration). The major alterations in the global gene expressioaf ‘thresholded’ datay = 1.96 will be sufficient to discrim-
profile that precedes and leads to the triggering of apoptosigate between the sought housekeeping genes and the rest
affect the expression states of most housekeeping genes. [Fig. 4(c)]. Thisu-value will merely distinguish the ‘noise’
Pre-processing of the data prior to normalization is angenes from the signal ones in non-prefiltered data. Thus, a lar-
important issue. Typical steps include background correcgeru [as in the case shown in Fig. 5(c)] is required to detect
tion, logarithmic transformation and/or thresholding. Wethe normalizing genes sought. We therefore strongly recom-
believe that the background should be removed prior to normend exploring the characteristics of the angular histogram
malization, so that the normalization line goes through theof the data before setting the appropriatealue.
origin. Although we simulated gene intensities, as described The only assumption made about the distribution of the
in the Materials and methods section, there is no theoreticahtensities of the houseskeeping genes for PCA(line) is that
basis to assume that real data comply with this distributionthey are distributed along a straight line. This assumption
Log-transformation has the advantage of transforming thés very sensible for single-channel arrays, unlike the case
noise distributions approximately to Gaussian. This propertyf the double-channel arrays, where it is known that a non-
can be used for estimating the probabilities of differentiallylinear dependence exists between the gene expression levels
expressed genes (Keatral., 2000). The PCA-based normal- among the two channels (Yamgal., 2002). Furthermore, it
ization procedure, however, is based on identifying the genelsas been shown recently that even for these arrays the lin-
along the normalization line in the dataset and is invariant teear and non-linear normalization methods perform similarly
prior transformation. Moreover, based on ‘noise’-simulated(Park et al., 2003). In our experience, most of the non-
data, as well as from the HOSE cell replicates, it is apparerinear effects are due to improper scanning settings, which,
that log-transformation may be detrimental to the analysis abesides the unwanted variations, produce saturated spots also.
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We consider the identification of the housekeeping genes The PCA(line) procedure, besides having the above lis-
with intensities within the linear range, as proposed by theéed general advantages of PCA, can also deal successfully
PCA(line) routine, to be a reliable and robust source forwith situations where conditions (1) and (2) do not apply. In
normalization. the simulated datasets, the PCA(line) results are closest to
The linearity is the basis of the stability of the approach withthe true values as judged by the relative mean-square errors
respect to the parametpr—it is sufficient to detect a small from the three procedures tried. Visual inspection of the
subset ofS to identify uniquely the normalization line. Con- LR and PCA(line) normalization lines in the graph shown
versely, a larger set of genes along this line will not impeddn Figure 6(b) suggests that this is also true for the Affy-
the calculation of the normalization parameters. Still, in ordemetrix data. In addition, it eliminates the need for using a
to obtain meaningful histograms of the number of genes irbaseline array, which, as shown by Bols&dl. (2003), has
each segment, we recommend tpahitially be selected to a clear disadvantage relative to the complete data methods for
contain on average at least 10 genes per segment. The camermalization such as the one proposed here.
dition for linearity naturally excludes genes with saturated In conclusion, the proposed normalization procedure
expression levels and it thus contributes significantly to reduimproves significantly the accuracy and precision of the meas-
cing the interference of these typically large signals in theured gene expression levels. Such procedures will become
normalization process. even more relevant with further refinement and standardiza-
Conditions (1) and (2) (see Introduction) are instrumentation of the microarray technology.
for the successful performance of the referenced normaliz-
ation procedures. However, in single-channel arrays, such
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it is a common phenomenon that the detected number oFhe authors would like to thank Dr S. Litwin for reviewing the
up-regulated genes is larger than the number of the dowrmanuscript critically and for his suggestions for improving it
regulated ones. This is due to the fact that the signals of gendgrther. The authors would also like to thank Dr P. Tamayo for
expressed at low levels and undergoing down-regulation arbis helpful discussion regarding the Affymetrix array data-
close to or below the background level, and, therefore, theiset. The work described in this report was supported by
change is either undetected or deemed statistically insignifidunds provided through NIH grant R29-CA73676 to C.P,,
ant. Whenthese conditions hold, asin the case of the simulatée01-CA41078 to T.R.B., P50-CA83638 (PI: R. Ozols) and a
data in Figure 3(a), PCA will be successful in determiningGuzik Foundation Award to C.P. and R.S. C.P. is a Liz Tilberis
the normalization factors with the following advantages, asScholar of the OCRF, Inc.
compared with the other referenced techniques:

REFERENCE
« It provides an objective measure through the magnitude CES

of the first eigenvalue of how ‘tightly’ the data are Alter,O., Brown,P.O. and Botstein,D. (2000) Singular value decom-
distributed along the first PC position for genome-wide expression data processing and model-

ing. Proc. Natl Acad. Sci., USA, 97, 10101-10106.

o Itsimultaneously determines normalizing coefficients for aiter,0., Brown,P.O. and Botstein,D. (2003) Generalized singular
the entire dataset. A common approach for normalization value decomposition for comparative analysis of genome-scale
of multiple experiments is to choose one array as the expression data sets of two different organisRisc. Natl Acad.
baseline and to apply normalization (Goletlal ., 1999). Sci., USA, 100, 3351-3356.

In order to avoid the lack of symmetry of this procedure,AnderSOI’],T.W. (1971An Introduction to Multivariate Statistical
the baseline is computed frequently as the average gene Analysis. Wiley, New York.
eXpreSSion prOﬁle (TUShH a]., 2001) This is achieved Bolstad,B.M., Irlzarry,R.A., Astrand,M. and Speed,T.P. (2003) A

naturally with PCA as the first PC is an approximation of comparison of normalization methods for high density oligonuc-
the ‘average’ array in the dataset leotide array data based on variance and iBasnformatics, 19,

185-193.

¢ Viewing the entire set of multiple array data simul- Bowtell,D.D. (1999) Options available—from start to finish—for
taneously allows proper down-weighing of the ‘noise’  obtaining expression data by microarriiat. Genet., 21, 25-32.
genes, which, during individual comparisons, may affectButte,A.J., Dzau,V.J. and Glueck,S.B. (2001) Further defining house-

strongly the calculation of the normalization coefficients. keeping, or ‘maintenance,’ genes Focus on ‘A compendium of
gene expression in normal human tissuBbysiol. Genomics, 7,
. 95-96.
The ad\{antages of PCA arg underscoreq inthe LD exa,mpl%ebouck,c. and Goodfellow,P.N. (1999) DNA microarrays in drug
where a single PCA step applied to the entire dataset estimates jiscovery and developmemtat. Genet., 21, 48-50.

normalization coefficients that are almost identical to the oneguggan,D.J., Bittner,M., Chen,Y., Meltzer,P. and Trent,J.M. (1999)
determined by the pair-wise LR procedures, using only well Expression profiling using cDNA microarrayisat. Genet., 21,
measured genes in each pair [Fig. 6(a)]. 10-14.

1782



PCA-assisted normalization of microarray data

Eisen,M.B. and Brown,P.O. (1999) DNA arrays for analysis of geneSchuchhardt,J., Beule,D., Malik,A., Wolski,E., Eickhoff,H.,
expressionMethods Enzymol ., 303, 179-205. Lehrach,H. and Herzel,H. (2000) Normalization strategies for
Golub,T.R., Slonim,D.K., Tamayo,P., Huard,C., Gaasenbeek,M., cDNA microarraysNucleic Acids Res., 28, E47.
Mesirov,J.P., Coller,H., Loh,M.L., Downing,J.R., Caligiuri,M.A., Selvey,S., Thompson,E.W., Matthaei K., Lea,R.A., Irving,M.G. and
Bloomfield,C.D. and Lander,E.S. (1999) Molecular classification  Griffiths,L.R. (2001) Beta-actin—an unsuitable internal control
of cancer: class discovery and class prediction by gene expression for RT-PCR.Mal. Cell Probes, 15, 307-311.
monitoring.Science, 286, 531-537. Stoyanova,R. and Brown,T.R. (2002) NMR spectral quantitation
Hartemink,A., Gifford,D., Jaakola,T. and Young,R. (2001) Max- by principal component analysis. Ill. A generalized procedure
imum likelihood estimation of optimal scaling factors for expres-  for determination of lineshape variatiordls.Magn. Reson., 154,
sion array normalizatiorProc. SPIE, 4266, 132-140. 163-175.
Hoffmann,R., Seidl,T. and Dugas,M. (2002) Profound effect of Tusher,V.G., Tibshirani,R. and Chu,G. (2001) Significance analysis
normalization on detection of differentially expressed genes of microarrays applied to the ionizing radiation respori¥ec.
in oligonucleotide microarray data analys{Senome Biol., 3, Natl Acad. Sci., USA, 98, 5116-5121.
RESEARCHO0033. Yang,Y.H., Dudoit,S., Luu,P., Lin,D.M., Peng,V., Ngai,J. and
Kepler,T.B., Crosby,L. and Morgan,K.T. (2002) Normalization and  Speed,T.P. (2002) Normalization for cONA microarray data: a
analysis of DNA microarray data by self-consistency and local robust composite method addressing single and multiple slide

regressionGenome Biol., 3, RESEARCHO0037. systematic variatiorNucleic Acids Res., 30, e15.

Kerr,M.K., Martin,M. and Churchill,G.A. (2000) Analysis of vari- Zien,A., Aigner,T., Zimmer,R. and Lengauer,T. (2001) Centraliza-
ance for gene expression microarray dataComput. Biol., 7, tion: a new method for the normalization of gene expression data.
819-837. Bioinformatics, 17 (Suppl. 1), S323-S331.

Lander,E.S. (1999) Array of hopBlat. Genet., 21, 3—4.
Li,C. and Wong,W.H. (2001) Model-based analysis of oligonuc-

leotide arrays: expression index computation and outlier detec-
tion. Proc. Natl Acad. Sci., USA, 98, 31-36. APPENDIX 1: ALGORITHM DESCRIPTION
Misra,J., Schmitt,W., Hwang,D., Hsiao,L.L., Gullans,S. and .
Stephanopoulos,G. (2002) Interactive exploration of microarray (1) Construct the data matrii(i, j), where
gene expression patterns in a reduced dimensional Spaame
Res,, 12, 1112-1120. i =1,...,n(n—total number of genes on each arnray
Moon,R.C., Thompson,H.J., Becci,P.J., Grubbs,C.J., Gander,R.J.,
Newton,D.L., Smith,J.M., Phillips,S.L., Henderson,W.R.,
Mullen,L.T., Brown,C.C. and Sporn,M.B. (1979) N-(4- dataset
hydroxyphenyl)retinamide, a new retinoid for prevention of breast
cancer in the ratCancer Res., 39, 1339-1346.
Nielsen,T.O., West,R.B., Linn,S.C., Alter,O0., Knowling,M.A.,,
O’Connell,J.X., Zhu,S., Fero,M., Sherlock,G., Pollack,&fal.
(2002) Molecular characterisation of soft tissue tumours: a gene

j =1,...,m(m—total number of arrays in the

(2) (Optional) thresholding of the data:
(2.1) Set the values iD smaller than a given value
(e.g. 200 a.u. for the Clontech data) to 0.

expression study.ancet, 359, 1301-1307. (2.2) Remove fromD genes with O intensities in at
Park,T., Yi,S.G., Kang,S.H., Lee,S., Lee,Y.S. and Simon,R. (2003) least one array, resulting in a new data matrix
Evaluation of normalization methods for microarray D&MC D'(n’ x m), wheren' < n.

Bioinformatics, 4, 33.
Patriotis,P.C., Querec,T.D., Gruver,B.N., Brown,T.R. and
Patriotis,C. (2001) ArrayExplorer, a program in visual basic for

(3) PCA of D (here and in the rest of the teRtshould be
substituted byD’ in the case of thresholding, as well as

robust and accurate filter cDNA array analyd#otechniques, n by n').

31, 862-872. (3.1) CalculateC—the covariance matrix dD:
Peterson,L.E. (2003) Partitioning large-sample microarray-

based gene expression profiles using principal components 1

analysis. Comput. Methods Programs Biomed., 70, C= 1DTD,

107-119. "=
Quackenbush,J. (2001) Computational analysis of microarray data.

Nat. Rev. Genet., 2, 418—427. whereD' denotes the transpose matrixDf
Sapir,M. and Churchill,G.A. (2000). Published: The Jackson Labor- (3.2) Calculate eigenvecto and eigenvalued of

atory Poster . the covariance matri, i.e.:

Schadt,E.E., Li,C., Ellis,B. and Wong,W.H. (2001) Feature extrac-
tion and normalization algorithms for high-density oligonuc-

leotide gene expression array dath.Cell Biochem. Suppl., CQ=0A
37(suppl.), 120-125.

Schadt,E.E., Li,C., Su,C. and Wong,W.H. (2000) Analyzing high- : S B =
density oligonucleotide gene expression array ddtaCell The rows inQ are the PCS’1, P, P
Biochem., 80, 192—202. (3.3) Calculate the scorgs= DPT.

1783



R.Stoyanova et al.

(4) Let Ri and Rg be the scores of thiesth gene along51 (6.5.1.1) If there are no otheys, for
andP,. which¢, € Z, then proceed as
(4.1) Disregard genes for Whio?é =0. in 6.4. .

(4.2) Calculate the angle;,i = 1,...,n (in radi- (6.5.1.2) Conversely, proce(_ed asin 6.5.
ans), betweer, and the vector with coordinates (6.5.2) If¢441 € Z, then the genes in these two
(RY, Ré), as follows: segments are assumed to be housekeep-

ing genesS = s, U s,4+1. Add to S the
27 + arctan( Ri / Ré), genes of any consecutive segments that
i R; <0 andR; >0, ?g lggglt)oi' ly PCA (3.2) to th
i o pply .2) to the gene
¢ = ar§tarER1/R2) ; i=1,...,n. expression levels inS. The
if R; >0 andR; >0, loadings of P; can be used
7 + arctan(R}/Ry) as normalizing factors. The
if Ri -~ 0 anng <0, expression levels of the genes
in each array should be divided
(5) Segment the part of the plane defined by the first 2 PCs by these loadings.
In p partitions. End of the Procedure

(5.1) Determine the segmefit= max(p;) — min(y;)
(5.2) Determine a step=06/p

(5.3) Define the subset of gengsin each of thep
segments, defined as

APPENDIX 2: SIMULATED DATASET

Let g;1 be the gene intensity of theth gene in the first
array ¢ = 1,2,...,500). The corresponding intensities in

sk € [(k — )8 min(g;), k8 min(g;)], the second array in SD1 were generated as follows.
k=1"“'p' g12=q12*mg])g{aupglla,3u%] ] izéb'i'yzo??éo
8i2 = q12 * MaX ddown 8i1, Pd 1= ,
(6) Determine the subset of housekeeping gé&hes g;z = q12 % gi1 et o i =351,...,500,
(6.1) Determine the number of gen@s in each (A.1)
subset;. wheregi2> = 1.2, and thexs andgBs are random numbers
(6.2) Estimate the meaM (6;), and variancey (6;), within the following intervals:
of the distribution o®y. ayp = (1,10,

(6.3) Evaluate if Bup = (gi2, gmaxl, Wheregmax = 80000,

O > MG + 1V (6r) adown = (0, 1/10],

. _ Bdown = (gmin, &i2l, Wheregmin = 0.
holds for anyk. u is a cut-off parameter, which

can be set to 1.96 if a normal distribution&fis
assumed [see body of the paper, Equation (2)l. APPENDIX 3: SIMULATED DATASET

If none of the segments satisfies the condition it gt gij be the gene intensity of theth gene in thej-th array
means that either none of the genes can serve 8% =1,2,...,500;j =1,2,...,7). Equation (A.1) describes
a housekeeping gen8 € ¥) or all genes inthe  the generation of the data in SD2:1§ substituted corres-
dataset can be assumed to be housekeeping genggndingly withg; ;, randomly generated scaling parameters
(S = D). Then the loadings ofy (3.2) may be  petween 0.3 and 3), derived from the intensities of the genes
used as normalizing factors. in the first array, wherer(, ando - are consistent with a
(6.4) The expression levels of the genes in each arragimulated gradual increase in fold of changes between 1.5 and
should be divided by these loadings. 4.5 with an increment of 0.5, both for up- and down-regulated

End of the Procedure genes. Formally,

(6.5) LetZ denote the set of these segments that satisfy aﬂp — (1.1+ ] * stefl,

the condition in 6.3. If for a certaip, ¢, € Z, ; i =1,...,7
then Aown = (0, 1/(1 + j * step],
(6.5.1) If¢y41 ¢ Z, then where step= 0.5.
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