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ABSTRACT
Motivation: Microarray technology allows the monitoring
of expression levels for thousands of genes simulta-
neously. In time-course experiments in which gene
expression is monitored over time, we are interested in
testing gene expression profiles for different experimental
groups. However, no sophisticated analytic methods have
yet been proposed to handle time-course experiment
data.
Results: We propose a statistical test procedure based
on the ANOVA model to identify genes that have different
gene expression profiles among experimental groups
in time-course experiments. Especially, we propose a
permutation test which does not require the normality
assumption. For this test, we use residuals from the
ANOVA model only with time-effects. Using this test, we
detect genes that have different gene expression profiles
among experimental groups. The proposed model is
illustrated using cDNA microarrays of 3840 genes obtained
in an experiment to search for changes in gene expression
profiles during neuronal differentiation of cortical stem
cells.
Availability: A set of programs written by R will be
electronically sent upon request.
Contact: tspark@stats.snu.ac.kr

1 INTRODUCTION
Biological processes depend on complex interactions
between many genes and gene products. To understand
the role of a single gene or gene product in this network,
many different types of information, such as genome-
wide knowledge of gene expression, will be needed.
Microarray technology is a useful tool to understand
gene regulation and interactions. For example, cDNA
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microarray technology allows the monitoring of expres-
sion levels for thousands of genes simultaneously. cDNA
microarrays consist of thousands of individual DNA
sequences printed in a high density array on a glass slide.
After being reversetranscribed into cDNA and labelled
using red (Cy5) and green (Cy3) fluorescent dyes, two
target mRNA samples are hybridized with the arrayed
DNA sequences or probes. Then, the relative abundance
of these spotted DNA sequences can be measured. For
each gene the data consists of two fluorescence intensity
measurements (R, G), showing the expression level of the
gene in the red and green labelled mRNA samples. The
ratio of the fluorescence intensity for each spot represents
the relative abundance of the corresponding

DNA sequence. cDNA microarray technology has
important applications in pharmaceutical and clinical
research. By comparing gene expression in normal and
tumor tissues, for example, microarrays may be used to
identify tumor-related genes and targets for therapeutic
drugs (Alizadeh et al., 2000).

In microarray experiments, the identification of differ-
entially expressed genes is an important issue (Friddle et
al., 2000; Galitski et al., 1999; Golub et al., 1999; Spell-
man et al., 1998). To identify groups of genes with similar
or correlated expression profiles (Alizadeh et al., 2000),
many clustering techniques have been applied. However,
clustering methods are rather primitive and exploratory.
Furthermore, as the number of genes becomes large, the
clustering methods may not provide clear group patterns.

On the other hand, statistical test procedures can be
useful tools for identifying differentially expressed genes
especially in multiple-slide experiments. For a single-slide
experiment, Chen et al. (1997) proposed a method for
choosing cut-offs to identify differentially expressed
genes. Recently, (Newton et al., 2001) considered a hier-
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archical Bayesian model in order to identify differentially
expressed genes based on the posterior odds of change.
Nowadays, however, the importance of replication in
microarray experiments has been pointed out by many
researchers, mainly for increasing the precision of esti-
mated quantities and to provide information about the
uncertainty of estimates (Kerr et al., 2001; Lee et al.,
2000).

A time-course experiment is a special case of a
multiple-slide experiment, in which transcript abundance
is monitored over time. Recently, a number of methods
have been suggested for the identi- fication of differen-
tially expressed genes in multipleslide cDNA microarray
experiments based on statistical models such as the
analysis of variance (ANOVA) model and the mixed
effects model (Kerr et al., 2000; Wolfinger et al., 2001).

In this paper, we propose a statistical procedure to
identify genes that have different gene expression profiles
in time-course cDNA microarray data. We propose tests
based on the ANOVA model to differentiate genes that
have high variability from ones that do not. We propose
two types of tests. One is the usual F-test which requires
the normality assumption. The other is the permutation
test which does not need the normality assumption. For
the permutation test, we use residuals from the model
with only time-effects. Using these tests, we detect
genes that have different gene expression profiles among
experimental groups.

The proposed procedure is illustrated using cDNA
microarrays of 3840 genes obtained in a cortical stem
cells experiment. From a developing fetal rat brain, 3840
genes were immobilized on a glass chip, and fluorescence-
labelled target cDNA from cortical stem cells were
hybridized. In this experiment, there are 3840 genes
in each slide, two experimental groups for comparison
and six different time points. Also, all experiments were
replicated three times. The main objective of analysis is
to identify genes with significant changes between the two
experimental groups after adjusting for time effects.

The paper is organized as follows. The proposed
ANOVA models and test procedures are presented in
Section 2. Several test statistics and the calculation of
adjusted p-values are also discussed. Section 3 describes
normalization issues and presents the analysis results.
Finally, Section 4 summarizes the concluding remarks.

2 METHODS
Suppose there are I experimental groups denoted by i(=
1, . . . , I ), K time points denoted by k(= 1, . . . , K ), and
L replications denoted by l(= 1, . . . , L). Assume that
there are N genes in one slide. We consider four typical
types of time-course experiments.

(1) Two experimental groups

(a) Without replication: I = 2, L = 1
(b) With L replications: I = 2, L ≥ 2

(2) I (> 2) experimental groups

(a) Without replication: I > 2, L = 1
(b) With L replications: I > 2, L ≥ 2

2.1 Two experimental groups: I = 2
Let yikln be the logarithm of the ratios of red and green
background-corrected intensities from group i , time k,
replication l, and gene n. Consider the following two
models:

M1 : yikln = µn + αin + βkn + (αβ)ikn + εikln,

M2 : yikln = µn + αin + βkn + εikln,

where i = 1, 2, k = 1, . . . , K , l = 1, . . . , L , and n =
1, . . . , N . The gene effects µn capture the overall mean
intensity in fluorescent signals for genes across the arrays,
groups, and time points. The αin terms account for gene
specific group effects representing overall differences
between two groups. The βikn account for time effects that
capture differences in the overall concentration of mRNA
in the samples from the different time points. The terms
(αβ)ikn account for the interaction effect between group
and time representing the signal contribution due to the
combination of group and time. Note that the interaction
terms (αβ)ikn cannot be estimated when L = 1. εikln
represent error terms. For the F-test they are assumed
to follow a normal distribution. For the permutation test,
however, the normality assumption is not required.

The above model is a two-way ANOVA model with
group and time as two main factors. ANOVA models are
commonly used to compare treatment means for some
responses. In our ANOVA models, we are interested in
comparing the mean values of two experiment groups
as well as six time sequences. In our experiment, 2 × 6
experimental conditions are generated by group and time
sequences.

In model M1, the effects of interest are the interactions
between group and time points, (αβ)ikn . For gene n these
terms capture differences from overall averages that are
attributable to the specific combination of a time point k
and group i . If these interaction terms are not significant,
the effects of interest are the group effect αin in model M2.
For gene n these terms capture differences from overall
group averages. Thus, the hypotheses of interests are as
follows:

H01 : (αβ)ikn = 0 for M1,

H02 : αin = 0 for M2.

Testing significance of these effects involves the calcula-
tion of F-statistics for each gene.
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Table 1. ANOVA table of model M1

Source Sum of Degrees Mean square F-statistic
squares of freedom error

Group SSG I − 1 M SG FG
Time SST K − 1 M ST FT
Group × time SSG×T (I − 1)(K − 1) M SG×T FG×T
Error SSE I K (L − 1) M SE

Total SST I K L − 1

For model M1 Table 1 gives the typical form of the
ANOVA table for each gene, if there are no missing
observations. Sum of squares are given by

SSG = K L
∑

i

(yi ··n − y···n)2,

SST = I L
∑

k

(y·k·n − y···n)2

SSG×T = L
∑

i

∑
k

(yik·n − yi ··n − y·k·n + y···n)2

SSE =
∑

i

∑
k

∑
l

(yikln − yik·n)2,

SST =
∑

i

∑
k

∑
l

(yikln − y···n)2.

The mean square errors are given by dividing sum of
squares by degrees of freedom. For example, M SG =
SSG/(I − 1), M ST = SST /(K − 1) and so forth.

We need to fit N models of M1 and to compute F-
statistics for (αβ)ikn, FG×T = M SG×T /M SE . If each log
ratio of intensities y has a normal distribution, then the F-
statistics follow an F-distribution with (K −1, 2K (L−1))

degrees of freedom. One other issue for testing concerns
p-values. Since we focus on N tests simultaneously, we
need to adjust p-values caused by multiple comparison.
Although there have been alternative methods including
controlling false discovery rates, we use the method of
adjusting p-values (Storey and Tibshirani, 2001).

When the interaction terms (αβ)ikn in M1 are not
significant, we need to consider reduced model M2. The
ANOVA table for this model is similar to that of M1
without the group and interaction term. We also need to fit
N models of M2 and compute F-statistics for αin , defined
by FG = M SG/M SE . If each log ratio of intensities y has
a normal distribution, then the F-statistics follow an F-
distribution with (K − 1, φE ) degrees of freedom, where
φE = 2K L − K − 1.

What if the normality assumption does not hold? Fol-
lowing the approach of Dudoit et al. (2000) we apply the
permutation test that does not require any distributional
assumption. The main idea of the permutation test is to

derive the distribution of F-statistics from all possible per-
mutations of the given observations and then compute the
p-value of the F-statistic for the observed data.

If the microarray experiment has two factors of interest,
say, A and B, which are not time-dependent, then the
permutation test can be performed by permuting all levels
of A and B simultaneously. In our experiment, however,
we have two factors, Group and Time. In order to test the
group effect, the data can be permuted over all levels of
Group. However, if we permute Time and Group together,
it might be difficult to extract information about the group
difference. If we fix time, then the test is only for group
effect for a specific time point. Furthermore, there are
only few observations available to permute, which does
not provide a sufficient sample size to determine the
significance of group effect.

The proposed approach to handling this problem is to
use two-stage models. At the first stage, remove the time
effect and then at the second stage focus on the group
effect. This can be done by fitting the following model
with time effects only and then using the residuals:

M1
3 : yikln = µn + βikn + εikln, (1)

M2
3 : yikln = µn + βkn + εikln, (2)

When there appears to be a strong interaction effect
between group and time, it would be better to fit model
M1

3 in which βikn allows a different time effect for
experimental groups. Otherwise, fit model M2

3 which
assumes the same time effect for each group, given by βkn .
Based on the test results of F-statistics, the decision for
whether to fit M1

3 or M2
3 can also be made.

Let τikln be the corresponding residual defined by

τikln = yikln − ŷikln

=
{

yikln − (µ̂n + β̂ikln) for M1
3

yikln − (µ̂n + β̂kn) for M2
3

(3)

The residuals do not have any information about time
effect. They only have information about group effect.
Thus, the permutation test can be performed using these
residuals for testing group effects. More specifically, for
gene n the K L residuals τ1kln are from Group 1 and the
other K L residuals τ2kln are from Group 2, if there are not
missing observations. For all 2K L residuals a two-sample
permutation test can be performed using the following
two-sample t-statistic,

Tg = τ 1··n − τ 2··n√
s2
1n

n1n
+ s2

2n
n2n

(4)
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where nin is the number of observations in Group i , and

τ i ··n =
K∑

k=1

L∑
l=1

τikln/nin,

s2
in = 1

nin − 1

K∑
k=1

L∑
l=1

(τikln − τ i..n)
2

for i = 1, 2, n = 1, . . . , N . By permuting all 2K L
observations with K L observations in each group, the p-
values for testing group effects can be obtained. In this
case, there are N tests available. We need to adjust p-value
by multiple comparison proposed by Westfall and Young
(1993).

2.2 I (> 2) experimental groups
When I is larger than 2, the model development is the
same as the case when I = 2. That is, we first need to
fit models M1 and M2. The F-tests based on the normal
assumption are exactly the same with those when I = 2,
while the degrees of freedom differ. More specifically, we
can use the same F-statistics given in the ANOVA table
of Table 1. After fitting N ANOVA models, adjusted p-
values can be obtained from the F-statistics in a similar
manner.

For the permutation test, on the other hand, F-statistics
based on the residuals in Equation (3) need to be used
instead of two-sample t-test statistics in equation (4).
For gene n, the K L residuals τikln are from Group i , if
there are no missing observations. For all I K L residuals
a permutation test based on the F-statistics needs to be
performed. That is, consider the following ANOVA model
for residuals:

M4 : τikln = µR
n + αR

in + εikln, (5)

where i = 1, . . . , I , k = 1, . . . , K , l = 1, . . . , L and
n = 1, . . . , N . The superscript R is used to denote a model
for residuals. The gene effects µR

n capture the overall mean
intensity and αR

in captures the i th group effect on residuals
after removing the time effects. Thus, the hypothesis for
testing group effect after removing time effects is given
by

H03 : αR
in = 0 for all i. (6)

For model M4 Table 2 gives the typical form of the
analysis of variance for each gene, if there are no missing
observations. The F-statistic for αin , defined by F R

G =
M Sn

G/M SR
E , can be used for the permutation test. By

permuting all I K L observations with K L observations
in each group, the p-values for testing H03 can be
approximately obtained by random permutation. We need
to adjust p-values by multiple comparison proposed by
Westfall and Young (1993).

Table 2. ANOVA table of model M4 for the residuals

Source Sum of Degrees Mean square F-statistic
squares of freedom error

Group SSR
G I − 1 M SR

G F R
G

Error SSR
E I (K L − 1) M SR

E

Total SST I K L − 1

3 RESULTS
3.1 Data
The data studied here are from a study of cortical stem
rat cells. The goal of the experiment is to identify genes
that are associated with neuronal differentiation of cor-
tical stem cells. Although there have been many reports
on the genes with changing their expression rates during
neuronal differentiation, the thorough underlying mecha-
nism of neuronal differentiation is not clear yet. Microar-
ray slides were prepared using 3840 cDNA clones which
were isolated from rat brain. Cortical neuronal stem cells
were isolated from an E15 rat fetus and expanded under
the presence of basic fibroblast growth factor (bFGF). Af-
ter expansion, differentiation was induced by removing
bFGF, and the cells were maintained for 12 h, 1, 2, 3,
4 and 5 days with or without ciliary neurotrophic factor
(CNTF, 10 µg/ml). After extraction of total RNA at indi-
cated time, reverse transcription was carried out using Cy
5-dUTP for fluorescence labelling and the expression pat-
terns were compared to that of undifferentiated, expanded
cortical stem cells, as a common reference, which was la-
belled with Cy 3. To get more reliable data, all the hy-
bridization analyses were carried out three times against
same RNA, and the scanned images were analyzed using
an edge detection mode proposed by Kim et al. (2001).

In this experiment, there are 3840 genes in each slide,
two experimental groups for comparison (No CNTF,
CNTF), and six different time sequences (12 h, 1, 2, 3,
4 and 5 day). Since all experiments were replicated three
times, all 36 slides were available for analysis. In this
experiment, the reference design was used. That is, every
sample of interest is hybridized to the same extraneous
reference sample. The main objective of analysis is to
identify genes with significant changes between two
experimental groups after adjusting for time effects.

3.2 Normalization
Before applying the proposed models, we first describe
normalization issues for handling spatial and intensity
dependent effects on the measured expression levels.
As pointed out by Yang et al. (2000), the purpose of
normalization is to remove systematic variation in a
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microarray experiment which affects the measured gene
expression levels.

At a first step, we need to decide which set of genes
to use for normalization. Yang et al. suggested three
types of approaches: all genes on the array, constantly
expressed genes, and controls. Recently, Tseng et al.
(2001) suggested using the rank invariant genes. We
tried rank invariant genes and then used all genes in the
slide. However, the two approaches did not provide much
different results. Thus, we decided to use all genes in the
array.

Following the approaches of Yang et al. (2000), we
applied global normalization using global median of
log intensity ratios and intensity dependent non-linear
normalization using a LOWESS curve. After applying
these normalization methods to 36 slides, we found that
the non-linear normalization method provided the most
reasonable results.

3.3 Tests
Using the notation in the previous section, let yikln be
the normalized log intensity ratios from group i(= 1, 2),
time k(= 1, . . . , 6), replication l(= 1, 2, 3), and gene n(=
1, . . . , 3840). Since I = 2, we follow the test procedures
for two experimental groups.

We first fit 3840 M1 models and then perform the F-
test for testing H01. None of the genes were significant
at the 5% significance levels using either F-tests or
permutation tests. Next, we fit another 3840 M2 after
removing (αβ)ikn in M1. The F-statistics for αin , given
by FG = M SG/M SE were obtained with (1,25) degrees
of freedom. Under the normality assumption, the adjusted
p-values were computed using the Bonferroni method
(Holm, 1979; Shaffer, 1986, 1995). At the 5% significance
level we found 53 genes.

Next, we perform the permutation test using the residu-
als τikln given in Equation (3). Since the interaction terms
(αβ)ikn are not significant, we use the second type of
residuals. For each gene, 36 residuals are available. The
possible number of permuted samples are

(36
18

)
, which is

too large to handle. Thus, for each gene we randomly
generated 100 000 permutated samples and computed the
two-sample t-statistics given in Equation (4). From these
100 000 t-statistics, the adjusted p-value was computed
by Westfall and Young’s method. At the 5% significance
level, we identified 90 genes. We also computed the num-
bers of genes differentially expressed genes at different
significance levels. For example, at the 1% significance
level, the permutation test yielded 59, while the F-test
yielded 37. At the 10% significance level, the permutation
test yielded 106 genes, while the F-test yielded 64 genes.

We compare the list of 53 genes of F-tests and 90
genes of permutation tests that were selected at the 5%
significance level. Note that the order of genes do not
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Fig. 1. The quantile–quantile plots. (a) The quantile–quantile plots
of residuals for checking the normality assumption. The residuals
are from the 1st, 6th, and 27th genes in Table 3; (b) The quantile–
quantile plot of F-statistic assuming all F-statistic follows F(1, 29)

distribution.
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differ much. The reason why the order of gene list is
similar is that the order of genes in the F-test is preserved
in computing the adjusted p-values of permutation test.
In addition, all 53 genes are included in 90 genes. Table 3
shows the full list of all genes that are identified by F-tests
and/or permutation tests. The first column shows the rank
by permutation tests and the last column does the rank
by F-tests. The blanks in F-tests show the same ranks
as permutation tests. The difference between F-tests and
permutation tests might be caused by the fact that the log-
ratios of intensities do not follow normal distributions. For
illustrative purpose, we select three genes in Table 3 and
draw the quantile–quantile plots of residuals for checking
the normality assumption. As shown in Figure 1a, the
distributions are far from the normal distribution for some
genes. Also, Figure 1b shows the quantile–quantile plots
of F-statistics. For simplicity, we assume the same degrees
of freedom, though they are slightly different due to
missing data. If the F-statistics follow an F-distribution,
they would scatter around the Y = X line.

Table 3. List of significant genes. The following gene are significant for F-tests and/or permutation tests that are differentialy expressed between two groups

Rank Gene name Rank of F-test

1 R.norvegicus mRNA for laminin gamma 1 *
2 Unknown-B0484 3
3 Rat membrane guanylate cyclase mRNA, complete cds 2
4 R.norvegicus mRNA for NTR2 receptor *
5 Rattus norvegicus (clone nclk) cdc2-related protein kinase mRNA, complete cds *
6 GEG-154, mouse *
7 Unknown-A1427 *
8 Poly(A) binding protein, mouse *
9 Unknown-D0964a *

10 Rat transcriptional repressor of myelin-specific genes (SCIP) mRNA, complete cds *
11 Ribosomal p s6, rat *
12 Rat retinol-binding protein (RBP) gene *
13 Ini1 mRNA?,human *
14 unknown-A0267 *
15 Rattus norvegicus low voltage-activated, T-type calcium channel alpha subunit (CACNA1G) mRNA, complete cds *
16 Rat connexin 43 mRNA, complete cds *
17 Rat alpha-prothymosin mRNA, complete cds *
18 Rat mRNA for rhodanese *
19 Unknown-B0388b *
20 folate-binding protein, mouse *
21 Rattus norvegicus phospholpase C delta-4 mRNA, complete cds *
22 Unknown-D2622g *
23 Rattus norvegicus thrombin mRNA, 3′ end *
24 Rattus norvegicus lactate dehydrogenase-B (LDH-B) mRNA, complete cds *
25 Rat PRRHIS8 mRNA for ribosomal protein S8 *
26 Rat zinc finger protein (kid-1) mRNA, complete cds *
27 Rattus norvegicus matrin cyclophilin (matrin-cyp) mRNA, complete cds 36
28 Rat mRNA for Distal-less 3 (Dlx-3) homeobox protein 27
29 Rat isoprenylated 67 kDa protein mRNA, complete cds 28
30 Rat mRNA for Ash-m, complete cds 29
31 microsatellite 30
32 Obiquinone oxidoreductase 31
33 Rat mRNA for T-cell marker CD2 antigen 32

For further analysis, we focus on the these 53 genes that
are selected by both F-tests and permutation tests. For
the selected 53 genes, we performed a clustering analysis
to confirm our findings. Using the Euclidian distance
measures, we performed the K -means clustering analysis
on the log-ratios. We tried different number of clusters.
It appears that three clusters provide most reasonable
grouping. The genes in the first cluster have green colors
in both CNTF and No CNTF groups. The genes in the
second cluster have green colors for the CNTF group but
red colors for the No CNTF group. Finally, the genes in the
third cluster have red colors for the CNTF group but green
colors for the No CNTF group. Figure 2 shows the results
of K-means clustering. We first tried a clustering analysis
for all 3840 genes. However, we could not get any clear
pattern of clusters. After selecting significant genes based
on the statistical tests, we obtained clear cluster patterns.

For these three clusters, Figure 3 shows the profiles
of log-ratio intensities over time. The left graphs are for
CNTF groups and the right ones for No CNTF groups.
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Table 3. Continued.

Rank Gene name Rank of F-test

34 Rattus norvegicus interleukin-1 beta converting, enzyme (ILIBCE) mRNA, complete cds 33
35 Rattus norvegicus mRNA for proteasome p45/SUG, complete cds 34
36 Sum-transplantation antigen P198, mouse 35
37 Rattus norvegicus adenylyl cyclase type V mRNA, complete cds *
38 Rattus norvegicus CAP1 gene *
39 Unknown-C1330d *
40 Insulin-like growth factor, mouse *
41 Rat brain glyceraldehyde-3-phosphate dehydrogenase mRNA, 3′ end 43
42 Unknown-C1393b 44
43 Rattus norvegicus Sprague–Dawley protein tyrosine phosphatase mRNA, complete cds 41
44 Unknown-D1439b 42
45 Rattus norvegicus prostaglandin F2a receptor regulatory protein precursor, mRNA, complete cds *
46 Rat mRNA for V-1 protein, complete cds *
47 Rattus norvegicus GSK-3beta interacting protein rAxin mRNA, complete cds *
48 Cytochrome oxidase, rat *
49 Rat liver interleukin 6 receptor ligand binding chain mRNA, complete cds *
50 Rattus norvegicus cysteine sulfinic acid decarboxylase mRNA, complete cds *
51 rRNA 18S *
52 Unknown-A1141 54
53 Rat mRNA for novel protein kinase PKN, complete cds 62
54 Unknown-B1571c 52
55 Rat liver mRNA for proteasomal ATPase (S4), complete cds 57
56 Acidic ribosomal phosphoprotein P1, rat 53
57 Splicing factor Sip1, human 59
58 Ribosoinal p. 40 kDa, rat 55
59 Unknown-B0430a 56
60 Rattus norvegicus mRNA encoding 45 kDa protein which binds to heymann nephritis antigen gp330 58
61 Rattus norvegicus polo like kinase (plk) mRNA, complete cds 60
62 Rat prohibitin (phb) mRNA, complete cds 64
63 Rattus norvegicus mRNA for 14-3-3 protein gamma-subtype, complete cds 61
64 Unknown-A0239 63
65 Rat brain glyceraldehyde-3 phosphate dehydrogenase mRNA, 3′ end *
66 Unknown-D0626b *
67 R.norvegicus mRNA for mammalian fusca protein 70
68 Rat mRNA for 230 kDa phosphatidylinositol 4-kinase, complete cds 67
69 Rattus norvegicus Lyn B tyrosine kinase (LynB) mRNA, complete cds 68
70 rVlaR (R.norvegicus mRNA for V1a arginine vasopressin receptor) 69
71 Rat alpha-crystallin B chain mRNA, complete cds *
72 Rattus norvegicus CD59 protein precursor, mRNA, complete cds *
73 Chromosome X region human *
74 Unknown-A0222b *
75 Unknown-D0180d *
76 Unknown-C1635b *
77 Unknown-D1441a *
78 R.norvegicus P2X mRNA *
79 R.norvegicus mRNA for cathepsin B *
80 Unknown-D0037b *
81 Rattus norvegicus cysteine sulfinic acid decarboxylase mRNA, complete cds *
82 Rattus norvegicus endoplasmic reticulum protein ERp29 precursor, mRNA, complete cds *
83 Rattus norvegicus p41-Arc mRNA, complete cds *
84 Tyrosine phosphatase-like p. (brain), rat *
85 Rattus norvegicus type 1 astrocyte and olfactory-limbic associated protein AT1-46 mRNA, complete cds *
86 Rat calmodulin (RCM3) mRNA, complete cds *
87 Unknown-D0284a *
88 Rattus norvegicus mRNA for serine protease, complete cds *
89 R.norvegicus MYR1 mRNA for myosin I heavy chain 94
90 Rattus norvegicus 190 kDa ankyrin isoform mRNA, complete cds 93

* Represents the same rank.
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Rattus norvegicus Sprague Dawley protein tyrosine phosphatase mRNA, complete cds
Rat brain glyceraldehyde3phosphate dehydrogenase mRNA, 3’ end
unknownD1439b
unknownC1330d
Rat connexin 43 mRNA, complete cds
Rat mRNA for Tcell marker CD2 antigen
microsatellite

tum transplantation antigen P198, mouse
Rat alphaprothymosin mRNA, complete cds
Rattus norvegicus matrin cyclophilin (matrincyp) mRNA, complete cds
unknownD2622g
Rattus norvegicus phospholipase C delta4 mRNA, complete cds
Rat mRNA for Ashm, complete cds
Rattus norvegicus mRNA for proteasome p45/SUG, complete cds
Rat PRRHIS8 mRNA for ribosomal protein S8
insulinlike growth factor, mouse
Rat isoprenylated 67 kDa protein mRNA, complete cds
Rat transcriptional repressor of myelinspecific genes (SCIP) mRNA, complete cds
Rat mRNA for V1 protein, complete cds
ubiquinone oxidoreductase
Rattus norvegicus interleukin1 beta converting enzyme (IL1BCE) mRNA, complete cds
Rattus norvegicus cysteine sulfinic acid decarboxylase mRNA, complete cds
Rattus norvegicus adenylyl cyclase type V mRNA, complete cds
unknownC1393b
cytochrome oxidase,rat
Rattus norvegicus GSK3beta interacting protein rAxin mRNA, complete cds
Rat zinc finger protein (kid1) mRNA, complete cds
R.norvegicus mRNA for laminin gamma 
Rattus norvegicus (clone nclk) cdc2related protein kinase mRNA, complete cds
ribosomal p s6, rat
unknownA1427
GEG154, mouse
Rat mRNA for Distalless 3 (Dlx3) homeobox protein
Rat retinolbinding protein (RBP) gene
R.norvegicus mRNA for NTR2 receptor
unknownA0267
poly(A) binding protein, mouse
Rat mRNA for rhodanese
folatebinding protein, mouse
Rattus norvegicus lactate dehydrogenaseB (LDHB) mRNA, complete cds
Rat membrane guanylate cyclase mRNA, complete cds
unknownB0484
unknownD0964a

unknownB1571c
unknownB0388b
Rattus norvegicus thrombin mRNA, 3’ end
Rattus norvegicus low voltageactivated, Ttype calcium channel alpha subunit (CACNA1G) mRNA, complete cds
Rattus norvegicus CAP1 gene
Ini1 mRNA?,human
rRNA 18S
Rat liver interleukin 6 receptor ligand binding chain mRNA, complete cds
Rattus norvegicus prostaglandin F2a receptor regulatory protein precursor, mRNA, complete cds

CNTF no CNTF

Fig. 2. The results of K-means clustering with three clusters.

Each line represents one gene. The solid lines with circles
represent mean values. The genes in the first cluster tend
to have lower log-ratios for No CNTF groups, while the
genes in the second and third clusters do have higher
log-ratios. Also, Figure 3 shows that there are higher
variabilities for the CNTF group than No CNTF group.
The solid lines do not change much over time, which
confirms the finding from ANOVA models that (αβ)s are
not significant.

4 DISCUSSION
In this paper, we proposed a statistical procedure to
identify genes that have different gene expression profiles
among experimental groups in time-course experiments.
The proposed model is based on the usual ANOVA model
and can detect genes that have different gene expression
profiles among I experimental groups.

The proposed approach is an extension of the two-
sample t-test proposed by Dudoit et al. (2000). They
considered two group problem with replicated experi-
ments. When there are more than two groups, the F-test
based on the ANOVA model is a natural extension.
However, when one factor is Time as in the time-course
experiment, its extension is not straightforward. The
key idea of the proposed model is using residuals after
removing the time effect.

For the time sequence data, the main idea of the
proposed model can also be applied to the ANOVA model
of Kerr et al. (2000) as well as the mixed model of
Wolfinger et al. (2001) by adding a time effect in the
model. However, it needs some further considerations on
how to fit the two-stage models, how to use residuals, and
how to test differentially expressed genes.

Note that the proposed model is different from the
ANOVA model of Kerr et al. (2000). First, the previous
work modelled the log intensity while our approach
models the log ratios, though there is a connection
between these two models. The ANOVA model of Kerr et
al. (2000) is more suitable for microarray data obtained
from the loop design which has balanced dye effects.
The example in this paper used the reference design in
which every sample is hybridized to the same extraneous
reference sample. Second, Kerr et al. (2000) fit one big
model to microarray data for all genes simultaneously,
while our method fits a model separately for each gene.
They employ a bootstrap analysis of residuals and use
bootstrap confidence intervals to detect differentially
expressed genes. Instead of bootstrap analysis, we use
permutation tests. Finally, the key difference here is
that we consider two stage models: one for removing
the effect of time and the second model is for detecting
differentially expressed genes. Wolfinger et al. (2001)
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Fig. 3. Profiles of log-ratio intensities for clustered genes in Figure 2. (a) cluster 1, (b) cluster 2, (c) cluster 3.

used similar two-stage mixed models. However, the first
stage model is mainly for normalization.

One advantage of the proposed permutation test is that
it improves the discreteness of p-values. Note that if
we permute data within each time sequence, there are(6

3

)6 = 6.4 × 107 possible permuted samples. On the other

hand, our approach yields
(36

18

) = 9.075 × 109 possible
permuted samples. Permutation tests usually suffer from
the discreteness of p-values. Since the proposed method
allows more permuted samples, the discreteness of p-
value can be improved. However, it would be interesting
to access the validity of the permutation test p-values and

702



Statistically identifying genes

to perform a power analysis. Furthermore, it is interesting
to observe that the order of genes selected by F-tests does
not differ from that of permutation tests. It is because the
order of genes in the F-test is preserved in computing
the adjusted p-values of permutation test. The idea of
this p-value adjustment came from Westfall and Young,
and later were used by Dudoit et al. in the analysis
of microarray data. However, we think that the idea of
this adjustment also needs a further evaluation. We are
planning to conduct simulation studies for investigating
the validity of permutation in a more general settings
including the t-test of Dudoit et al. (2000). The results will
be reported in a separate paper.

The proposed model is flexible and easy to extend.
Since it is based on the ANOVA model, for example, it
can be extended to the cases when there are more than
two factors. For example, suppose that we have three
factors of interest such as A and B as well as Time. Then,
the ANOVA model M1 and M2 can be extended to the
following models:

M∗
1 : yi jkln = µn + αA

in + αB
jn + βkn

+(αβ)A
ikn + (αβ)B

jkn + εi jkln,

M∗
2 : yi jkln = µn + αA

in + αB
jn + βkn + εi jkln, (7)

where i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . , K ,
l = 1, . . . , L , and n = 1, . . . , G. In these models, αA

in and
αB

jn represent the effects of A and B, respectively. We can
also consider some models with only one interaction terms
between M∗

1 and M∗
2 . The other test procedures described

previously can be similarly extended.
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