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ABSTRACT
Motivation: Detailed comparison and analysis of the out-
put of DNA gene expression arrays from multiple samples
require global normalization of the measured individual gene
intensities from the different hybridizations. This is needed
for accounting for variations in array preparation and sample
hybridization conditions.
Results: Here, we present a simple, robust and accurate pro-
cedure for the global normalization of datasets generated with
single-channel DNA arrays based on principal component ana-
lysis. The procedure makes minimal assumptions about the
data and performs well in cases where other standard proced-
ures produced biased estimates. It is also insensitive to data
transformation, filtering (thresholding) and pre-screening.
Contact: Christos.Patriotis@fccc.edu

INTRODUCTION
The development of high-density DNA arrays (oligonuc-
leotide and cDNA) has revolutionized our ability to char-
acterize biological processes and samples genetically by
monitoring the relative expression of thousands of genes sim-
ultaneously (Bowtell, 1999; Debouck and Goodfellow, 1999;
Dugganet al., 1999; Lander, 1999). To meet the challenges
for interpretation of this complex data, sophisticated soft-
ware packages have become available for analysis of the gene
expression profiles, such as ScanAnalyze (Eisen and Brown,
1999), ArrayExplorer (Patriotiset al., 2001) and ImaGene
(Biodiscovery, Inc.). An important, but still unresolved, issue
is associated with the normalization of the relative expression
of genes across a series of microarray experiments. In order to
compare the results from multiple samples, which is the ulti-
mate goal of these studies, it is obligatory that the individual
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array datasets be normalized to correct for the inherent exper-
imental differences. The critical element in this process is the
discrimination of the interesting, biological variation from
the obscuring variation, which is related to the experimental
conditions (Harteminket al., 2001). This is why the initial
attempts towards normalization of array datasets relied on the
concept that a group of genes could be identifieda priori and
serve as ‘housekeeping’ genes, assuming that their expres-
sion will reflect directly the obscuring experimental variation.
As discussed in detail below, if such a subset of genes could
be identified reliably, then well-defined normalization factors
could be estimated to within the accuracy inherent in the meas-
urements. Unfortunately, as shown by others (Butteet al.,
2001; Selveyet al., 2001) and by us in this report, this simple
concept works only in very limited cases. (Here and in the
rest of the paper, we will refer to thea priori specified
housekeeping genes as ‘designated’ in order to distinguish
them from those determined to be the ‘true’ housekeeping
genes. The latter represent the subset of genes whose expres-
sion is invariant to the particular biological and/or experi-
mental variables in the multiple microarray experiments being
compared.)

The realization that in most of the cases the ‘designated’
housekeeping genes cannot be used for reliable normaliza-
tion has spurred the development of alternative approaches for
normalization. The majority of these approaches determine
normalization factors on the basis of averages over the beha-
vior of the entire set of genes measured (Schuchhardtet al.,
2000). Typically, these methods utilize the mean or median of
the array intensities (Quackenbush, 2001) and linear (Golub
et al., 1999) or orthogonal regression (Sapir and Churchill,
2000). A variety of non-linear techniques were also proposed
(Schadtet al., 2000, 2001; Li and Wong, 2001; Bolstadet al.,
2003).

There is also a series of methods that identify a subset of
genes in the data that can be assumed as housekeeping (Zien
et al., 2001; Kepleret al., 2002). All these approaches perform
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satisfactorily when the following two assumptions about the
data are met:

(1) the majority of the genes (in the fitting segment for the
non-linear approaches, or overall) are not affected by
the experimental variables, i.e. they can all be regarded
as housekeeping genes; and

(2) the subset of differentially expressed genes are ‘activ-
ated’ symmetrically, i.e. the overall intensity change of
up- and down-regulated genes is similar.

Here we present a novel normalization approach that per-
forms satisfactorily even when the conditions above are not
met, which is the most commonly observed scenario. In con-
trast to the methods requiring the selection of a baseline array,
this method analyses the entire dataset simultaneously, and, as
such, it is considered a complete data method (Bolstadet al.,
2003). The goal of the technique is to determine in a multi-
array experiment if there is a subset of genes whose expression
may be considered unaffected by the ‘interesting’ (biological)
sources of variation and if there are such, to identify this set of
specific, ‘data-driven’ housekeeping genes and use them for
normalization. Briefly, if the results from each array meas-
urement are represented in a multi-dimensional vector space
where each axis is a different sample, then the entire experi-
ment can be represented as a series of points corresponding to
the strength of each gene’s expression in each sample meas-
ured. If a set of genes with an unchanged relative expression
is present, their intensity levels will represent points along a
straight line through the origin. We present a principal com-
ponent analysis (PCA)-based method for identifying such a
line, if one exists. The factors determined from the expression
of these genes can be used to normalize the gene expression
in the individual array datasets.

MATERIALS AND METHODS
Theory
Consider a gene expression dataset consisting ofm arrays
with n genes each. LetD be the data matrix containing in
its rows the measured expression levels, and letgij be the
measured expression level of thei-th gene in thej -th array
(i = 1, . . . ,n, j = 1, . . . ,m). We seek to identify a subset,S,
of s genes (s ≤ n) whose expression remains constant over
the experimental conditions of the study. Mathematically, for
the genes inS the following equations hold:

qjgij = ci or gij = ci/qj ,

whereqj is thej -th normalization constant andci is the true
concentration of thei-th gene, which is constant across the
samples. If we plot the pointsgij in anm-dimensional space,
we can see that they lie along a line through the origin, which
has projections along the axes of{1/qj }. If we can find such a
line, we will have identified our desired relative normalization

constants (relative since unless at least one of thecis is known,
it is impossible to normalize the data absolutely).

We now turn to the problem of identifying the genes inS.
The obvious method is to calculate the densities in the cloud
of n data points in them-dimensional data space, which rep-
resent the directions ofn gene levels in them observations. In
reality, this is difficult because there are approximatelyNm−1

directions for examining if each orientation is divided intoN

segments. In order to reduce the dimensions of the space that
needs to be examined, we use PCA to identify the directions
along which the principal variations of the genetic expressions
lie in the originalm-dimensional space. We project the data
points onto the first two of these directions and examine their
angular distribution to determine if a line through the origin
is present. Note that the original line in the full space need not
lie in this plane as its projection into the plane will also be a
line through the origin.

PCA is used commonly for reducing the dimensionality of
complex data (Anderson, 1971) and has been used previously
in the analysis of microarray data from time-course experi-
ments (Alteret al., 2000, 2003), for normalization of gene
expression ratios obtained from two different microchips of
two-channel arrays (Nielsenet al., 2002) and for partition-
ing large-sample microarray-based gene expression profiles
(Peterson, 2003). It is also an inseparable part for exploration
of large genomic datasets (Misraet al., 2002). Previously,
we have applied the PCA technique for removing ‘unwanted’
variation in multi-spectral datasets (Stoyanova and Brown,
2002).

Briefly, PCA identifies the directions of the largest vari-
ations in the data via the principal components (PCs), and
represents the data in a coordinate system defined by the
PCs (�P1, �P2, . . .), as follows:

D = R1 �P1 + R2 �P2 + R3 �P3 + · · · + Rm
�Pm, (1)

where �Pj (1×m) andRj (n×1) are row and column matrices;
Rj contain the projections of the data along the PCs (j =
1, . . . ,m), generally called scores. Below, some of the relevant
properties of the PCs are listed.

(1) �Pj are eigenvectors of the data-covariance matrix (cal-
culated around the origin, rather than around the mean)
and are orthonormal, i.e.

�Pi · �Pj =
{

0 if i �= j

1 if i = j .

(2) The PCs are ordered by the decreasing amount of vari-
ation in the data they explain. Let�1, �2, . . . ,�m

be the eigenvalues of the covariance matrix (�1 >

�2 > · · · > �m). Each PC explains a portion of the
total variance ofD, proportional to its corresponding
eigenvalue.

(3) The magnitude ofRj is proportional to its correspond-
ing eigenvalue,�j .
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(4) D can be represented sufficiently with fewer thanm

PCs [Equation (1)]. PCA provides a representation of
the data in a lower-dimensional space of significant
variables.

(5) The PCs are a linear combination of the original data.
The coefficients of this linear combination (Ri) are
typically referred to as loadings and represent the pro-
jections of the PCs along the axes of the original
m-dimensional space.

(6) The PCs minimize the squared distances of the variables
(gene-expression levels) and themselves.

From the last three properties, it follows that the loadings of the
first PC may serve as normalization coefficients of the arrays.
In many cases, when the assumptions (1) and (2) (see Introduc-
tion) are met, as discussed in detail below, PCA can provide
directly the normalization coefficients sought. In other cases,
we can use the first two PCs to detect linear behavior in a sub-
set of genesS (s ≤ n) that are the ‘true’ housekeeping genes.
PCA applied only to the genes inS will identify the appropri-
ate normalization line in the entirem-dimensional data space.
Its projections can then be used as normalization factors.

The procedure [dubbed PCA(line)] tests automatically
for the existence of and detects the group of genes, which
are distributed ‘tightly’ along a line in the plane defined by
the first two PCs. We chose this plane because by defini-
tion it contains the largest variations in the expression levels.
Although the actual straight line of the desired normaliza-
tion may not lie completely in this plane, its projection in
the plane is also a straight line and will serve to identify the
desired set of genes. To identify such a line, we divide the part
of the plane that contains all the points into small angular seg-
ments and determine the number of data points (genes) in each
segment. The segment(s) containing the data-driven house-
keeping genes will contain a disproportionally large density
of points. This procedure is described below and given in
detail in Appendix 1.

Initially, we assumeS is an empty set (S ≡ Ø). In the plane
defined by�P1 and �P2, we partition the angle through the origin
defined by the genes with maximal and minimal components
on �P2 in p equal angular segments. Letsk (k = 1, . . . ,p)
be the subset of genes inD, that belong to thek-th segment
(s1 ∪ s2 ∪· · ·∪ sp = D). We recommend thatp be set initially
to contain on average at least 10 genes per segment. Letθk

be the angular densities defined as the number of genes in
each segment,sk, andM(θk) andV (θk) be, respectively, the
sample mean and variance ofθk. Then, the density of thek-th
segment is considered to be significant if

θk > M(θk) + µ
√

V (θk), (2)

whereµ is a parameter indicating the number of standard
deviations above the mean that is required for significance. If
a normal distribution ofθk is assumed, thenµ = 1.96 will

correspond to a one-sided test with a type-I error of 2.5%.
However, in most cases, due to different procedures for
microarray image quantification as well as the specific pre-
filtering of the data, the distribution ofθk is unknown. In
cases where a normal distribution ofθk cannot be assumed, it
is recommended that their histogram be examined andµ be
set appropriately. For added stringency of the test, the genes
in segmentsk are assumed to be housekeeping genes only if
θk+1 of the neighbouring segmentsk+1 is also tested signific-
ant. Then the genes in the two segments are merged inS, i.e.
S ≡ sk ∪ sk+1. If the angular density of the genes of further
contiguous segments is detected to be significant, then these
genes are added toS. After all segments are tested, PCA is
applied toS and the reciprocal values of the loadings of the
resultant first PC are used as normalization coefficients.

If the procedure failed to identify at least two significant
contiguous segments, then either all the genes in the data can
be assumed to be housekeeping (S ≡ D), or, in the extreme
situation, the housekeeping genes are either too few to be
detected or not existent (S ≡ Ø). In the first case, the loadings
of the first PC from the initial PCA ofD are the true normal-
ization coefficients and can be used for direct normalization.
There is not very much to be done in the second case—the
PCA-derived normalization would be as erroneous as the ones
produced by any other linear technique. Letλ1 be the fraction
(in per cent) of the first eigenvalue,�1, from the total variance
in the data. In this case, a lowλ1 (in our experience<60%)
will be indicative of a lack of normalizing genes.

Biological samples (datasets)
Human ovarian surface epithelial cell lines Microarray
datasets obtained from experiments with RNA of human
ovarian surface epithelial (HOSE) cells were analyzed using
Atlas 1.2 Human arrays (ClonTech). The details of array pre-
paration and data extraction are described elsewhere (Patriotis
et al., 2001). Briefly, the HOSE cells were derived from
a short-term primary cell culture obtained from one of
the ovaries of an individual predisposed to ovarian cancer.
The short-term HOSE cell culture was transduced with a
Cytomegalovirus-based vector expressing the Simian Virus-
40 large T-antigen. As a result, thein vitro lifespan of the
cells, while still ‘mortal’ (118M), was considerably extended,
leading to the spontaneous outgrowth of an ‘immortal’/non-
transformed cell line (118Im). Following multiple passages
in culture, the 118Im cell line gave rise spontaneously to
cells that acquired anchorage-independent growth character-
istics and, ultimately, the potential to grow tumoursin vivo
when inoculated in nude mice (118NuTu) (Frolov, A.et al.,
unpublished data). In the first experiment, the cDNA probes
were derived from total RNA purified from 118M, 118Im and
118NuTu. In the second experiment, microarray data were
obtained from 118NuTu cells treated for different lengths of
time (0, 24, 48 and 72 h) with the synthetic retinoic acid
derivative Fenretinide (4-HPR) (Moonet al., 1979).
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Lymphoma data (LD)
The dataset was constructed from the supplementary datasets
of Golub et al. (1999). The microarray measurements were
performed with RNA of samples obtained from bone marrow
and peripheral blood from patients with acute lymphoblastic
leukemia (ALL) or acute myeloid leukemia (AML) at the time
of diagnosis using high-density oligonucleotide Affymetrix
arrays. In the paper referred to, the data were normal-
ized by pair-wise linear regression (LR) between the first
sample (baseline) and the rest of the samples in the data-
set. Only genes with satisfactory quality (marked with ‘P’
in the datasets provided) in each pair were considered for the
regression. The normalized datasets, as well as the normaliz-
ation factors, are supplied at http://www-genome.wi.mit.edu/
cgi-bin/cancer/datasets.cgi. The data used here were non-
processed and ‘non-normalized’, and the combined datasets
resulted in a data matrix containing 72 arrays and 7129 genes.

Simulated data
The values in the simulated datasets were chosen to be real-
istically probable, based on our experience with data obtained
with the Atlas 1.2 CLONTECH arrays (Patriotiset al., 2001).
The number of genes was set to 500, in agreement with
our observation that between 30 and 50% of the genes are
expressed in any of the samples investigated in our lab. In
the first array, the expression levels,gi1 [in arbitrary units
(a.u.)], were simulated using the relationgi1 = 2u, whereu

is uniformly distributed between 1 and 16.
In all simulated datasets of pairs of arrays a multiplication

factor of 1.2 was applied to the second array, equivalent to
q1 = 1 andq2 = 1.2. Gene intensities were assumed to be
background-corrected, and (unless noted otherwise) signals
with intensities less than 200 were zeroed (thresholded).

‘Noise’ data
The sources of noise in microarray datasets are multiple and
complex, and they contribute simultaneously with variable
amounts to the total variance in the data. Generally, the total
noise contribution to the measured signal represents a vari-
able mixture of the contribution of two components: one is
independent of gene intensity and affects the expression of all
genes equally, and the other is gene-dependent and increases
with the magnitude of the gene expression. To investigate
the contribution of noise to the process of normalization, we
simulated two pairs of replicate arrays, as described above.
Random noise was added to each array. In the first set, the
noise was gene independent (N1)—uniformly distributed ran-
dom noise between−2500 and 2500—and in the second set,
a gene-dependent (N2), uniformly distributed noise whose
magnitude was±10% of the gene intensities. Formally,

N1 = −2500+ 5000u

N2 = gi1,2

10
(2u − 1)

u = U(0, 1). (3)

‘Signal’ dataset 1
‘Signal’ dataset 1 (SD1) contained two pairs of simulated
arrays. The first pair satisfied conditions (1) and (2) (see Intro-
duction) by choosing a substantial number of the genes to be
housekeeping (250) and the number and magnitude of change
of up- and down-regulated genes to be equal. The second pair
was constructed to illustrate a scenario where these assump-
tions are not met: the housekeeping genes (150) were not
a majority, and more genes were ‘up-regulated’ (200) than
‘down-regulated’ (150) (the details about the simulated up-
and down-regulation are given in Appendix 2). Two independ-
ent sets of random noise were added to each array, generated
as the sum of half of both gene-dependent and -independent
noise [Equation (3)], i.e.12(N1 + N2).

‘Signal’ dataset 2
‘Signal’ dataset 2 (SD2) contained eight arrays with 500 genes
each. The first array in SD2 was generated randomly, as
described above. The gene expression levels of the remain-
ing seven arrays were generated with the idea of recreating
a scenario where progressive changes occur in the studied
samples (e.g. time-response to treatment or undergoing a pro-
cess of immortalization and malignant transformation). The
details of simulation parameters for up- and down-regulation
are given in Appendix 3. The arrays were multiplied with
coefficients generated at random between 0.3 and 3. Finally,
random noise, generated as described for SD1, was added to
each array.

RESULTS
Housekeeping genes in HOSE cells
Figure 1(a) depicts the correlation plot of the ‘designated’
housekeeping genes in the first experiment with HOSE cells:
118M on thex-axis, and on they-axis 118Im (black series) and
118NuTu (gray series). The expression of these genes is well
correlated (R2 = 0.96), and, in this case, they can be used for
normalization of the data. Figure 1(b) depicts the correlation
plot of the expression of the same set of housekeeping genes
in the 118NuTu, untreated (0 h,x-axis) and treated with 4-
HPR for 24, 48 and 72 h (y-axis; black circles, gray triangles
and shaded squares, respectively). In this case, the correla-
tion between the expression of the ‘designated’ housekeeping
genes is quite poor (R2 = 0.43, 0.81 and 0.85, respectively).
From these data, it is clear that the expression profiles of the
‘designated’ housekeeping genes are changed non-uniformly
in the cells in response to the drug treatment.

‘Noise’ data
Figure 2(a) and (b) (left panels) depict the correlation between
the data in the two pairs of simulated arrays in this dataset
together with the linear trendline through the origin. Note that
the regression coefficient in both cases is very close to the true
value of the multiplication factor 1.2. The fit is slightly tighter
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Fig. 1. Correlation plots of the intensities of the ‘designated’ housekeeping genes in two microarray experiments. (a) HOSE cell lines at
different stages of malignancy, on thex-axis 118M, and on they-axis, 118Im (black) and 118NuTu (gray). Regression lines are indicated in
black and gray, respectively; (b) 118NuTu cell line following treatment with Fenretinide, on thex-axis at 0 h and on they-axis after 24 (black
circles), 48 (gray triangles) and 72 h (squares) of treatment. Regression lines are indicated in black solid, black dashed and gray, respectively
(note that the black solid and black dashed regression lines are overlapping).

for the second dataset (R2 = 0.986 versusR2 = 0.992),
which reflects the smaller contribution of the noise in the
overall gene intensities. Figure 2(c) (left panel) depicts the
correlation between two replicate array datasets obtained from
118M. The genes depicted by gray squares represent the ‘des-
ignated’ housekeeping genes. On the right panels in Figure 2
the correlation of the logarithmic transforms of the data from
the left panels are presented (due to the restriction of the logar-
ithmic function to only positive numbers, for this comparison,
only genes that are expressed simultaneously in the two arrays
are used). Comparison of the graphs of simulated [Fig. 2(a)
and (b)] and real [Fig. 2(c)] noise indicates the similarity in
the overall distributions, although the real data have a greater
variance.

‘Signal’ dataset SD1
The graphs of the two pairs of arrays in this dataset, together
with the regression line through the origin, are presented in
Figure 3. The housekeeping genes are marked in green. In
the case of the first pair [Fig. 3(a)], it is clear that the regres-
sion line is along the line of normalization and, therefore,
all the above reference normalization methods will perform
well. Obviously, this is not the case with the second data-
set [Fig. 3(b)], and we applied the PCA (line) procedure for
determining the subset of housekeeping genes.

After thresholding, 296 genes were found with non-zero
intensities simultaneously in both arrays (132 up-regulated,
88 down-regulated and 76 housekeeping). PCA was applied
to this set (λ1 = 96%). The representation of the data along
the first two PCs is shown in Figure 4(a) [note that the first

PC, �P1, is along the regression line of this rotated version
of Fig. 3(b)]. The procedure for automatic detection of the
housekeeping genes is schematically illustrated in Figure 4(b).
The angle encompassing all data points (between 1.069 and
2.438 radians) was divided into 50 segments. The histogram
of the angular densitiesθk (k = 1, 2,. . . , 50) is presented in
Figure 4(c) [M(θk) = 5.92 and

√
V (θk) = 5.18]. Forµ =

1.96, three contiguous segments, starting atp = 22, contained
points with a significantly higher density [Equation (2)]. A
total of 63 points (subsetS) from these segments were extrac-
ted. These genes (orange points), together with the original set
of housekeeping genes (in green), are presented in Figure 4(d).
The collinearity between the identified genes and the house-
keeping genes is apparent. Thirty-two of the genes inS belong
to the original set of 76 housekeeping genes in the analyzed
data, indicating that the procedure recovered successfully a
substantial fraction of them (32/76, or>40%). Moreover, the
procedure detected an additional 31 genes whose expression
changes in accordance with a housekeeping gene behavior.
PCA was applied to the data inS (λ1 = 99%), and the
first PC loading factors wereq1 = 0.635 andq2 = 0.773,
corresponding to a relative normalization factor of 1.217.

Simulated dataset SD2
PCA was applied to 205 genes with non-zero intensities in
all eight arrays (88 up-regulated, 52 down-regulated and 64
housekeeping) (λ1 = 96%). The points in the�P1 and �P2

plane were within 1.079 and 1.938 radians. As in the case of
SD1, the densities of points in 50 segments were calculated
(M(θk) = 4.08 and

√
V (θk) = 5.21). Forµ = 1.96, three
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Fig. 2. Correlation plots of gene intensities in replicate arrays, displayed on untransformed (left panels) and logarithmic scales (right panels)
with indicated LR line (gray): (a) simulated data, containing gene-independent noise; (b) simulated data, containing gene intensity-dependent
noise; (c) two replicate arrays of 118M cell line. The genes shown in gray squares represent the designated housekeeping genes included in
the arrays by the manufacturer.
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Fig. 3. Correlation plots of gene intensities of two simulated array datasets (SD1) with indicated housekeeping genes (green squares) and
indicated LR line (orange): (a) ‘symmetric’ case, where the majority of the genes are housekeeping and the number and magnitude of up-
and down-regulated genes is similar; (b) the housekeeping genes are of a relatively smaller number, and the up-regulated genes dominate the
distribution.

contiguous segments containing a total of 64 points (subsetS)
contained a significant number of points. The majority of
the points inS belonged to the original set of housekeep-
ing genes analyzed (44, or 69%), and the remaining 20 were
split between the 12 up-regulated and eight down-regulated
genes. PCA was applied to the data inS (λ1 = 99%), and the
normalization coefficientsqj (j = 1, . . . , 8) were calculated
as the loadings of the first PC.

We compared the accuracy of the PCA(line)-estimated nor-
malization factors with the ones estimated by LR and mean
(MEAN). We scaled all normalization factors so that their
sum was equal to 1, and the correlation between the true
values (x-axis) and the estimated values (y-axis) are presen-
ted in Figure 5(a). Although the overall correlation between
the true and estimated normalization factors is quite good
[R2 = 0.9964, 0.9862 and 0.9726 for PCA(line), LR and
MEAN estimates, respectively], it is clear that PCA(line)
provides the best estimates. We also calculated the error for
each individual array, defined as the percentage difference
of the estimated from the true normalization factor, and the
minimum, maximum and average error values are presented
in Figure 5(b). This analysis indicated that the error of the
PCA(line)-derived estimates is on average lower by a factor
of 2 and 3 as compared with the ones derived by LR and
MEAN, respectively.

We further investigated the effect of data thresholding on the
PCA(line) procedure. We re-analyzed SD2 by applying PCA
to all 500 genes in the dataset. Since some of the scores along
�P2 were negative, the data points spanned the entire plane
(between 0.03 and 6.27 radians). In this case, we setp = 200
andµ = 4. Two consecutive segments [Fig. 5(c)], containing

a total of 77 genes, were determined to have significant angu-
lar densities. The overwhelming majority of genes (55) in this
set belonged to the original set of housekeeping genes. The
housekeeping gene sets derived by PCA (line) on thresholded
and unfiltered data were strongly overlapping—all but four
were identical to the 64 housekeeping genes determined with
the thresholded data. Finally, the PCA-determined normaliz-
ation factors in this case were virtually identical to the ones
determined with the thresholded data.

Lymphoma Data
PCA was applied to all 7129 genes in the dataset (λ1 =
88.31%). All loadings of �P1 were scaled by the first one,
resulting in a normalization factor of 1 for the first array.
Figure 6(a) depicts the comparison between LR- and PCA-
derived (yellow circles) values. The high correlation (R2 =
0.99) between the two series is apparent. Further, we applied
the PCA(line) procedure. Three contiguous segments (from a
total of 200), containing 1095 genes, were above the threshold
[M(θk) = 35.64,

√
V (θk) = 72.21,µ = 4]. PCA was applied

to the intensities of the genes inS (λ1 = 93.85%) and the load-
ings of �P1 rescaled appropriately and compared with the LR
results [Fig. 6(a), black circles]. While showing an overall
good agreement with the LR-derived results (R2 = 0.92),
they also indicate, in some individual cases, substantial dif-
ferences with the PCA(line)-estimated values. The average
absolute value of the relative difference between LR- and
PCA-derived factors was 7.52%, with a range of 0.07–30.84%
in the case of array #65 [Fig. 6(a), marked with an arrow]. We
then examined the correlation of the intensities of the genes
marked with ‘P’ (those of satisfactory quality) in arrays # 1
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Fig. 4. (a) The data from Figure 3b, presented in the PC-plane; (b) schematic illustration of segmentation of the part of the PC-plane containing
the data; (c) histogram of the angular densities of the segments; (d) ‘true’ (green) and PCA(line)-detected housekeeping genes (orange).

and # 65 [Fig. 6(b)]. The normalization lines [represented in
orange and blue, respectively, for LR and PCA(line)] indicate
that in the case of LR, a handful of strongly expressed genes
are driving the normalization. A similar graph was obtained
with arrays #1 and #58, which also showed a large difference
between the two normalization procedures.

To determine how the number of segments in the plane
impacts the estimated normalization coefficients, we ran the
procedure withp = 100, 300, 400 and 500. In all cases,
the procedure extracted essentially the same subset of nor-
malizing housekeeping genes. The number of genes for each
p was 1410, 1192, 1092 and 1162, respectively. We estim-
ated a (5× 5) correlation matrix of the derived normalization
factors for each value ofp. All coefficients in the correlation
matrix were greater than 0.994, indicating the high degree
of reproducibility between the derived normalization factors
for different numbers of segments (p). We also estimated

the coefficient of variation (COV) between the five series of
estimates. The average COV for the 72 normalization factors
was 1.71%.

DISCUSSION
Normalization of gene intensities in multi-array experiments
is crucial for the ultimate biological interpretation to be
meaningful (Hoffmannet al., 2002). Only after proper nor-
malization can changes in expression of a given gene amongst
the studied samples in the experiment be characterized quant-
itatively. Conversely, erroneous (or no) normalization may
lead to inaccurate estimation of the changes in gene expres-
sion including wrong conclusions with regard to their up- or
down-regulation. While optimal normalization is still a sub-
ject of discussion, individual investigators are faced daily
with many questions about the analysis of these complex
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Fig. 5. (a) Relation of ‘true’ normalization factors and factors estimated via PCA(line), LR and MEAN in a simulated dataset containing
eight arrays. The black line indicates the line of identity; (b) ranges (minimum and maximum) and average of the absolute values of relative
errors of estimation of the normalization factors in the three estimates; (c) histogram of the angular densities of the segments in the PCA(line)
for unfiltered data.

data. For example, should the array data be logarithmic-
ally transformed prior to normalization; should low intensity
spots be discarded, and, if so, what is the right cut-off
limit for this operation; should the mean or median intens-
ity of the arrays be used for normalization; or alternat-
ively, do ‘designated’ housekeeping genes play reliably their
assigned role?

In this report, we address all these questions and present a
simple procedure for normalization of datasets generated with
single-channel arrays based on PCA. The procedure makes

minimal assumptions about the data and does not require any
pre-processing, pre-screening or filtering of the data.

The need for alternative normalization techniques arose
with the realization that genes assumed as housekeeping and
‘designated’ by the manufacturers as such on arrays are not
reliable for accurate data normalization. In the first experiment
with HOSE cells, investigating a set of three cell lines with
close genetic origin, the ‘designated’ housekeeping genes
change in a coordinated fashion, and it is likely that they
fulfill their role as normalizing genes. This result is anticipated
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Fig. 6. (a) Correlation between LR- estimated (x-axis) and PCA- or PCA(line)-estimated (yellow series and black series, respectively)
normalization factors for the LD. The orange line indicates the identity line. The arrows point at arrays with a large relative difference;
(b) correlation plots of intensities of genes marked with ‘P’ in arrays #1 and #65. The normalization lines derived by the LR and PCA(line)
estimates are indicated in orange and blue, respectively.

since the three cell lines were cultured under standard growth
conditions and the observed differences in the global gene
expression profiles are related to only a small subset of genes
associated with the sequential transition of the cells through
the process of malignant transformation. Conversely, in the
second experiment, the ‘designated’ housekeeping genes
appear to change differentially in response to treatment with
Fenretinide. This is consistent with the dramatic biochem-
ical changes associated with the process of cells undergoing
programmed cell death (Querec, T.D.et al., manuscript in pre-
paration). The major alterations in the global gene expression
profile that precedes and leads to the triggering of apoptosis
affect the expression states of most housekeeping genes.

Pre-processing of the data prior to normalization is an
important issue. Typical steps include background correc-
tion, logarithmic transformation and/or thresholding. We
believe that the background should be removed prior to nor-
malization, so that the normalization line goes through the
origin. Although we simulated gene intensities, as described
in the Materials and methods section, there is no theoretical
basis to assume that real data comply with this distribution.
Log-transformation has the advantage of transforming the
noise distributions approximately to Gaussian. This property
can be used for estimating the probabilities of differentially
expressed genes (Kerret al., 2000). The PCA-based normal-
ization procedure, however, is based on identifying the genes
along the normalization line in the dataset and is invariant to
prior transformation. Moreover, based on ‘noise’-simulated
data, as well as from the HOSE cell replicates, it is apparent
that log-transformation may be detrimental to the analysis as

it increases the relative contribution of the gene-independent
noise in genes expressed at low levels. Because of these
adverse effects, and the fact that by estimating the numbers
of genes in the segmented plane the PCA(line) procedure
allows low-expressed genes to be taken into consideration,
we chose to implement our normalization procedure on raw
(untransformed) data.

The described procedure is also insensitive with respect to
prefiltering (thresholding) of the data, given that the para-
meterµ [Equation (2)] is adjusted appropriately. In the case
of ‘thresholded’ data,µ = 1.96 will be sufficient to discrim-
inate between the sought housekeeping genes and the rest
[Fig. 4(c)]. Thisµ-value will merely distinguish the ‘noise’
genes from the signal ones in non-prefiltered data. Thus, a lar-
gerµ [as in the case shown in Fig. 5(c)] is required to detect
the normalizing genes sought. We therefore strongly recom-
mend exploring the characteristics of the angular histogram
of the data before setting the appropriateµ-value.

The only assumption made about the distribution of the
intensities of the houseskeeping genes for PCA(line) is that
they are distributed along a straight line. This assumption
is very sensible for single-channel arrays, unlike the case
of the double-channel arrays, where it is known that a non-
linear dependence exists between the gene expression levels
among the two channels (Yanget al., 2002). Furthermore, it
has been shown recently that even for these arrays the lin-
ear and non-linear normalization methods perform similarly
(Park et al., 2003). In our experience, most of the non-
linear effects are due to improper scanning settings, which,
besides the unwanted variations, produce saturated spots also.
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We consider the identification of the housekeeping genes
with intensities within the linear range, as proposed by the
PCA(line) routine, to be a reliable and robust source for
normalization.

The linearity is the basis of the stability of the approach with
respect to the parameterp—it is sufficient to detect a small
subset ofS to identify uniquely the normalization line. Con-
versely, a larger set of genes along this line will not impede
the calculation of the normalization parameters. Still, in order
to obtain meaningful histograms of the number of genes in
each segment, we recommend thatp initially be selected to
contain on average at least 10 genes per segment. The con-
dition for linearity naturally excludes genes with saturated
expression levels and it thus contributes significantly to redu-
cing the interference of these typically large signals in the
normalization process.

Conditions (1) and (2) (see Introduction) are instrumental
for the successful performance of the referenced normaliz-
ation procedures. However, in single-channel arrays, such
as the Affymetrix platform and radiolabeled filter arrays,
it is a common phenomenon that the detected number of
up-regulated genes is larger than the number of the down-
regulated ones. This is due to the fact that the signals of genes
expressed at low levels and undergoing down-regulation are
close to or below the background level, and, therefore, their
change is either undetected or deemed statistically insignific-
ant. When these conditions hold, as in the case of the simulated
data in Figure 3(a), PCA will be successful in determining
the normalization factors with the following advantages, as
compared with the other referenced techniques:

• It provides an objective measure through the magnitude
of the first eigenvalue of how ‘tightly’ the data are
distributed along the first PC.

• It simultaneously determines normalizing coefficients for
the entire dataset. A common approach for normalization
of multiple experiments is to choose one array as the
baseline and to apply normalization (Golubet al., 1999).
In order to avoid the lack of symmetry of this procedure,
the baseline is computed frequently as the average gene
expression profile (Tusheret al., 2001). This is achieved
naturally with PCA as the first PC is an approximation of
the ‘average’ array in the dataset.

• Viewing the entire set of multiple array data simul-
taneously allows proper down-weighing of the ‘noise’
genes, which, during individual comparisons, may affect
strongly the calculation of the normalization coefficients.

The advantages of PCA are underscored in the LD example,
where a single PCA step applied to the entire dataset estimates
normalization coefficients that are almost identical to the ones
determined by the pair-wise LR procedures, using only well
measured genes in each pair [Fig. 6(a)].

The PCA(line) procedure, besides having the above lis-
ted general advantages of PCA, can also deal successfully
with situations where conditions (1) and (2) do not apply. In
the simulated datasets, the PCA(line) results are closest to
the true values as judged by the relative mean-square errors
from the three procedures tried. Visual inspection of the
LR and PCA(line) normalization lines in the graph shown
in Figure 6(b) suggests that this is also true for the Affy-
metrix data. In addition, it eliminates the need for using a
baseline array, which, as shown by Bolstadet al. (2003), has
a clear disadvantage relative to the complete data methods for
normalization such as the one proposed here.

In conclusion, the proposed normalization procedure
improves significantly the accuracy and precision of the meas-
ured gene expression levels. Such procedures will become
even more relevant with further refinement and standardiza-
tion of the microarray technology.
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APPENDIX 1: ALGORITHM DESCRIPTION
(1) Construct the data matrixD(i, j ), where

i = 1, . . . ,n(n—total number of genes on each array),

j = 1, . . . ,m(m—total number of arrays in the

dataset).

(2) (Optional) thresholding of the data:
(2.1) Set the values inD smaller than a given value

(e.g. 200 a.u. for the Clontech data) to 0.

(2.2) Remove fromD genes with 0 intensities in at
least one array, resulting in a new data matrix
D′(n′ × m), wheren′ ≤ n.

(3) PCA of D (here and in the rest of the textD should be
substituted byD′ in the case of thresholding, as well as
n by n′).
(3.1) CalculateC—the covariance matrix ofD:

C = 1

n − 1
DTD,

whereDT denotes the transpose matrix ofD.

(3.2) Calculate eigenvectorsQ and eigenvalues� of
the covariance matrixC, i.e.:

CQ = Q�

The rows inQ are the PCs�P1, �P2, . . . , �Pm.

(3.3) Calculate the scoresR = D PT.
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(4) Let Ri
1 andRi

2 be the scores of thei-th gene along�P1

and �P2.

(4.1) Disregard genes for whichRi
2 = 0.

(4.2) Calculate the angleϕi , i = 1, . . . ,n (in radi-
ans), between�P2 and the vector with coordinates
(Ri

1, Ri
2), as follows:

ϕi =




2π + arctan(Ri
1/R

i
2),

if Ri
1 ≤ 0 andRi

2 > 0,

arctan(Ri
1/R

i
2)

if Ri
1 > 0 andRi

2 > 0,

π + arctan(Ri
1/R

i
2)

if Ri
1 > 0 andRi

2 < 0,

i = 1, . . . ,n.

(5) Segment the part of the plane defined by the first 2 PCs
in p partitions.

(5.1) Determine the segmentθ = max(ϕi) − min(ϕi)

(5.2) Determine a stepδ = θ/p

(5.3) Define the subset of genessk in each of thep
segments, defined as

sk ∈ [(k − 1)δ min(ϕi),kδ min(ϕi)],
k = 1, . . . ,p.

(6) Determine the subset of housekeeping genesS.

(6.1) Determine the number of genesθk in each
subsetsk.

(6.2) Estimate the meanM(θk), and variance,V (θk),
of the distribution ofθk.

(6.3) Evaluate if

θk > M(θk) + µ
√

V (θk)

holds for anyk. µ is a cut-off parameter, which
can be set to 1.96 if a normal distribution ofθk is
assumed [see body of the paper, Equation (2)].

If none of the segments satisfies the condition it
means that either none of the genes can serve as
a housekeeping gene (S ≡ ∅) or all genes in the
dataset can be assumed to be housekeeping genes
(S ≡ D). Then the loadings of�P1 (3.2) may be
used as normalizing factors.

(6.4) The expression levels of the genes in each array
should be divided by these loadings.

End of the Procedure

(6.5) LetZ denote the set of these segments that satisfy
the condition in 6.3. If for a certainq, ζq ∈ Z,
then

(6.5.1) If ζq+1 /∈ Z, then

(6.5.1.1) If there are no otherqs, for
which ζq ∈ Z, then proceed as
in 6.4.

(6.5.1.2) Conversely, proceed as in 6.5.

(6.5.2) If ζq+1 ∈ Z, then the genes in these two
segments are assumed to be housekeep-
ing genes;S ≡ sq ∪ sq+1. Add to S the
genes of any consecutive segments that
belong toZ.
(6.5.2.1) Apply PCA (3.2) to the gene

expression levels inS. The
loadings of �P1 can be used
as normalizing factors. The
expression levels of the genes
in each array should be divided
by these loadings.

End of the Procedure

APPENDIX 2: SIMULATED DATASET
Let gi1 be the gene intensity of thei-th gene in the first
array (i = 1, 2,. . . , 500). The corresponding intensities in
the second array in SD1 were generated as follows.∣∣∣∣∣

gi2 = q12 ∗ min[αupgi1,βup] i = 1, . . . , 200,
gi2 = q12 ∗ max[αdowngi1,βdown] i = 201,. . . , 350,
gi2 = q12 ∗ gi1 i = 351,. . . , 500,

(A.1)
whereq12 = 1.2, and theαs andβs are random numbers
within the following intervals:

αup = (1, 10],
βup = (gi2,gmax], wheregmax = 80 000,

αdown = (0, 1/10],
βdown = (gmin,gi2], wheregmin = 0.

APPENDIX 3: SIMULATED DATASET
Let gij be the gene intensity of thei-th gene in thej -th array
(i = 1, 2,. . . , 500;j = 1, 2,. . . , 7). Equation (A.1) describes
the generation of the data in SD2 (q12 substituted corres-
pondingly withq1j , randomly generated scaling parameters
between 0.3 and 3), derived from the intensities of the genes
in the first array, whereαj

up andα
j

down are consistent with a
simulated gradual increase in fold of changes between 1.5 and
4.5 with an increment of 0.5, both for up- and down-regulated
genes. Formally,

α
j
up = (1, 1+ j ∗ step],

α
j

down = (0, 1/(1 + j ∗ step)], j = 1, . . . , 7

where step= 0.5.
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