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ABSTRACT
Motivation: An important application of microarray experi-
ments is to identify differentially expressed genes. Because
microarray data are often not distributed according to a normal
distribution nonparametric methods were suggested for their
statistical analysis. Here, the Baumgartner-Weiß-Schindler
test, a novel and powerful test based on ranks, is invest-
igated and compared with the parametric t -test as well as
with two other nonparametric tests (Wilcoxon rank sum test,
Fisher-Pitman permutation test) recently recommended for
the analysis of gene expression data.
Results: Simulation studies show that an exact permutation
test based on the Baumgartner-Weiß-Schindler statistic B is
preferable to the other three tests. It is less conservative than
the Wilcoxon test and more powerful, in particular in case of
asymmetric or heavily tailed distributions. When the underlying
distribution is symmetric the differences in power between
the tests are relatively small. Thus, the Baumgartner-Weiß-
Schindler is recommended for the usual situation that the
underlying distribution is a priori unknown.
Availability: SAS code available on request from the authors.
Contact: markus.neuhaeuser@medizin.uni-essen.de

INTRODUCTION
DNA microarray technologies, such as cDNA arrays and
oligonucleotide arrays, can be used to measure the expression
of thousands of genes simultaneously. These technologies are
rapidly becoming common laboratory tools and promise to
revolutionize biological research. They are used in biomed-
ical research, but also in other areas such as ecology and
evolution (Gibson, 2002). Often the question is whether gene
expression is different for two (or sometimes more) groups
of organisms that differ with respect to a characteristic such
as exposure to some environmental stimuli, genotype or age
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(Gadbury et al., 2003). In this paper, we consider the compar-
ison of two groups in order to detect differentially expressed
genes based on replicated measurements of expression levels
of each gene.

From now on, the expression levels can refer to a sum-
mary measure of relative red to green channel intensity, a
radioactive intensity or a summary difference of the perfect
match and mis-match scores; furthermore, the gene expres-
sion levels may have been preprocessed using dimension
reduction, normalization and data transformation (Pan, 2002).

Several authors pointed out that expression data from
microarrys are often not distributed according to a normal
distribution, even after some preprocessing (Hunter et al.,
2001; Thomas et al., 2001; Pan, 2002; Craig et al., 2003;
Giles and Kipling, 2003; Liu et al., 2003; Zhao and Pan, 2003).
According to Thomas et al. (2001) the normality assumption is
certainly inappropriate for a subset of genes despite any given
transformation. Therefore, nonparametric tests were recom-
mended for the analysis of microarrays (Troyanskaya et al.,
2002; Gadbury et al., 2003; Xu and Li, 2003). The advantage
of nonparametric methods is that no specific distribution has
to be assumed.

Giles and Kipling (2003) applied the Shapiro-Wilks test
to Affymetrix microarray expression data and showed that
non-normal distributions are common (up to 46% of probe
sets). However, Giles and Kipling (2003) argued that the devi-
ations from normality are often modest and, therefore, they
recommend parametric tests such as the t-test. Indeed, the
t-test is quite robust, but its optimal power properties apply
only if the observations are drawn from a normal distribu-
tion (Blair et al., 1980). When the assumption of normality
is violated, a nonparametric test can be more powerful (see
e.g. Hunter and May, 1993). Zimmerman and Zumbo (1993)
demonstrated that the Wilcoxon rank sum test (equivalent to
the Mann–Whitney U test) is more powerful than the t-test
when outliers (unusual extreme data values) are present. As
Liu et al. (2003) pointed out, outliers are an accepted fact of
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life when dealing with microarray data. Lönnstedt and Speed
(2002) also noted that outliers occur frequently in microarray
experiments. Moreover, it should be noted that expression data
are often non-normal even after outliers have been removed
(see e.g. Magusin, 2003).

In microarrays the sample sizes, i.e. the numbers of rep-
lications, are usually very small (Gadbury et al., 2003; Zhao
and Pan, 2003). This fact is, according to Giles and Kipling
(2003), an additional argument for parametric tests. How-
ever, historically, nonparametric tests have most often been
recommended as a technique for dealing with small samples
(Zimmerman and Zumbo, 1993, p. 483). According to Blair
et al. (1980) ‘in the small sample situation the t test might not
be as robust to population non-normality as one would wish,
and in this situation the Mann–Whitney test would be espe-
cially useful in controlling the Type I error rate’. Moreover,
for relatively small sample sizes, Blair and Higgins (1980)
found the Wilcoxon test to be more powerful than the t-test
in many cases.

In the case of small sample sizes, a nonparametric test
should be carried out as a permutation test. For a permuta-
tion test all possible permutations under the null hypothesis
are generated and the test statistic is calculated for each
permutation. The null hypothesis can then be accepted or
rejected using the permutation distribution of the test statistic,
the p-value being the probability of the permutations giving
a value of the test statistic as supportive or more support-
ive of the alternative than the observed value (Manly, 1997;
Good, 2000). Thus, inference is based upon how extreme the
observed test statistic is relative to other values that could have
been obtained under the null hypothesis. The alternative to a
permutation test is to rely on an asymptotic distribution, e.g.
on the asymptotic normality of the Wilcoxon rank sum which
is appropriate when the sample size exceeds eight in each
group (Troyanskaya et al., 2002). However, in the presence of
ties (observations with identical values) the appropriateness of
the asymptotic approximation depends on the number and on
the distribution of the ties (Brunner and Munzel, 2002, p. 68).

The Wilcoxon rank sum test was recommended for the ana-
lysis of microarray data (Wu, 2001; Troyanskaya et al., 2002).
Some authors (Troyanskaya et al., 2002; Xu and Li, 2003)
considered the Fisher–Pitman permutation test, also called
randomization test or nonparametric t-test, for the nonpara-
metric analysis of microarrays. Recently, it was shown that
an exact test based on the Baumgartner-Weiß-Schindler stat-
istic is preferable to the Wilcoxon test (Neuhäuser, 2000,
2003). The Baumgartner-Weiß-Schindler statistic is also
based on ranks. So far, it has not been compared to the
Fisher–Pitman test. It is the aim of this paper to com-
pare these tests for the detection of differentially expressed
genes in replicated microarray experiments. The parametric
t-test is included in this comparison because it seems to be
the most frequently used test for identifying differentially
expressed genes.

HYPOTHESIS TESTING FOR A SINGLE GENE
Let X1, . . . , Xn and Y1, . . . , Ym denote the independent obser-
vations regarding one gene for two groups to be compared, the
sample means are X̄ and Ȳ . Within groups, it is assumed that
the observations are independent and identically distributed
according to distribution functions F and G. In the location-
shift model the distribution functions are the same except
perhaps for a change in their locations; i.e., F(t) = G(t − θ)

for every t , −∞ < θ < ∞. The null hypothesis is H0 : θ = 0,
whereas the alternative states θ �= 0.

Let R1 ≤ · · · ≤ Rn (H1 ≤ · · · ≤ Hm) denote the combined-
samples ranks of the X-values (Y -values) in increasing order
of magnitude. The Wilcoxon statistic is defined as W =∑n

i=1 Ri , i.e., W is the sum of the ranks of the observations
from the first group.

The nonparametric statistic introduced by Baumgartner
et al. (1998) is B = 1

2 · (BX + BY ), where

BX = 1

n

n∑

i=1

(Ri − [(m + n)/n] · i)2

[i/(n + 1)] · (1 − i/(n + 1)) · [m(m + n)]/n
and

BY = 1

m

m∑

j=1

(Hj − [(m + n)/m] · j)2

[j/(m + 1)] · (1 − j/(m + 1)) · [n(m + n)]/m .

Large values of B support the alternative. This novel stat-
istical test competes well with the Wilcoxon test and other
nonparametric tests such as the Kolmogorov–Smirnov test.
Baumgartner et al. (1998) demonstrated this using the asymp-
totic distribution of the test statistics. However, the asymptotic
test based on B can have an inflated type I error rate in case
of small sample sizes (Neuhäuser, 2000). Consequently, the
exact test based on the permutation distribution of B proposed
by Neuhäuser (2000) is more appropriate for the analysis of
microarray data. When comparing exact tests, the one based
on B is less conservative and more powerful than the Wilcoxon
test for continuously distributed data (Neuhäuser, 2000) and
in the presence of ties (Neuhäuser, 2003).

Troyanskaya et al. (2002) also mentioned the conservatism
of the Wilcoxon rank sum test. The Baumgartner-Weiß-
Schindler test is less conservative because the exact permuta-
tion distribution of B is less discrete than that of the rank sum
W . Consider e.g. ten replications per group and no ties. Then,
there are

(2×10
10

) = 184, 756 possible permutations. When
calculating the statistic B and the rank sum W for all these
permutations one obtains 11,833 different values for B, but
only 101 different values for W . Consequently, the distribu-
tion of B has much more mass points, i.e. it is less discrete,
than that of W . As a result, the Baumgartner-Weiß-Schindler
test is less conservative than the Wilcoxon test and smaller
p-values are possible. The latter point is particularly import-
ant for microarray analysis since the significance level may
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Table 1. Type I error rates of the four tests for different sample sizes (α = 0.05)

n m W test B test FP test t test
Uniform Normal Cauchy χ2 (3 df) Expon. Uniform Normal Cauchy χ2 (3 df) Expon.

5 5 0.0317 0.0476 0.049 0.048 0.045 0.048 0.051 0.056 0.050 0.019 0.042 0.043
6 6 0.0411 0.0498 0.049 0.046 0.046 0.045 0.050 0.053 0.047 0.018 0.039 0.039
7 7 0.0379 0.0490 0.051 0.052 0.049 0.050 0.051 0.054 0.052 0.019 0.045 0.042
8 8 0.0499 0.0499 0.052 0.051 0.054 0.051 0.051 0.054 0.051 0.022 0.046 0.042
9 9 0.0400 0.0499 0.047 0.051 0.049 0.050 0.050 0.048 0.050 0.019 0.044 0.042

10 10 0.0433 0.0500 0.051 0.048 0.051 0.050 0.050 0.053 0.048 0.021 0.046 0.045
8 5 0.0451 0.0497 0.054 0.050 0.049 0.043 0.053 0.056 0.050 0.023 0.038 0.043
9 7 0.0418 0.0500 0.051 0.048 0.049 0.050 0.051 0.053 0.047 0.021 0.045 0.043

10 5 0.0400 0.0500 0.049 0.052 0.045 0.049 0.050 0.052 0.051 0.025 0.044 0.043

have to be adjusted for multiple testing because many genes
are considered simultaneously.

There are several equivalent test statistics for the
Fisher–Pitman permutation test (Manly, 1997, pp. 15–16).
One possibility is

FP =
∣∣∣∣∣

n∑

i=1

Xi − n · nX̄ + mȲ

n + m

∣∣∣∣∣

as proposed for the two-sided alternative by Pitman (1937).
As the Wilcoxon test is based on ranks it does not use all

available information, in contrast to the Fisher–Pitman per-
mutation test. Nevertheless, the Wilcoxon test can be more
powerful, as demonstrated by Keller-McNulty and Higgins
(1987), van den Brink and van den Brink (1989) and Tanizaki
(1997) for asymmetrical and heavily tailed distributions.
Rasmussen (1986) showed that the Wilcoxon test outperforms
the Fisher–Pitman permutation test in case of contaminated
normal distributions; such a mixture of normals was also
considered in the simulations of Xu and Li (2003).

The articles mentioned above (Rasmussen, 1986; Keller-
McNulty and Higgins, 1987; van den Brink and van den
Brink, 1989; Tanizaki, 1997) considered continuous distri-
butions only. In this paper, we also investigate the power
in the presence of ties. Furthermore, the Baumgartner-Weiß-
Schindler test, a novel and powerful nonparametric test based
on ranks, is included in the comparison.

SIMULATION STUDY
The different tests were compared in a Monte Carlo simulation
study performed using SAS version 8.2; 10,000 simulation
runs were generated for each configuration. With the excep-
tion that the parametric t test is based on the t distribution, the
permutation distributions, not the asymptotic distributions, of
the test statistics were used for inference. For sample sizes lar-
ger than n = m = 10 the number of possible permutations is
very large. In this case, the permutation tests were performed
based on simple random samples of 100,000 permutations.

Table 2. Simulated power of the four tests for different distributions (n =
m = 10, α = 0.05)

θ̃ a Test Uniform Normal Cauchy χ2(3 df) Expon.

0.5 FP 0.15 0.19 0.13 0.17 0.15
W 0.13 0.17 0.19 0.18 0.19
B 0.13 0.18 0.22 0.20 0.21
t 0.16 0.18 0.07 0.15 0.10

1.0 FP 0.47 0.56 0.29 0.47 0.41
W 0.41 0.51 0.47 0.52 0.49
B 0.42 0.52 0.55 0.58 0.56
t 0.48 0.55 0.19 0.46 0.29

1.5 FP 0.83 0.89 0.43 0.76 0.67
W 0.75 0.85 0.69 0.80 0.75
B 0.76 0.86 0.77 0.85 0.82
t 0.84 0.89 0.32 0.76 0.54

aθ = f · θ̃ with f = 4/15 (uniform distribution), f = 0.7 (exponential distribution),
f = 1 (normal distribution), and f = 2 (Cauchy and χ2). The values of f were chosen
on empirical grounds in order to obtain powers of comparable size.

For smaller sample sizes all permutations were considered for
the rank-based tests. For the Fisher–Pitman test all permuta-
tions were considered if there were not more than 100,000
possible permutations; if there were more, an approximate
Fisher–Pitman test was carried out, using 100,000 randomly
selected permutations.

Distributions with different properties were used to sim-
ulate data: uniform distribution on (0,1), i.e. a symmetric
distribution with short tails; standard normal distribution,
i.e. a symmetric distribution with medium tails; Cauchy
distribution, i.e. a symmetric distribution with heavy tails;
and two asymmetric distributions: χ2 distribution with
three degrees of freedom (df), and exponential distribution
with scale parameter λ = 1. These distributions, together
with the investigated mixtures of normal distributions (see
below), represent different types of distributions that are pos-
sible for actual gene expression data. Therefore, the power
observed in the simulations is likely to transfer to real data
applications.
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Fig. 1. Simulated power of the four tests for (A) the normal distribution with variance 1 (location shift: θ = 1.25, α = 0.05) and (B) the
Cauchy distribution (location shift: θ = 2.5, α = 0.05)

Hereafter, the following abbreviations will be used: FP
test for the Fisher–Pitman permutation test, W test for the
Wilcoxon test, and B test for the test based on B.

Type I error rates are presented in Table 1. The type I
error rate of the rank tests can be derived analytically since it
depends on the ranks only. The type I error rates of the t and
the FP tests were simulated. The FP and B tests have a type I
error rate very close to the nominal significance level α, even
for small sample sizes. The W test, however, is conservative.
The t test can have a type I error rate close to α, but it can be
very conservative, too, as it is in case of the Cauchy distribu-
tion. As exact permutation tests, all three nonparametric tests
guarantee a type I error rate less than or equal to α. Therefore,
a test statistic can be chosen purely on the basis of power
(Kennedy, 1995).

The simulated power is given in Table 2. For the skewed
and heavily tailed distributions the B test outperforms the
other three tests. For the uniform and the normal distributions
the t and the FP tests are more powerful than the other tests.
However, in these cases the difference between the tests is
much smaller than for other distributions such as Cauchy or
exponential. Consequently, the simulation results indicate that
the B test is a good choice when the underlying distribution
functions are unknown as they usually are. This conclusion
also holds for other sample sizes, see the results presented
in Figure 1. However, for small sample sizes such as 4 or
5 per group the differences in power between the tests are
negligible.

So far, only continuous distributions were considered. But,
in practice, ties occur frequently in a variety of settings
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Table 3. Type I error rates of the four tests in the presence of ties (n = m = 10, α = 0.05)

No. of ties W test B test FP test t test
Uniform Normal Cauchy χ2 (3 df) Expon. Uniform Normal Cauchy χ2 (3 df) Expon.

1 0.0452 0.0500 0.050 0.048 0.050 0.050 0.050 0.053 0.047 0.021 0.046 0.046
2 0.0499 0.0500 0.051 0.047 0.050 0.050 0.050 0.052 0.047 0.021 0.046 0.045
3 0.0499 0.0499 0.050 0.048 0.050 0.050 0.052 0.052 0.048 0.021 0.046 0.047

Table 4. Simulated power of the four tests for different distributions in the presence of ties (n = m = 10, α = 0.05)

No. of ties Test Uniform Normal Cauchy χ2 (3 df) Expon.
(θ = 6/15) (θ = 1.5) (θ = 3) (θ = 3) (θ = 1.05)

1 FP 0.83 0.89 0.43 0.75 0.67
W 0.75 0.86 0.69 0.80 0.75
B 0.76 0.85 0.77 0.84 0.82
t 0.83 0.89 0.32 0.75 0.66

2 FP 0.83 0.89 0.43 0.75 0.67
W 0.77 0.87 0.71 0.81 0.77
B 0.76 0.85 0.77 0.84 0.82
t 0.83 0.89 0.32 0.75 0.66

3 FP 0.83 0.88 0.43 0.75 0.67
W 0.76 0.87 0.71 0.81 0.77
B 0.75 0.85 0.77 0.84 0.82
t 0.83 0.88 0.32 0.75 0.66

including microarrays. Even when the underlying distribution
is continuous rounding can lead to ties. In addition, data
modifications can create ties. For example, in the microarray
analysis presented by Tschentscher et al. (2003) expression
levels below 50 were set to 50 prior to performing the W test.
Therefore, the behavior of the tests in the presence of ties is of
interest. Unfortunately, as mentioned above, non-continuous
distributions were previously not considered in the com-
parison of FP versus W test. In the presence of ties the
usual way of dealing with these values is to assign average
ranks, the statistics W and B can be calculated in that way.
The asymptotic BWS test can have an inflated type I error
rate in this case (Neuhäuser, 2002). However, permutation
tests as investigated here can be applied whether or not ties
occur (Good, 2000).

Data sets with ties were generated as follows: First, data
were simulated according to continuous distribution func-
tions. In the second step, ties were created. In the case of
one tie, the values corresponding to the ranks 5 and 6 were
replaced by the average of these two values. To create two
tied groups, the values corresponding to the ranks 10 and 11
were also replaced by their average. For three ties, the values
corresponding to the ranks 15 and 16 were averaged to create
a further tie.

As the results in Table 3 indicate ties affect the type I error
rate of the tests only marginally. The only difference is the

larger type I error rate of the W test in case of two and three
ties. The reason is that the type I error rate of the W test heavily
depends on the location of the few mass points of the very
discrete distribution of W . The power displayed in Table 4
is also similar to the results for continuous distributions. The
slightly increased power of the W test for two and three ties
can be explained by the larger type I error rate.

As mentioned above, Rasmussen (1986) showed the superi-
ority of the W test to the FP test for contaminated normal
distributions. We also investigated some of these distributions
that are defined as follows: The data are standard normal with
probability 0.7, and with probability 0.3 they are normally dis-
tributed with mean 5 and standard deviation 0.5 (CN1) and 4
(CN2), respectively. An additional mixture was used in order
to reflect the situation that one or two outliers are present.
The data of this distributions (CN3) are standard normal with
probability 0.9, and with probability 0.1 they are normally
distributed with mean 10 and standard deviation 1. The res-
ults given in Table 5 and Figure 2 show that the W test is indeed
preferable to the FP test, but the B test is much more powerful
than the other tests. Again, ties affect the power only margin-
ally. The results for the distribution CN3 (Figure 2B) confirm
the statement mentioned in the Introduction that rank-based
tests are especially appropriate in the presence of outliers. The
B and the W test are much more powerful than the t and the
FP tests, the B test being the most powerful.
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Fig. 2. Simulated power of the four tests for the contaminated normal distribution (A) CN2 (n = m = 10, α = 0.05); (B) CN3 (n = m = 10,
α = 0.05)

Table 5. Simulated power of the four tests for the contaminated normal
distribution CN1 (θ = 2.5, n = m = 10, α = 0.05)

No. of ties FP test W test B test t test

0 0.56 0.56 0.69 0.57
1 0.56 0.56 0.69 0.56
2 0.56 0.61 0.68 0.56
3 0.56 0.60 0.67 0.57

Application to actual data
We applied the different tests to data from microarray exper-
iments. First, we used cDNA data from a comparison of
two types of breast cancer (Hedenfalk et al., 2001): for 3226
genes there are seven replicates from patients with germ-line

mutations of BRCA1 and eight replicates regarding BRCA2.
Second, the different tests were applied to the oligonuc-
leotide microarray data from Huang et al. (2001). In this
comparison of normal thyroid and papillary tumor tissues
more than 12,000 genes were investigated. We arbitrarily
selected the first-listed 2000 genes for the analyses presen-
ted here, there are eight replicates per group. In the case of
this sample size (n = m = 8) neither test is conservative
(see Table 1). For both data sets we obtained the data from
http://microarray.cpmc.Columbia.edu/pavlidis/pub/gxrep (see
Pavlidis et al., 2003). In addition, we used data
from patients with uveal melanomas with and without
monosomy 3 (Tschentscher et al., 2003; see http://www.
uni-essen.de/humangenetik/download). The sample size in
this microarray experiment is 10 per group. As mentioned
above, expression levels below 50 were set to 50. However,
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Fig. 3. P -values of Baumgartner-Weiß-Schindler test B and (A) the Wilcoxon test W and (B) the Fisher–Pitman permutation test FP for
3226 genes from the cDNA microarray of Hedenfalk et al. (2001).

we considered the first-listed 2000 genes for which this
modification was not necessary.

The Figures 3– 5 show p-values. Although, for all data sets,
the p-values of the different tests are often similar, the two
tests W and FP can have much larger p-values than the B test.
For the following analyses we selected, for each of the three
data sets, the 100 genes with the strongest difference in expres-
sion, i.e. the 100 genes with the smallest p-values of the B test.

Within these sets of genes there are 97, 93, and 92 (Hedenfalk
et al., 2001; Huang et al., 2001; Tschentscher et al., 2003)
of the genes with the 100 smallest W test p-values. Figure 6
shows that the same genes have the smallest p-values irre-
spective whether the B or the W test is applied. That means
that the B test, in comparison to the W test, does not detect
distinct genes as differentially expressed. However, because
of its higher power (see above) the B test likely identifies
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Fig. 4. P -values of the Baumgartner-Weiß-Schindler test B and (A) the Wilcoxon test W and (B) Fisher–Pitman permutation test FP for
2000 genes from the oligonucleotide microarray of Huang et al. (2001).

more genes as differentially expressed. Between the FP test
(or t-test) and a rank test the differences are slightly larger.
The numbers of genes out of those with the 100 smallest
p-values within the set of the 100 genes with the smallest
B test p-values indicate this. These numbers are 85, 88 and
91 for the FP test, and 74, 85 and 83 for the t-test (Heden-
falk et al., 2001; Huang et al., 2001; Tschentscher et al.,
2003).

In addition, we consider the Affymetrix spike-in exper-
iment. Because transcripts were spiked-in at known
concentrations (Irizarry et al., 2003a), the truth is

known for these data. We applied the data available at
www.affymetrix.com/analysis/download_center2.affx to the
robust multi-array analysis (RMA, Irizarry et al., 2003b)
before the different tests were performed. Since a two-sample
comparison is investigated here, the experiments M to T and
the series 4, 6 and 8 are considered. Thus, we have two groups
with 12 values each. According to Cope et al. (2004) we regard
16 spiked-in probe sets as differentially expressed. In total,
there are 12,626 probe sets. Table 6 displays the p-values
of the 16 transcripts with differences and the corresponding
numbers of smaller or equal p-values within all probe sets.
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Fig. 5. P -values of the Baumgartner-Weiß-Schindler test B and (A) the Wilcoxon test W ; (B) the Fisher–Pitman permutation test FP for
2000 genes from the oligonucleotide microarray of Tschentscher et al. (2003).

As this table shows there are very marginal differences only
between the tests.

DISCUSSION
Nonparametric tests such as the Wilcoxon rank sum test were
recommended for the analysis of microarray data. As men-
tioned above, no specific distribution has to be assumed for
nonparametric methods. Disadvantages of these tests are that
they can be conservative and computer-intensive. However,

the presented test based on the Baumgartner-Weiß-Schindler
statistic is less prone to the first problem. And the second issue
is less relevant now due to faster algorithms (see e.g. Good,
2000, chap. 13) and the advent of high-speed PCs. Further-
more, one can carry out a permutation test based on a random
sample out of the possible permutations.

Previous research demonstrated that the Wilcoxon rank sum
test is more powerful than the t and the FP test when the
data follow an asymmetric and/or a heavily tailed distribution.
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Fig. 6. The ranks of the p-values of the Baumgartner-Weiß-Schindler test B and the Wilcoxon test W test for the 100 genes with the smallest
p-values of the B test, for each of the three data sets [�: Hedenfalk, �: Huang, ∗: Tschentscher].

Table 6. P -values of the 16 transcripts with differences in the Affymetrix spike-in experiment and the corresponding numbers of smaller or equal p-values
within all probe sets

Transcripts with identical p-values B test W test FP test
p-value # of smaller or

equal p-values
p-value # of smaller or

equal p-values
p-value # of smaller or

equal p-values

33818_at, 40322_at 0.00000074 14 0.00000074 14 0.00000037 2
546_at, 684_at, 1024_at, 1091_at, 0.00000074 14 0.00000074 14 0.00000074 13

36085_at, 36202_at, 36311_at,
36889_at, 37777_at, 38734_at, 39058_at

1708_at 0.00001183 19 0.00001405 19 0.00000740 18
407_at 0.00001849 20 0.00002219 20 0.00001997 20
1597_at 0.00180759 50 0.00182978 49 0.00161899 49

Note that outliers, common in gene expression, can lead
to heavy-tailed distributions (Wu, 2001; Liu et al., 2003).
We demonstrated that the advantage of a rank test can be
more pronounced when a novel statistic, the Baumgartner-
Weiß-Schindler statistic B, is used instead of the rank sum.
Since the Baumgartner-Weiß-Schindler test is, if at all, only
marginally less powerful than the t or the FP test for
symmetric distributions, this test can be recommended in
case of an a priori unknown distribution, a situation quite
common in practice. As the test we recommend is based
on ranks, it also has the advantage that it is less sensitive
to outliers.

Our approach for the identification of differentially
expressed genes is to consider a univariate testing problem
for each gene. A correction for the multiplicity of genes is a

subsequent step, which, like the previous step of normalizing
the data, outside the scope of this paper. A common approach
to the multiplicity problem is to consider a procedure for test-
ing the genes simultaneously for differential expression with
the test on an individual gene being implied in the simultan-
eous test. For such a procedure different proposals have been
made recently. Methods based on the p-values of the tests
from individual genes were introduced by Zaykin et al. (2002),
Storey and Tibshirani (2003), and Dudbridge and Koeleman
(2003).

Only two-sided alternative hypotheses are considered here;
one-sided alternatives can be handled in a similar manner.
Due to the squares in the numerators of BX and BY , the stat-
istic B is not suitable for a one-sided test, but a modification
with absolute values instead of squares has been proposed for
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one-sided test problems (Neuhäuser, 2001). Using this modi-
fication, the resultant test has been compared to the one-sided
W , FP and t-tests. The results of this comparison are ana-
logous to the outcomes presented in this paper for testing the
two-sided alternative.
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