
BIOINFORMATICS Vol. 20 no. 4 2004, pages 518–526
DOI: 10.1093/bioinformatics/btg438

Reducing the variability in cDNA microarray
image processing by Bayesian inference

Neil D. Lawrence1,∗, Marta Milo1, Mahesan Niranjan1,
Penny Rashbass2 and Stephan Soullier2

1Department of Computer Science, Regent Court, 211 Portobello Road, Sheffield,
S1 4DP, UK and 2Centre for Developmental Genetics, University of Sheffield
School of Medicine and Biomedical Science, Firth Court, Western Bank, Sheffield,
S10 2TN, UK

Received on March 6, 2003; revised on June 18, 2003; accepted on July 21, 2003

Advance Access publication January 22, 2004

ABSTRACT
Motivation: Gene expression levels are obtained from
microarray experiments through the extraction of pixel
intensities from a scanned image of the slide. It is widely
acknowledged that variabilities can occur in expression levels
extracted from the same images by different users with the
same software packages. These inconsistencies arise due to
differences in the refinement of the placement of the micro-
array ‘grids’. We introduce a novel automated approach to the
refinement of grid placements that is based upon the use of
Bayesian inference for determining the size, shape and posi-
tioning of the microarray ‘spots’, capturing uncertainty that can
be passed to downstream analysis.
Results: Our experiments demonstrate that variability between
users can be significantly reduced using the approach. The
automated nature of the approach also saves hours of
researchers’ time normally spent in refining the grid placement.
Availability: A MATLAB implementation of the algorithm and
tiff images of the slides used in our experiments, as well as
the code necessary to recreate them are available for non-
commercial use from http://www.dcs.shef.ac.uk/∼neil/VIS
Contact: neil@dcs.shef.ac.uk

1 INTRODUCTION
The basis of DNA microarray technology is the construction
of high density arrays of spots on glass slides that are hybrid-
ized with fluorescently labelled mRNA-derived targets (Eisen
and Brown, 1999; Schena, 2000). The pattern of hybridiza-
tion to the elements is visualized by fluorescent imaging and
the raw microarray data images are subsequently transformed
into gene expression matrices (Brazma and Vilo, 2000). Sev-
eral different software packages are available to determine
the position of each element by fitting grids over the image to
extract the level of the sample’s expression (Yang et al., 2000,
http://www.stat.Berkeley.edu/∼terry).

∗To whom correspondence should be addressed.

The recent increase in microarray experiments has led
the academic community to an international effort to adopt
standards for DNA-array experiment annotations and data rep-
resentation.1 The Minimum Information About a Microarray
Experiment (MIAME) (Brazma et al., 2001) standard, for
example, aims to establish gene expression data repositories
that will allow consistent comparison of the data collected
from different sources. It is therefore imperative that the
processing of microarray image data by different research-
ers leads to consistent results. Our experience and that of
other users of microarray technology suggests this is not the
case; we have found that even when two researchers use the
same software package to process the same images, results
are not consistent. The inconsistencies we focus on are not
associated with normalization of the slides, but with differ-
ences arising from misplacement of the circles that specify
the spots.

In the following experiment, labelled cDNA was prepared
from mRNA obtained from optic primordia dissected from
E11.5 wild-type and aphakiamouse embryos (Varnum and
Stevens, 1968). A microarray slide was hybridized with 2 µg
of Cy3-labelled cDNA and 2 µg of Cy5-labelled cDNA. Scans
were obtained at 10 pixels/µm resolution using a Genomic
Solutions GeneTac LSIV scanner. Figure 1 compares log
ratios of expression levels obtained through analysis by two
different users of this slide using the ScanAlyze2 software
package. The slide contains 6144 PCR products printed in
duplicate (12 288 spots) from plates 1 to 16 of the National
Institute of Aging 15K cDNA Clone Set (NIA 15K)(Tanaka
et al., 2000) obtained from the MRC UK Human Genome
Mapping Project. The ScanAlyze package relies on informa-
tion provided by the user, including the layout of the grids,

1Microarray Gene Expression Database Group co-ordinated by the EBI,
http://www.mged.org/
2ScanAlyze software is free for academic use and downloadable from
http://rana.lbl.gov/EisenSoftware.htm
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Fig. 1. The log2 ratios extracted from the same microarray image by
two different researchers using ScanAlyze software with the same
grid parameters. Ideally points should lie along the central line. The
outer lines lie along points for which there is a 2-fold variation in
the ratios. Whilst there were 6144 PCR products on the slide, we
only plot points for those spots which had hybridized and were not
contaminated by dust leading to 4900 separate points.

size and shape3 of each spot. Each user provided the software
with the same information (grid layout), but then placed the
grids independently and subsequently refined the spot size and
position to allow for discrepancies in the array manufacture.
Figure 1 illustrates that image analysis by different researchers
leads to large discrepancies in the gene expression level values
obtained from a single array. Note that these differences are
not confined to a single source error, i.e. they arise from dis-
crepancies in both the specification of centers and widths, and
they are not limited to low intensity spots which are potentially
removable. Figure 1 shows that there is up to a 2-fold vari-
ation in the ratios purely arising from grid placement errors.
Interestingly, when performing the same experiment across
different slides other researchers (Hughes et al., 2000) have
discovered variations of a similar magnitude, but assumed that
they resulted from ‘biological noise’. Whilst slide image data
and grid placement information is not publicly available for
this work, it seems plausible that a portion of this variation
was due to grid placement error.

In this paper, we present a novel way of processing
microarray images based upon Bayesian inference. The
method reduces variation between different researchers’ grid
placements and, since it is automated, saves researchers’

3In this paper, we shall generally use shape to refer to the x-radius andy-radius
of an ellipsoid. However, it should be noted that some packages allow spots
to be of arbitrary shape.

time.4 In Section 2, the concept of Bayesian inference, upon
which the method is based, the likelihood function, and the
prior distribution will be introduced. Section 2.3 describes the
posterior distribution that can then be used to extract expres-
sion levels. Because the resulting posterior density does not
have a simple functional form, it cannot be computed exactly
and in Appendix A we discuss approximations. Finally, in
Section 3 we repeat the analysis of the slide used in Figure 1
with the automated approach demonstrating greater consist-
ency, comparisons with an alternative, automated spot finder
and using an additional slide are also included.

2 METHODS
One possible cause of the inconsistencies we have observed
is uncertainty. The correct location and shape of the spot is
not a deterministic concept. When such uncertainties exist a
popular way of making progress is through Bayesian infer-
ence. Bayesian inference (Bernardo et al., 1980; Cox, 1946)
is a mathematical way of formulating the process of extracting
useful information from data. For the problem we are consid-
ering, the information of interest is the position and shape
of the spots on our microarray slide. Before observing the
microarray we hold a ‘belief’ about how the spots are laid out,
this belief might involve an assumption that the spots are laid
out in grids. We may know from the manufacturer that these
grids contain, for example 16 rows and 16 columns. We may
also believe that the spots are circular with a particular radius.
Finally, we may be given some information about the spacing
between the spots. Once we view the image, we soon real-
ize that whilst our prior belief was roughly true, many of the
spots do not lie exactly on the grid and they also, due to incon-
sistencies in the manufacture of the slide, may vary in shape.
Therefore, having observed the image, we can update our
belief about the size and positioning of the microarray spots.
Bayesian inference provides us with a mathematical technique
for this updating of beliefs in the light of observed data.

As an example of the inference process we will first consider
the positioning of the spot centres. Our initial belief is that the
centres are laid out on a grid. This can be combined with an
estimate of the uncertainty of these positions and incorporated
in a prior probability distribution. This distribution, p (c|G),

gives the probability of the centre positions, c =
(

cx

cy

)
, given

the parameters of the grid, G. What we are really interested
in obtaining is the posterior distribution, p (c|G, I). It is our
updated belief about the position of the spot centres given the

4Fine manual placement of the grids, such as that undertaken for the experi-
ment shown in Figure 1, may take 2–6 h depending on factors such as the
quality of the slide. Our approach, in common with others, requires the initial
rough grid layout to be specified manually, for a previously unused microarray
slide this may take about 15 min. For the slide, we considered our automated
refinement algorithm then takes about 30 min to execute. The run, however,
may take place unattended.

519



N.D.Lawrence et al.

grid parameters and the intensity of the pixels in the image.
The relationship between the prior and the posterior is given
by Bayes’ rule,

p (c|G, I ) = p (I|c) p (c|G)

p (I|G)
, (1)

where we have also introduced the likelihood function,
p (I|c), which represents a probabilistic model of the
observed image given that there is a spot centre at c. The
normalization constant, p (I|G), may be computed in terms
of the likelihood function and the prior distribution by the
integral

p (I|G) =
∫

p (I|c) p (c|G) dc. (2)

For this paper we assume that the spots are made up of
axis aligned oval shapes, so as well as their centres we must
also consider a radius in the x-direction and a radius in
the y-direction. We pair these as a vector and denote it as

r =
(

rx
ry

)
. More complex assumptions are of course pos-

sible (e.g. involving rotated ellipses or a more general class of
shapes) and extending the algorithms proposed here to such
shapes is straightforward. However, it should be borne in mind
that, in implementation, evaluation of the likelihood func-
tion dominates CPU-time requirements, so any increase in
complexity will be accompanied by a corresponding increase
in CPU-time. Our use of axis constrained ellipses mimics
the approach of the ScanAlyze software which has become a
de factostandard.

To undertake the inference process we must

• Specify our prior distribution p (c, r|G).

• Specify a likelihood function p (I|c, r).

• Obtain our posterior distribution, p (c, r|G, I), through
taking the product of these two distributions and normal-
izing it:

p(c, r|I) = p(I|c, r) p(c, r)
p(I)

, (3)

where we have dropped the dependence of the grid
parameters, G, to avoid cluttering the notation.

• Use the posterior for estimating gene expression levels,
and their variances, from the image.

There is an unfortunate complication in the simple picture of
Bayesian inference that we have portrayed thus far; the nor-
malizations of the type shown in Equation (2) will very often
be intractable. Under these circumstances we will not be able
to obtain an analytic representation of the posterior distribu-
tion and we will be forced to turn to approximations to make
progress. We will deal with this problem in Appendix A, for
now we disregard such considerations and turn to our choice
of likelihood function and prior.

Fig. 2. Left: A hypothesized oval with its radii shown as arrows over
a spot from a microarray image. The box shows pixels which belong
to the set Ibox. Right: Pixels which are allocated to the set S are
shaded dark, those allocated to the set ∼S are shaded lighter.

2.1 Likelihood function
The likelihood function represents what we expect to see in the
image given a particular centre and radius of oval, we would
expect to find the pixels within the oval are from the spot and
those outside the oval are from the background. For the sake
of simplicity it is common, though rarely correct, to assume
that the probability of each pixel coming from the background
is independent of the origin of other, perhaps neighbouring,
pixels. In this ‘first stab’ at Bayesian inference for processing
of microarray slides, we will use a fairly simple likelihood
function that models this scenario. Similar likelihood models
are widely used in computer vision, in particular in video
based tracking; see, e.g. (Isard and MacCormick, 2001).

We consider a ‘box’ of pixels with associated intensities,
Ibox, surrounding the proposed position of our microarray
spot. The positioning and size of the oval we place in this box
constitutes a hypothesis, H, about the location and shape of
the spot (Fig. 2). Consider the intensity of an individual pixel
from the box, Ii . If the likelihood model is based on individual
likelihoods for each pixel, we can model the probability of
the intensity given that the pixel is part of a spot, p(Ii |S), and
the probability of the intensity given that a pixel is not part
of a spot, p(Ii | ∼ S). A particular hypothesis for our oval’s
position and size partitions the pixels in the box into a set
which comes from the spot, S, and a set that is not from the
spot, ∼S as shown in Figure 2. The likelihood function, due
to our independence assumption, may then be written as the
product of each individual pixel’s likelihood

p(Ibox|c, r) =
∏
i∈S

p(Ii |S)
∏

i∈∼S

p(Ii | ∼ S) .

To complete our likelihood function, we are required to estim-
ate the individual pixels’ likelihoods p (Ii |S) and p (Ii | ∼ S).
We built histograms representing the intensities of the fore-
ground and background pixels for both the red and green
channels. These histograms5 were based on the initial rough
grid localization. The likelihood of each pixel was then taken
to be the product of the likelihoods from the red and green

5The histograms are generated separately for each sub-grid in the microarray
slide to account for changes in background levels across the slide.
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histograms. More complex likelihood functions may also be
straightforwardly implemented.

2.2 Prior distribution
The remaining part of the model is the prior distribution, our
belief about the centre, c, and the radii, r, of the oval. The
user specifies a grid that represented the approximate centres
of the spots, mc, and radius values representing the expected
size of the spots, mr. A simple prior which can incorporate
this information is a Gaussian distribution.6 For simplicity, we
consider covariance matrices which lead to circular Gaussian
priors so for the prior governing the radii we take �r = α−1

r I,
and for that governing the centres we have �c = α−1

c I, where
I is the 2 × 2 identity matrix and αc is a scalar. Each α is then
a measure of the ‘precision’: the higher its value, the more
confident we are about our prior belief. Finally, we assume
independence in the prior between the radii and the centres,
giving,

p(c, r) = p(c)p(r) ,

where

p(c) = N
(

c|mc,α
−1
c I

)
, p(r) = N

(
r|mr,α

−1
r I

)
,

and we have dropped the dependence of G to avoid cluttering
the notation. Figure 3 shows some samples from this type of
prior distribution. Reasonable parameters may vary from slide
to slide,7 we found that SDs of the order of two pixels worked
well across a range of slides. Our definition of the prior and
the likelihood give us the elements we need to compute the
posterior.

2.3 Posterior distribution
In microarray image processing the objective is to obtain the
level of gene expression from each spot image. The expres-
sion level for a particular spot, E, is a function of the pixel
intensities, the spot position and shape,

E = f (I , c, r) . (4)

We are given the image intensities, I , so if c and r are also
precisely specified then the expression level may be computed.
In the case of Bayesian inference though, c and r are not
specified exactly, our knowledge about them is encapsulated
in a posterior distribution, p (c, r|G, I ). Therefore, instead
of simply computing the function in Equation (4), we now

6A K-dimensional Gaussian distribution is specified by its mean, m,
and its covariance matrix, �: N (x|m, �) = 1/[(2π)K/2 |�|1/2]×
exp[− 1

2 (x − m)T �−1 (x − m)]
7For large SDs the algorithm becomes less sensitive to the prior’s means, for
small SDs the algorithm becomes more dependent on the prior’s means.

Fig. 3. The ovals in this figure represent samples from the prior
distribution, p(c, r). For this example mc = [0 0]T, αc = 1, mr =
[5 5]T and αr = 1.

compute its expectation under the posterior distribution,

〈E〉p(c,r|I ) =
∫

f (I , c, r) p (c, r|G, I ) ∂c∂r. (5)

It is possible to compute other quantities of interest such as
a ‘error bars’ which may be obtained through the expres-
sion level’s variance var(E) = 〈E2〉 − 〈E〉2, where we have
dropped the subscript on the expectations, which are assumed
to be taken [as in Equation (5)] over the posterior distribution.

The posterior distribution is, in theory, now fully specified;
in practice though we find that it is difficult to recover. As noted
before the principal obstacle is the normalization which makes
up the denominator of Equation (3). For the prior and likeli-
hood given in the preceding sections it is not obvious how the
relevant integral may be computed. This problem is common
to many implementations of Bayesian inference; to resolve it
we must look to approximations. The approximations we used
are detailed in Appendix A and we refer to the algorithm which
uses them as the variational importance sampler (VIS). They
allow us to approximate expectations under the true posterior.

Note that the use of a probabilistic model within the VIS
algorithm allows us to, in a very straightforward manner, com-
pute the probability that there is no spot at the location. We
simply need to evaluate the likelihood of no spot being present
and compare it with the likelihood of our proposed spot loca-
tions. Accordingly we may choose to flag the location as not
containing a spot. These flags were used to identify loca-
tions where no spots were present for all the results above.
For non-probabilistic approaches decision making of this type
generally relies on arbitrarily chosen thresholds.

3 RESULTS AND DISCUSSION
To demonstrate the utility of the VIS algorithm, the grid
layouts as identified by the two different researchers using
ScanAlyze software8 for Figure 1, were used to initialize

8The positions as identified by the two researchers were used for initialization
here to demonstrate that from inconsistent starting points we converge on
a more consistent solution. Of course in practice, one would initialize the
algorithm with only a rough placement of the grid.
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Fig. 4. The log2 ratios extracted from the same microarray image
using our Bayesian inference algorithm. The initial grid positions
were given by two different researchers, initializing the algorithm in
different places. The x-axis shows the log2 ratio given by initializing
with Researcher 1’s grid, and the y-axis shows the log2 ratio obtained
through initializing with Researcher 2’s grid.

our algorithm. In Figure 4, we compare the expectations of
the log2 ratios as computed by our algorithm. The compu-
tation of the log2 ratios was as suggested in the manual of
the ScanAlyze software package, and are therefore directly
comparable to those presented in Figure 1. Spots that were
identified as not being present, corrupted by artifacts and
those with an associated variance of greater than 1/16 are
not presented.

Quantitatively, the mean squared error between the points
was calculated as 6.0 × 10−2 which compares to the mean
squared error as calculated for the manual grids of 8.23×10−2.
In other words our automated approach leads to a 37%
increase in consistency. The approach also affords addi-
tional information in the form of variance estimates associated
with the log2 ratios. In Figure 5, we plot the base 10
logarithm of these variance estimates against log10 ‘intens-
ity’, where intensity has been defined (Yang et al., 2001,
http://www.stat.Berkeley.edu/∼terry) as the product of the red
and green channel. The ratio between the two channels is more
sensitive to small changes in the intensity of the channels
when the intensity is low. As a result, we might expect that
the variances associated with the log2 ratios to be high when
the intensity is low. This hypothesis is confirmed by the res-
ults depicted in Figure 5 which, while indicating some spread
for a given intensity, generally exhibit a downward trend as
intensity is increased.

Estimates of variance can be made further use of in down-
stream analysis, for example, they may be used to weight the
log2 ratios for each of the replicates when averaging them
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Fig. 5. Plot of the log10 intensity against the log10 of the variance of
the log2 ratio. As expected the variances tend to reduce as intensity
increases.

to obtain a representative value for a single gene (Lawrence
et al., 2003).

In the next section, we compare the log2 ratios extracted by
the VIS with a set extracted by another automated software
package known as ‘Spot9’.

3.1 Brief comparison with Spot
One alternative approach to extracting log2 ratios involves
allowing each spot to take on any general shape which may
be determined using ‘seeded region growing’. This is the
approach taken by the Spot software package (Yang et al.,
2000). In this package the location of each spot is specified
with a given pixel. Given this ‘seed’ pixel, the algorithm is
deterministic in that it will allocate the same pixels as fore-
ground and background every time it is run. However, for
different seeds the regions will also differ.

To assess the quality of the algorithms, we took advantage
of the replicates which were present on the slide. Each replic-
ate is attempting to measure the same gene’s expression ratio.
Their measurements differ due to various noise processes as
well as the inconsistencies we identified above. By assessing
the mean squared error between these values we are able to
assess the consistency of the different algorithms across dif-
ferent measurements associated with the same gene. As far as
the practical utility of the methods, this is an important per-
formance measure. Unfortunately it does not allow us to fully
evaluate performance as any algorithm which is consistently
incorrect10 will still perform well under this measure. How-
ever, a true assessment of the quality of the log2 ratios would
require extensive PCR experiments which are beyond the
scope of this paper.

9See http://experimental.act.cmis.csiro.au/Spot/ and Yang et al. (2000).
10Consider, for example an algorithm which simply assigns a log2 ratio of 0.
This algorithm will perform extremely well under our measure but will be
useless in practice.
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We therefore compared the log2 ratios associated with each
of the two replicates for 2077 probes.11 In Figure 6, we
have depicted the log2 ratios for each of the these replicates
on two different axes. The NIA 15K is a ‘whole genome’
slide, therefore only 10% of the probes were hybridized. We
therefore also considered a slide developed specifically for
the mouse eye (ME) by Soullier et al. (2003). This slide
contained 5760 PCR products printed in duplicate of which
5492 had hybridized and were uncontaminated. The mean
squared errors between the estimates of the log2 ratios for
both slides are summarized in Table 1. Recall that here a
portion of each error is due to noise processes which are
not associated with image processing so the improvement in
consistency over spot (which initially appears to be 347%
for NIA and 13% for the eye specific slide) is likely to be
higher. To demonstrate that there is no bias between the Spot
algorithm and the VIS approach we have plotted the extracted
log ratios for each algorithm against each other (Fig. 7). Also
included in the plot are error bars derived from the variances
of the VIS log ratios. Note that often these error bars are lar-
ger when the extracted values from the two approaches are
inconsistent.

3.2 Discussion
We have shown how Bayesian inference can be used in the
extraction of gene expression levels from microarray data. The
framework outlined allows refinement of prior information
about grid layouts using information in the image intensities.
It circumvents a problem with a ‘vanilla’ importance sampling
technique, where a naive choice of proposal distribution,
namely the prior distribution, is often made, by introdu-
cing a novel, hybrid, Bayesian approximation, whose details
are given in the appendix. The resulting algorithm showed
how inconsistencies between different researchers could be
reduced.

In theory, the true Bayesian posterior can be multi-modal
whilst our proposal distribution is always unimodal. In prac-
tice, this could mean that the sampling procedure focuses on
one of the multiple modes which may not be that with the
largest probabilistic mass. For our experiments this was not
found to be a problem.

One advantage of our approach is the facility to place
error bars on our estimates of the gene expression levels.
This is possible because our Bayesian approach gives us
samples from a posterior distribution over the position and
sizes of the spots, giving us an estimate of the uncertainty.
This uncertainty can be propagated through the downstream
analysis.

The algorithm is stochastic, and variations in initial ran-
dom seeds do result in variations in extracted log2 ratios.

11Whilst there were 6144 PCR products on the slide, we only evaluated the
error for those which had hybridized and were not contaminated by dust
leading to 2077 separate points.
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Fig. 6. For these plots the axes represent the log2 ratios from the two
replicas of each spot that are present on the slide. There are 2077
points on the plots representing the 4154 spots on the slide out of
12 288 which were present and not corrupted by artifacts. (a) Results
from manual grid refinement. (b) Results from refinement with VIS.
(c) Results from the Spot algorithm.

However, even though Spot, e.g. uses a theoretically determ-
inistic algorithm we found that similar levels of variation
resulted for Spot when initial rough location of the grids
was changed by only a little as one pixel. The robustness,
in terms of repeatability, of the VIS algorithm to different
initializations was illustrated in Figure 4.

The algorithm led to an 4.5-fold improvement in consist-
ency over manual refinement of grids and at least a 2-fold
improvement in consistency over another automated spot
finding algorithm.
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Table 1. Mean squared errors for log2 ratios from the manual grid refinement,
the VIS algorithm and the Spot algorithm

Slide Manual VIS Spot

NIA 0.270 0.232 0.806
ME — 4.16 × 10−2 4.71 × 10−2
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Fig. 7. Plot of the results from the VIS algorithm against those from
the Spot algorithm for the ME array. Error bars at 1 SD are shown
for the VIS results.

The algorithm was implemented in the MATLAB program-
ming environment. The processing of the NIA 15K slide,
containing 12 288 spots, took approximately 62 min on a
Pentium III 1.2 GHz computer, or in other words about 0.3 of
a second per spot. Note, however, that the researcher need not
be in attendance during this processing time.

A pre-release MATLAB version of our software is available
for academic use from http://www.dcs.shef.ac.uk/∼neil/VIS.
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APPENDIX A: POSTERIOR
APPROXIMATIONS
Our options for approximating the posterior are 2-fold; first,
we could look for a functional form which approximates
our intractable posterior distribution, expectations under our
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approximation could then be substituted for the true expecta-
tions. We shall return to this approach in Section A.2, for the
moment we focus on the alternative: Monte Carlo methods
(Gilks et al., 1996) and specifically importance sampling.
Whilst we may not be able to normalize our posterior dis-
tribution, there are methods which allow us to obtain samples
from it. Then, instead of obtaining expectations of interest
exactly, we may obtain their sample based approximations.

Importance sampling involves the following steps; con-
sider we wish to approximate an expectation, 〈φ (x)〉p(x),
over a distribution, p (x) = p∗(x)/Z, which is known sub-
ject to a constant Z. If we obtain a set of samples {xs}
from a further proposaldistribution, R (x) , we may estim-
ate the expectation as 〈φ (x)〉p(x) ≈ ∑N

s=1 ŵsφ (xs), where
the parameters ŵs , known as importance weights, are given
by ws = p∗(xs)/R (xs) with ŵs = ws/

∑S
s=1 ws . A key

component of importance sampling is the proposal distribu-
tion: for the method to be effective it is important that the
proposal distribution is similar to the distribution of interest.
In the context of Bayesian inference, a candidate for the pro-
posal distribution is the prior: if the prior belief is accurate,
it might be hoped that the prior is similar to the posterior. In
this case, the unnormalized importance weights are simply
given by the likelihood of each sample. This is one approach
taken by, e.g. particle filters(Doucet et al., 2001). One dis-
advantage of this approach is that if the prior distribution is
not well matched to the posterior, the importance sampler’s
estimate will be dominated by a small number of samples with
very large weights; to finesse this problem, we will introduce a
technique which combines variational inference (Jordan et al.,
1998) with importance sampling. The first step though will be
to introduce a ‘hierarchical prior’.

A.1 Hierarchical prior
In the main text we focused on a Gaussian prior for the centres
and radii of the spots. In practice we used an alternative form
of prior. It was still based around a Gaussian distribution,
but one whose parameters, mc and αc are governed by a so-
called hyper-prior.In the following text we demonstrate this
procedure for the values of the centres, c, however exactly the
same reasoning holds for the radii, r,

p(c) =
∫

p(c|mc, αc) p(αc) p(mc)∂mc∂αc.

p(c|mc, αc) = N
(

c|mc, α−1
c I

)
,

p(mc) = N
(

mc|µc, β−1
c I

)
,

p(αc) = gam(αc|ac, bc) ,

where gam (·) is the gamma distribution defined by
gam (x|a, b) = [ba/� (a)]xa−1 exp (−bx), in which � (·) is
the gamma function. This is a convenient choice of prior as
it is conjugateto the Gaussian precision αc. The parameters
of the gamma hyper-prior govern our confidence in αc. The

mean of the distribution is at ac/bc and its variance decreases
as ac and bc → ∞.

We could proceed with our new prior and once again use an
importance sampler to approximate expectations of interest;
but this would not necessarily improve the match between
the proposal distribution (our new prior) and the distribution
of interest (the posterior). Instead we turn to an alternat-
ive method of approximate inference known as variational
inference.

A.2 Variational inference
In variational inference (Jordan et al., 1998) an intractable
posterior, p (x) , is approximated by an alternative tractable
distribution, q (x) . The approximation is found by minim-
izing an information theoretic measure of the discrepancy
between two distributions known as the Kullback–Leibler
(KL) divergence,

KL(q(x) || p(x)) = −
∫

q(x) ln
p(x)

q(x)
dx.

If no constraints are imposed upon the form of q(x), min-
imizing the KL-divergence simply recovers q(x) = p(x),
to discover a tractable approximation we must impose con-
straints on the functional form of q(x) . For our model we
choose to force the posterior approximation, q(c, mc, αc), to
be separable across its component variables,

q(c, mc, αc) = q(c) q(mc) q(αc) .

Given this constraint it is possible to show, through a free-
form minimization of the KL divergence (Waterhouse et al.,
1996), that

q(mc) = N (mc|m̄c, �m) ,

q(αc) = gam
(
αc|āc, b̄c

)
,

where we have made use of

m̄c = �m (〈αc〉 〈c〉 + βcµc) ,

�m = (〈αc〉 + βc)
−1 I

āc = ac + 1,

b̄c = bc + 〈
cTc

〉 − 2 〈c〉T 〈mc〉 + 〈
mT

c mc
〉
.

Additionally, it is possible to obtain some of the necessary
expectations:

〈mc〉 = m̄c, 〈αc〉 = āc/b̄c,〈
mT

c mc
〉 = m̄T

c m̄c + Tr (�m) .

Unfortunately no such simple functional form can be found
for q(c) . This is one weakness of the variational approach: the
class of models to which it can be applied is restricted to those
which are in the conjugate exponential family (Ghahramani
and Beal, 2001), the likelihood function, p(I|c), does not fall
within this family and we must therefore return to importance
sampling to obtain the expectations we require under q(c).
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A.3 Variational importance sampler
Using a free-form optimization may re-write q(c) as

q(c) = 1

Z′
c
p(I|c) N

(
c| 〈mc〉 , 〈αc〉−1 I

)

which means that we can obtain expectations under q (c) using
importance sampling with a proposal distribution, R (c) =
N

(
c| 〈mc〉 , 〈αc〉−1 I

)
. This importance sampler is then used

to obtain estimates for 〈c〉 and
〈
cTc

〉
. These estimates are then

substituted into the equations in Section A.2 to obtain new

values 〈mc〉 and 〈αc〉 giving a new proposal distribution from
which new estimates for 〈c〉 and

〈
cTc

〉
can be found. This pro-

cess is repeated until convergence. Details of the initialization
of the algorithm and one possible ordering of the updates can
be found in Lawrence et al. (2003).

The advantage of combining the importance sampler with
the variational approach is that the proposal distribution
becomes focused on an area of high probability density
in the posterior. This should alleviate a common problem in
importance sampling where the sum used to approximate an
expectation is dominated by a few large values of ŵs .
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