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Abstract
Background: The imputation of missing values is necessary for the efficient use of DNA
microarray data, because many clustering algorithms and some statistical analysis require a
complete data set. A few imputation methods for DNA microarray data have been introduced, but
the efficiency of the methods was low and the validity of imputed values in these methods had not
been fully checked.

Results: We developed a new cluster-based imputation method called sequential K-nearest
neighbor (SKNN) method. This imputes the missing values sequentially from the gene having least
missing values, and uses the imputed values for the later imputation. Although it uses the imputed
values, the efficiency of this new method is greatly improved in its accuracy and computational
complexity over the conventional KNN-based method and other methods based on maximum
likelihood estimation. The performance of SKNN was in particular higher than other imputation
methods for the data with high missing rates and large number of experiments.

Application of Expectation Maximization (EM) to the SKNN method improved the accuracy, but
increased computational time proportional to the number of iterations. The Multiple Imputation
(MI) method, which is well known but not applied previously to microarray data, showed a similarly
high accuracy as the SKNN method, with slightly higher dependency on the types of data sets.

Conclusions: Sequential reuse of imputed data in KNN-based imputation greatly increases the
efficiency of imputation. The SKNN method should be practically useful to save the data of some
microarray experiments which have high amounts of missing entries. The SKNN method generates
reliable imputed values which can be used for further cluster-based analysis of microarray data.

Background
DNA microarray is a popular high-throughput technology
for the monitoring of thousands of gene expression levels
simultaneously under different conditions [1]. The typical
purposes of microarray studies are to identify similarly
expressed genes under various cell conditions and associ-
ate the genes with cellular functions[2,3].

The analysis performed to meet the purposes of microar-
ray studies mentioned above usually involves clustering
genes according to their pattern of expression levels in var-
ious experimental conditions. In fact, cluster analysis
means grouping samples (or genes) by similarity in
expression patterns. To measure the similarity in cluster
analysis, correlation distance and Euclidean distance are
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widely used[4]. Principal component analysis (PCA) is
also a powerful technique when used with the clustering
method to specify the number of clusters[5]. However,
these widely-used methods in microarray data analysis
can be both seriously biased and misled by missing values
in the dataset[6-8].

Missing values of microarray data commonly occur during
data preparation mainly due to imperfections in the vari-
ous steps in DNA microarray experiments. One of the
yeast microarray data sets shows that the number of genes
having at least one missing value was 2419 of 6198 rows
(genes) (in other words, 39 %)[9] and 566 of 918 rows
(72.5%) [10]; and 1741 of 2364 rows (73.6%) [11] had
missing values in other reports. As mentioned previously,
some statistical analyses require complete data sets and
one should discard the entire data in a row, usually all the
values for one gene, that have a single missing value. The
rows with missing values can be utilized for further anal-
yses after the imputation of the missing values in many
cases. Imputation has been used in many fields to fill the
missing values in incomplete data using observed values.
There are many different algorithms for imputation: hot
deck imputation and mean imputation [7], regression
imputation [12,13], cluster-based imputation [14], and
tree-based imputation [15,16], maximum likelihood esti-
mation (MLE)[17], and multiple imputations
(MI)[17,18]. Proper selection of an algorithm for a given
data set is important to achieve maximum accuracy of
imputation.

Recently, several methods have been applied to the impu-
tation of microarray data, including row average [7], sin-
gular value decomposition (SVD) [19] and KNN
imputation [20] methods. In general, it seems the recently
developed KNN-based method is most efficient. KNN
imputation method is an improved hot deck imputation
method [21] that uses the mean values of most similar
genes for estimating missing values. The KNN imputation
method can be considered a cluster-based method since
missing values are imputed using selected similar genes.
In the previously developed method, the efficiency of
imputation was limited both in accuracy and computa-
tional complexity in that it did not efficiently use the
information of the gene having missing values. The exist-
ence of missing values in a gene limits the use of other
observed values of that gene in the conventional imputa-
tion method. In our work, this problem could be
improved by using the imputed values sequentially for the
later nearest neighbor calculation and imputation. We
suggest a sequential KNN (SKNN) imputation method
that boasts improved accuracy in estimation of missing
values in a wide range of missing rates with high compu-
tational speed. We also suggest an EM-style sequential
KNN (EM-SKNN) method that uses a sequential KNN

method repeatedly to improve accuracy. We evaluated the
efficiency of the SKNN imputation method through com-
parison with the known KNN-based method and other
well known imputation methods such as maximum like-
lihood estimation (MLE) and multiple imputations (MI).

Results
We evaluated the efficiency of our new SKNN method and
the EM-SKNN method with three other imputation meth-
ods: KNN-based imputation, the MLE method, the MI
method, by applying them to three different types of
microarray data sets with different missing rates. The
appropriate number (k) of nearest neighbors was depend-
ent on the data types and missing rates. The RMS errors
were minimal when k was 10 for time-series data and
mixed type data regardless of the missing rate, and the
RMS errors of the non-time series data showed similarly
low values when k values were between 10 and 20. For
comparison of different imputation methods, we used 10
for k which showed a minimal RMS error in every data
type with different missing rates.

The performance of the KNN-based imputation method
depends on the similarity of k-nearest neighbors to be
used for imputation. The overall similarity of the entire
data set can affect, on average, the similarity of all possible
k-nearest neighbors. The time-series data set, which has
the narrowest distribution of Euclidean distances among
genes, shows the least RMS error after imputation as we
can see in Figure 1 and 2. Figure 1 also shows that the per-
formances of the SKNN and EM-SKNN methods are better
than that of the conventional KNN method over a whole
range of tested missing rates. The range of RMS error by
the new SKNN method, for example, was 0.194 to 0.269
in comparison with 0.194 to 0.324 of the KNN method in
time-series data. The accuracies of our new methods are
especially superior when the missing rate is over 30%. The
RMS errors for time-series and non-time series data nearly
approached their maximum values at missing rates of
50% and 60%, respectively, in the KNN method. The RMS
error of the mixed data set is stable over a wide range of
missing rates, but becomes unstable and increases dra-
matically after a 40% missing rate. The slight difference of
KNN algorithm could lead to a large improvement in the
accuracy of imputation at a high missing rate because the
SKNN method is able to select more similar k-neighbors
than the conventional KNN method as the missing rate
grows. In the conventional KNN method, the selection
pool and the dimension (or number of existing values for
a gene) of the distance measurement of neighbor genes
are reduced according to the increase of missing rate. In
this situation, the method inevitably selects less related
(or less similar) neighbors for imputation. In addition,
the size of data set can limit the maximum missing rate for
stable imputation. In our data sets, the size of a mixed
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Comparison of the accuracy of KNN, sequential KNN, EM style sequential KNN, and MI methods for three different types of data setsFigure 1
Comparison of the accuracy of KNN, sequential KNN, EM style sequential KNN, and MI methods for three different types of 
data sets. The accuracies were assessed by Root Mean Squared (RMS) error. Tested data sets were time series data set [22] 
(a), mixed (time series and non-time series) data set [23] (b), and non-time series data set [9] (c).
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data set is about 20% larger than other data sets, which
may affect the mixed data set in terms of having stable
RMS error in a relatively larger (10%) range of missing
rate.

We tested the performance of other well known non-
KNN-based methods such as maximum likelihood esti-
mation (MLE) and multiple imputations (MI) methods.

These methods are well known imputation methods but
there has been no report on their application in microar-
ray data analysis. The efficiency of the MLE method was
much worse than the SKNN method for all tested data
sets. The RMS errors in the MLE method were 0.11 to 0.33
in time-series data, 0.30 to 0.38 in mixed data, and 0.58
to 0.69 in non-time series data. The efficiency of the MI
method was generally similar to SKNN but the former is

Comparison of distributions of the similarities between genes in different types of microarray data setsFigure 2
Comparison of distributions of the similarities between genes in different types of microarray data sets. The Euclidean dis-
tances were measured between a randomly selected gene and the rest of genes in each data set. The solid line, dotted line and 
dashed line represent for time series data, mixed data, and non-time series data respectively. The shape of the distribution 
implies the degree of similarities between genes in each data set.
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more dependent on data types. The efficiency of the MI
method was better at a lower missing rate, but slightly
worse at a higher missing rate for the time-series data set.
The MI method was worse than SKNN in terms of overall
range of missing rate of non-time series data. However,
the best imputation method for mixed data set proved to
be the MI method. We can conclude that the MI method
is as efficient as the SKNN method for the imputation of
microarray data, even though the efficiency of the MI
method experienced more fluctuations than the SKNN
method depending on the data type.

The result is similar in a comparison of overall RMS error
after imputation of a data set having unequally distrib-
uted missing entries over the columns. We show a com-
parison of one of the data sets (time series data set) in
Table 1. As expected, the efficiency of the SKNN method
is higher, especially for the data sets having a higher miss-
ing rate.

For more careful estimation of imputation efficiency, we
examined the structure of data after imputation. We calcu-
lated the Pearson correlation coefficients for each column
(experiment) between original data and imputed data.
The larger the correlation coefficient is, the better the rela-
tionship between original complete data and imputed
data is preserved in a column. Figure 3 shows that the
SKNN method preserves the structure of the original data
set better than the conventional KNN method and MI
method for all columns of the time-series data set. The sit-
uation was the same for the other data sets (data not
shown). Interestingly, the MI method was much worse
than the SKNN method, differing from RMS error analy-
sis. This column-wise comparison gives us more specific
information on the efficiency of imputation method. In
Figure 3-b, we can see that the performance of SKNN is
relatively better for the column with highly missing
entries (column 17 and 18) than for other columns.
Through measuring the means and standard deviations
for each column of data sets, we discovered that the dis-
persion of values in a column does not affect the accuracy
of KNN-based imputation.

The SKNN algorithm improves execution time for impu-
tation. The computational complexities are approxi-
mately O(m2n2) in the conventional KNN method and
O(mn log m) in the SKNN method for a matrix with m
rows (genes) and n columns (experiments). This is
because the sequential KNN algorithm imputes all miss-
ing values in a gene simultaneously with given nearest
neighbors, while the conventional KNN method must cal-
culate neighbors for each missing entry. The application
of Expectation Maximization (EM) to the sequential KNN
method marginally improved the accuracy in compensa-
tion for the increase of computational time proportional
to the number of iterations. For MI methods, the execu-
tion time increased as M times of single imputation
method when MI used M multiple imputation. Using the
SKNN imputation method, it took 28.3 seconds on a Pen-
tium IV 2.4 GHz computer to estimate missing values for
a data set with 4489 genes, 18 experiments and a 40%
missing rate. The processing time using the EM-SKNN
method was proportional to the number of iterations.

Discussion
The SKNN method offers better performance than the pre-
viously developed KNN method for both time series and
non-time series microarray data sets and for data sets hav-
ing different missing patterns. As the missing rate
increased, sequential reuse of imputed data did not prop-
agate errors of imputation as in the conventional KNN
method. It showed the best improvement of accuracy for
the data set with a high missing rate.

Notably, the SKNN method is also robust on the imputa-
tion of a data set with unequally distributed missing
entries. A real microarray data set usually has non-random
distribution of missing data. Furthermore, some
systematic errors during the experiment can generate an
abnormal increase in distribution of missing entries for
the corresponding column of microarray data set. In this
type of data, the SKNN method, which is especially
efficient on the data set having heavy missing entries, can
exert relatively more accurate imputation than other
imputation methods as shown in our model data set. The

Table 1: The RMS errors of different imputation methods for time-series data set having non-randomly generated missing entries.

missing rate(%) KNN SKNN EM-SKNN MI MLE

10 0.2171 0.2247 0.2239 0.1573 0.2112
20 0.2233 0.2223 0.2175 0.2171 0.2602
30 0.2422 0.2285 0.2224 0.2277 0.2907
40 0.2778 0.2369 0.2288 0.2380 0.3079
50 0.3155 0.2450 0.2349 0.2495 0.3237
60 0.3210 0.2487 0.2476 0.2627 0.3381
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Comparison of the performance of KNN, SKNN, EM-SKNN, and MI methods by the correlation coefficients for each column between the original data and the imputed data of time-series dataFigure 3
Comparison of the performance of KNN, SKNN, EM-SKNN, and MI methods by the correlation coefficients for each column 
between the original data and the imputed data of time-series data. The imputed data set was created by each imputation 
method from the data set having 50% of randomly (a) or non-randomly (b) generated missing entries.
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MI method has not been well introduced in the field of
microarray analysis, although it is a well known imputa-
tion method in other fields [18]. In comparison with the
SKNN method, we discovered the potential of the MI
method for microarray analysis. The MI method did not
preserve original data structure as well as the SKNN
method, but the overall RMS error was close to the SKNN
method. The MI method is executed under the assump-
tion of multiple normality of all dimensions of data. This
assumption may not be satisfied in real-world data. Nev-
ertheless, the performance of the MI method was much
higher than the simple KNN method, which suggests that
the MI method is practically applicable for the imputation
of microarray data.

The computational complexity is reduced in the SKNN
method for the dimension of both the number of genes
and the experiments compared with the simple KNN
method. Particularly, computation time can be saved sub-
stantially for microarray data with a large number of
experiments. The SKNN method works efficiently in a
wider range of missing rate with high speed. We want to
emphasize that our results showed that the method using
estimated values achieved even better accuracy than the
method using only observed values in the case of the
KNN-based imputation method. We suppose that this
result could be applicable to other cluster-based analysis.
It would be hardly acceptable for the experimentalist to
use imputed data for further analysis. However, analysis
could become more errorneous without imputation due
to loss of information caused by missing values. The use
of imputed data should definitely depend on the type of
later process. If the next process is a cluster-based analysis,
the genes with imputed values could be efficiently used, as
we had good results for KNN-based imputation with the
reuse of imputed values. For future works, it may be pos-
sible to integrate the imputation and gene clustering of
microarray data for classification of genes with proper
evaluation steps. This may offer more and better informa-
tion sources of microarray data for the final decision of
gene classification. All the procedures used in this paper
are done by R-code and C++ and the programs are availa-
ble upon request.

Conclusions
The SKNN method is an especially efficient imputation
method on data having high missing entries. It can be
practically useful in saving data of some accidental micro-
array experiments having high missing entries. Our results
also suggest that the imputed values generated by the
SKNN method can be used reliably for further cluster-
based analysis of microarray data.

Methods
We developed and implemented SKNN and EM-SKNN
methods for the imputation of microarray data, and we
compared their accuracies with the previously developed
KNN imputation method. Data sets used in this work
were selected from publically available microarray data.
The data sets were from a study of gene expression in yeast
Saccharomyces cerevisiae cell-cycle regulation [22], cal-
cineurin/crz1p signaling pathway [23], and certain envi-
ronmental changes[9]. These data sets can be classified
into time series data set [22], mixed (time-series and non-
time series) data set[23] and non-time series data set[9].
The efficiencies of imputation methods were assessed by
Root Mean Squared (RMS) error and correlation coeffi-
cients using three different data types as described later.

KNN Imputation method
To assess the relative efficiency of the imputation meth-
ods, we implemented known KNN imputation method
developed by Troyanskaya et al. (2001)[20]. The source
code of the KNN imputation was available from the Helix
group at Stanford University [24].

The matrix form of microarray data is composed of rows
and columns that represent genes and experimental con-
ditions respectively. Before any further process, the rows
of original data sets containing missing values are
removed to make complete matrices and test data sets for
imputation methods were generated by random deletion
of values in the complete matrices. The sizes of test data
sets were 4489×18 for time series data set, 4380×24 for
mixed data set, and 3779×22 for non-time series data set.
The missing rates generated randomly in the test data sets
were between 1% and 70% (1, 3, 5, 10, 20, 30, 40, 50, 60,
70). The occurrence of missing values can depend on the
specific experiment in real miroarray data. Considering
this case, we also generated test data set having missing
values non-randomly along the columns which represent
each experiment. The overall missing rate of data set was
fixed to one of the value ranging from 10% to 60%. In a
data set, the missing rates for two experiments (columns)
were set to 80% and remaining columns have randomly
generated missing entries.

In KNN method, k-nearest neighbor genes are taken from
the whole matrix of the test data set except any genes that
has missing value at the same position with the gene to be
imputed. Euclidean distance is used as the metric to
estimate the similarity of neighboring genes. To compare
the similarity by this metric, each gene should have the
same dimension and missing positions of values inside.
Missing value is imputed with weighted average of the cor-
responding column of the k-nearest genes.
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The weight of ith gene is calculated as equation (1), where
k is the number of selected genes and Di is the distance
between ith gene and a gene to be imputed.

For the performance comparison of the imputation meth-
ods, we selected appropriate k-values for each data set and
each method with different missing rates. Different k-val-
ues ranging from 1 to 500 were tested and we selected the
k-values with the least error between imputed values and
real values.

Sequential KNN Imputation method
SKNN method that we suggest in this report is distin-
guished in two main points from previously implemented
KNN method described above. In SKNN method, genes
are ordered by its missing rate and the imputation was
executed sequentially from the gene that had least missing
rate. In addition, these sequentially imputed genes are
used for the later imputation of the other genes. The test
data set was separated into incomplete and complete set
that has or has not missing values respectively. The genes
in incomplete set were imputed by the order of missing
rate. Missing value was filled by the weighted mean value
of corresponding column of the nearest neighbor genes in
complete set. Once all missing values in a gene are
imputed, the imputed gene was moved into the complete
set and used for the imputation of the rest of genes in
incomplete set. In this process, all missing values in one
gene can be imputed simultaneously from the selected
neighbor genes in complete set. This reduced execution
time from previously developed KNN method that should
select nearest neighbors for each imputation.

EM-style Sequential KNN Imputation method
EM-style imputation algorithm was originally suggested
by Rich Caruana (2001)[25]. EM-style imputation is exe-
cuted by two steps. It estimates missing values from
observed values and improves accuracy of fill-in values
through recursive process. We integrated EM-style imputa-
tion algorithm and SKNN method to increase the accuracy
of imputation. All of missing values were estimated by
SKNN imputation method at the first step. The estimated
missing values were re-estimated by SKNN method again.
In this second step, we could use newly imputed values to
select k-nearest neighbors for the estimation of missing
values. EM-style method executes this process repeatedly
until the differences between newly updated values and
previous values converge. Because all the imputed values
were converged within less than 10 iterations, we did 10

iterations for the comparison of accuracy with the other
methods.

Maximum Likelihood Estimation (MLE) and Multiple 
Imputation (MI)
In MLE method, data set with missing values are centered,
scaled, and sorted by the patterns of missing through the
preliminary manipulations. Missing entries in a data
matrix are estimated under the multivariate normal
model with user-supplied parameters and observed data
(non-missing entries in the data set). The parameters are
estimated using imputed and observed data. A vector of
parameters representing the MLE, means and variance-
covariance matrix are returned by using EM algorithm.
Missing values are estimated through this iterative process
until estimated parameters converge. We executed MLE
method to estimate missing values by using 'norm' library
of R [26] based on the description of Rubin[17] for this
work.

The whole MI procedure is made of three steps. They are
imputation, analysis, and pooling processes. We applied
only the first step, imputation process, of the three steps
because our interest is to fill in missing values with esti-
mated values. We used Predictive Mean Matching (PMM)
as a method for missing values estimation. It uses a linear
regression on observed variables to impute missing val-
ues. The estimated coefficients provide the mean vector
and the variance matrix to generate multiple sets of coef-
ficients that leads M imputed sets. M plausible values for
missing observations were created by above MI algorithm
and then the mean of M imputed values was filled in the
missing value. We implemented Multiple imputation
method using 'mice' library of R [26] based on the
description by Rubin [17].

Evaluation of imputation methods
The accuracy of imputation method was evaluated by cal-
culating error between actual values and imputed values
after missing values were estimated. The metric used to
assess the accuracy of estimation was RMS error. RMS
error was calculated as follows,

where Ri is the real value, Ii is the imputed value, and N is
the number of missing values.

Besides RMS error, Pearson correlation coefficients were
used to evaluate the sequential KNN method. Correlation
coefficients were calculated between imputed data and
complete data for each column. From this evaluation, we
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could find how the data structure of each column was pre-
served after imputation with different imputation
methods.
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