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Abstract

The number of statistical tools used to analyze transcriptome data is continuously increasing and no one, definitive method has so far
emerged. There is a need for comparison and a number of different approaches has been taken to evaluate the effectiveness of the different
statistical tools available for microarray analyses.

In this paper, we describe a simple and efficient protocol to compare the reliability of different statistical tools available for microarray
analyses. It exploits the fact that genes within an operon exhibit the same expression patterns. In order to compare the tools, the genes are
ranked according to the most relevant criterion for each tool; for each tool we look at the number of different operons represented within the
first twenty genes detected. We then look at the size of the interval within which we find the most significant genes belonging to each operon
in question. This allows us to define and estimate the sensitivity and accuracy of each statistical tool.

We have compared four statistical tools usingBacillus subtilisexpression data: the analysis of variance (ANOVA), the principal component
analysis (PCA), the independent component analysis (ICA) and the partial least square regression (PLS). Our results show ICA to be the most
sensitive and accurate of the tools tested.

In this article, we have used the protocol to compare statistical tools applied to the analysis of differential gene expression. However, it can
also be applied without modification to compare the statistical tools developed for other types of transcriptome analyses, like the study of
gene co-expression.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. A word about microarrays

1.1.1. Definition of microarrays
A microarray consist of a solid support on which a series

of DNA segments is arranged and fixed in a regular pat-
tern. These segments are incubated with a labeled nucleic
acid sample. When a nucleic acid sequence in the sample is
complementary to a DNA segment present on the support,
it will bind and hybridize to this, specific segment. This hy-
bridization is recorded and analyzed.
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1.1.2. The historical background
As Jordan (2002)points out, DNA arrays were already

being used in the seventies, in the form of dot blots and
slot blots. Ekins et al. developed microspot fluorescent
immunoassays in the late eighties and early nineties, prov-
ing that the sensitivity of these miniaturized assays was
comparable to that of “macroscopic” ones and introduc-
ing the concept of micro-array (Ekins, 1989; Ekins et al.,
1990; Ekins and Chu, 1991). The concept of miniaturiza-
tion was also applied to DNA arrays, using two different
approaches. One was to deposit the DNA (or comple-
mentary DNA) on glass plates, leading to the first pub-
lication of a gene expression microarray article in 1995
(Schena et al., 1995). The second approach was that of the
oligonucleotide array, where the DNA is directly synthe-
sized onto the support (Fodor et al., 1991; Southern et al.,
1992).

1476-9271/$ – see front matter © 2003 Elsevier Ltd. All rights reserved.
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1.1.3. Today’s microarrays
In the following, “probe” denotes the immobilized DNA

on the support and “target” the mobile DNA, cDNA or
mRNA. Some authors, however, use the terms the other way
round.

The supportsused for microarrays today are either glass
(microscope) slides, (nylon) membranes or silicon chips.
Thematerial fixedon the support (“probe”) can be:

• DNA, representing coding sequences or, more generally,
pieces of genomic DNA.

• complementary DNA, obtained from the mRNA of spe-
cific genes or expressed sequence tags (ESTs). The latter is
usually used for organisms not yet completely sequenced.

• Oligonucleotides; in the case of oligonucleotide arrays the
oligos are synthesized directly onto a silicon chip; this pro-
cess has been pioneered by Affymetrix (seeLipshutz et al.
(1999)for a comprehensive review on oligonucleotide ar-
rays).

Themobile“ target” can be:

• DNA,
• complementary DNA (cDNA), obtained from mRNA by

reverse transcriptase-PCR (RT-PCR),
• mRNA; this can be used although cDNA is generally pre-

ferred.

A hybridization mixture is obtained by labeling the target
fluorescently or radioactively. This mixture is then incubated
with the prepared microarray and allowed to hybridize with
the probe. Finally, the resulting signal intensity, that corre-
lates with the amount of captured probe, is measured, stored
in a computer and then analyzed.

Recently, efforts have been made to extend the microarray
technology to the field of proteins. The interested reader
may refer to the review written byTemplin et al. (2002)for
a comprehensive introduction to this field.

1.2. Applications

Microarrays can be used for the detection of mutations,
DNA sequencing and the analysis of gene expression. The
latter application has been gaining in importance and we
will focus our attention on this aspect. As microarrays al-
low measuring the expression levels of thousands of genes
at the same time, this opens the possibility to identify differ-
entially expressed genes (Callow et al., 2000) and to cluster
those genes sharing similar expression patterns (Heyer et al.,
1999). They have become a widespread tool for analyzing
the relative transcription levels of genes.

Microarrays have a widespread use, including:

• clinical medicine (seeJoos et al. (2003)for a review on
this subject);

• the study of the cell-cycle (see for exampleMcCune and
Donaldson, 2003);

• the study of the circadian rhythm in animals (see for exam-
ple Stanewsky, 2003) and plants (see for exampleDavis
and Millar, 2001); and

• the study of plant metabolism (see for exampleBuckhout
and Thimm, 2003).

For further information on microarray technology, the
reader may refer to recent review articles (Barrett and
Kawasaki, 2003; Vrana et al., 2003); he may also refer to
a related NCBI web page (http://www.ncbi.nlm.nih.gov/
About/primer/microarrays.html).

1.3. The analysis of the microarray data

Different tools have been developed for or adapted to
the analysis of the huge amount of data created in microar-
ray experiments (Draghici, 2002). The number of tools is
continuously increasing and no one, definitive method has
so far emerged, as is exemplified by the web-site main-
tained by Li, which has a continuously growing collection
of articles on microarray data analysis (http://www.nslij-
genetics.org/microarray/).

There is a need of comparing the tools, but identifying
an unbiased and biologically relevant criterion for the com-
parison is difficult (He et al., 2003). A number of different
approaches has been taken to compare the effectiveness, or
reliability, of the different statistical tools available for mi-
croarray analyses.

Some are based on artificial data to define precisely the
specificity and sensitivity of these statistical tools (Pan,
2003; Reiner et al., 2003).

Others are based on experimental data. The quality of a
statistical tool can be measured by the number of differen-
tially expressed genes which it reveals. A statistical param-
eter like theP-value may be used (Pan, 2002).

Finally some authors combine two criteria, the number of
identified genes and their physiological coherence, based on
an a priori knowledge of the biological phenomenon studied
(Troyanskaya et al., 2002).

1.4. This paper

In this paper, we try to establish a protocol for the com-
parison of statistical tools (available for microarray analy-
sis) which is objective, reflects a biological reality and is not
bound to one, particular set of experimental conditions. It
is based on the expression coherence of genes belonging to
the same operon. In bacteria, a number of genes are orga-
nized in operons, that is to say clusters of contiguous genes
transcribed from one promoter.

A good and reliable statistical tool is one that, when de-
tecting an over- or under-expression for a gene belonging to
an operon, also detects this pattern for the other genes be-
longing to this operon. Indeed, it has been shown that the
genes within an operon exhibit the same expression patterns
(Murray et al., 2001; Sabatti et al., 2002; Wei et al., 2001;
Zimmer et al., 2000).

http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html
http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html
http://www.nslij-genetics.org/microarray/
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This criterion, based on the expression coherence of genes
belonging to the same operon, therefore reflects a biological
property that is not bound to a particular set of experimental
conditions. Furthermore, it is independent of the statistical
laws (for example Gaussian) governing the variations of the
gene expression.

We have tested this criterion on four statistical tools using
Bacillus subtilisexpression data (Sekowska et al., 2001):
The analysis of variance (ANOVA), the principal component
analysis (PCA), the independent component analysis (ICA)
and the partial least square regression (PLS). Note: ANOVA
and PLS need the a priori definition of factors, which could
influence the level of gene expression; ICA and PCA do not
need the definition of any factor for their use.

Two of these tools (ANOVA and PCA) are frequently used
for microarray analyses. The other two methods tested (ICA
and PLS) have only been recently applied to the analysis
of microarray data. All of these methods are used in many
other fields.

• The analysis of variance is a classical statistical method
for the analysis of fully crossed factorial designs. Its use
on microarray data has allowed the identification of differ-
entially expressed genes (Kerr and Churchill, 2001; Kerr
et al., 2000).

• The principal component analysis is used to reduce gene
space dimension and allows the detection of the major
sources of variation (Landgrebe et al., 2002; Peterson,
2003).

• Originally developed for chemometric data (Wold, 1973),
the term partial least square regression regroups several
methods. PLS has been used in proteome and transcrip-
tome analysis to classify benign and malignant tumours
(Alaiya et al., 2000; Cho et al., 2002; Musumarra et al.,
2001) or to reduce gene space (Nguyen and Rocke, 2002).
In this article, we use PLS to identify differentially ex-
pressed genes.

• Independent component analysis (ICA) was originally
developed (Comon, 1994) for analyses related to the
“cocktail party problem”. Its applications in transcrip-
tome analysis include the identification of groups of
genes implicated in cancer, the study of the cell cycle
(Liebermeister, 2002) and to identify genes that are po-
tentially co-regulated (Chiappetta et al., 2002(personal
communication), http://www.cmi.univ-mrs.fr/∼torresan/
publi.html).

Fig. 1. Experimental design of the transcriptome analysis onBacillus subtilis(Sekowska et al., 2001).

In this article, we set out to compare the four statistical
tools mentioned above. However, our method of compari-
son may be applied to any other statistical tool used in the
analysis of microarray data.

2. Methods

2.1. Data

The microarray data used in this study stem from experi-
ments on the sulphur metabolism ofB. subtilis(Sekowska
et al., 2001). The experiments were carried out using
Panorama nylon filtersB. subtilis gene arrays (Sigma–
GenoSys Biotechnologies); each array contained all ofB.
subtilis’ genes and one gene is represented by one spot.
Each gene spot is represented twice on the array.

The aim of these experiments was to identify the genes
differentially expressed when the bacteria are grown with
methionine or methyl-thioribose as sulphur source. The ex-
periments followed a fully crossed factorial design (Fig. 1)
with four factors (sulphur source, day of experiment, amount
of RNA used and duplicate of each spot). The data (raw lev-
els of expression) were gathered in an array of 4107 rows
(all B. subtilisgenes) and 16 columns (experimental condi-
tions).

We have used the logarithm (base 10) of these raw data
in order to remove much of the proportional relationship
between random error and signal intensity (Nadon and
Shoemaker, 2002). We have normalized the data (mean equal
to 0 and variance equal to 1 for each experimental condition)
because two methods (PCA and ICA) need normalized data.

In some parts of the article, the data will be referred to
as a cloud of 4107 points (the genes) in a 16-dimensional
space (the experimental conditions). In this paper, we will
not exploit the dual representation (the 16 experiments in
the 4107-dimensional space).

2.2. Programs used

ANOVA, PLS and PCA were carried out using a pro-
gram called GeneANOVA (Didier et al., 2002). ICA is
an adaptation of FASTICA Hyvarinen’s fixed-point algo-
rithm (Hyvarinen, 1999) made by Chiappetta and Torrésani
(Chiappetta et al., 2002(personal communication),http://
www.cmi.univ-mrs.fr/∼torresan/publi.html).

http://www.cmi.univ-mrs.fr/~torresan/publi.html
http://www.cmi.univ-mrs.fr/~torresan/publi.html
http://www.cmi.univ-mrs.fr/~torresan/publi.html
http://www.cmi.univ-mrs.fr/~torresan/publi.html
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2.3. Choice of parameters

We have chosen to analyze the expression data for the
two experimental factors “sulphur source” and “day of
experiment”.

For ICA and PCA, the axes which correspond to these
two factors are determined a posteriori: one determines the
relative weight of each of the 16 components whose com-
bination defines the axes; the axes retained are those where
either the component “sulphur source”, or the component
“day of experiment” plays a major role. The factor “day”
corresponds to the third axis and the factor “sulphur source”
to the fifth. The fourth axis corresponds to an interaction
between these two factors.

For each gene, the equation used for ANOVA is the fol-
lowing:

Yijkl = µ + Si + Jj + Ck + Dl + εijkl

where Yijkl is the gene intensity;µ the mean of the in-
tensities of expression measured for the gene;Si, Jj, Ck

and Dl are, respectively, the effects of sulphur source
i, experiment dayj, RNA concentrationk and dupli-
cate l on the gene intensity; andεijkl is the residual
error.

There are 16 measurements per gene. Five degrees of free-
dom are lost for the estimation of the mean and the variances
of the four factors. The residual varianceεijkl has 11 de-
grees of freedom. It encompasses all interactions: between
two factors (6), between three factors (4) and between four
factors (1).

F = “variance of the factor of interest”/“residual variance”
with one degree of freedom in the numerator and 11 degrees
of freedom in the denominator.

The interactions between the factors were not estimated
because of the experimental design and the low degree of
freedom obtained.

2.4. Operons

We need to know how the genes ofB. subtilis are or-
ganized into operons. A presumed operon is defined as a
group of contiguous genes that are on the same reading
strand delimited either by a promoter and a terminator
(predicted or not) or a gene, which lies on the other DNA
strand. This allowed to find the operons inB. subtilis(Sub-
tilist, http://genolist.pasteur.fr/SubtiList/). We compiled a
list in which each gene is either assigned to an operon or
defined as an isolated gene. This list may be consulted at
http://195.221.65.10:1234/∼carpenti/. Even if some pre-
dicted operons will prove to be artefacts, this will only
introduce a systematic bias for all the statistical tools tested.
This will not raise any problem for the comparison of
the statistical tools and it will not influence our conclu-
sions about the quality of these tools with respect to each
other.

2.5. Evaluating procedure

To compare statistical tools, one needs to define quanti-
tative criteria that will measure the “tool reliability”: sensi-
tivity, accuracy and the detection of false positives need to
be evaluated.The following procedure was applied:

1. The genes are ranked as a function of their expression
changes (rank #1 is the most significant).

2. “Detected Operons” are identified based on the ranks (one
gene with rank≤ 20 and another gene with rank≤ 100).

3. The most significant interval (MSI) is determined.
4. False positives are evaluated (MSI≥ 700).
5. “Relevant detected operons” are identified (MSI< 700).
6. The accuracy of a “relevant detected operon” is evaluated

(MSI < 150).
7. The sensitivity of a tool is evaluated.

2.5.1. Ranking of the genes
In order to compare the four tools under the best possible

conditions, the genes are ranked according to the most rele-
vant criterion for each tool, that is to say, the one that gives
the most coherent results for the tool:

• for ANOVA, the P-value obtained for each gene;
• for PLS, the weight of the gene for the axis determination;

and
• for PCA and ICA, the remoteness from the cloud center

of the projection of the gene on the axis studied.

We thus obtain for each tool a list of genes, ranked ac-
cording to a specific criterion; the most significant gene has
rank #1. The order of the genes on the lists obtained may
differ from each other.

2.5.2. Identification of “detected operons”
We define an operon to be detected (“detected operon”)

by a tool if at least one of its genes has a rank≤20 and
another of its genes a rank≤100. For the assignment of genes
to operons, we have used the list which may be consulted
at http://195.221.65.10:1234/∼carpenti/. It should be noted
that a priori the “detected operons” may be different for the
various tools tested.

A possible bias of this method presents itself in one par-
ticular case: If one of the “detected operons” is very large,
a considerable proportion of the genes with a rank≤20 will
belong to this particular operon, leaving “no place” for the
other operons to be detected. The same problem may arise
if a large number of isolated genes (not belonging to an
operon) are highly relevant. As this possible bias will be
present for all four statistical tools tested, it will not raise
any problem for the comparison of the statistical tools and it
will not influence our conclusions about the quality of these
tools with respect to each other.

Note: the choice of “20; 100” is an arbitrary one. In order
to establish whether this choice might affect the results and
thus the conclusions of this paper, we have also run through

http://genolist.pasteur.fr/SubtiList/
http://195.221.65.10:1234/~carpenti/
http://195.221.65.10:1234/~carpenti/
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the procedure using, successively “10; 50” and “40; 200” for
the identification of “detected operons”. The results may be
consulted athttp://195.221.65.10:1234/∼carpenti/(see also
Section 3).

2.5.3. Determination of the most significant interval
In order to facilitate the analysis and comparison of the

statistical tools, we introduce the most significant interval
(MSI). It is calculated for each “detected operon” in the
following manner:

MSIj = medianj − firstj

where MSIj is the MSI of “detected operon”j, medianj is
the median of the rank values of the genes belonging to
“detected operon”j, and firstj is the smallest rank value
within “detected operon”j

2.5.4. Evaluation of false positives
The reliability of a statistical tool will also be measured

by the absence of false positives.
For the definition of false positives, we exploit the fact that

each gene spot had been duplicated on the microarrays and
any difference measured for two spots belonging to the same
gene cannot have a biological cause. We ranked the genes
according to this “duplicate factor ‘’, as described under
point 1 and identified “detected operons” as described under
point 2. As there is no biological cause for this detection,
we find ourselves with false positives.

As before, a priori the false positives detected may be
different for the various tools tested.

The results of this analysis lead us to conclude that a
“detected operon” is a false positive when MSI≥ 700 (see
Table 1for details).

Table 1
Quantification of false positives

Operon name Operon
size

MSI (most significant interval)

ANOVA PLS PCA ICA

fliLMY cheY fliZPQR flhBAF
ylxH cheBAWCD sigD ylxL

19 2385 2243 1193 2499

yonRSTUVX yopAB 8 61 134 127 251
hemAXCDBL 6 1360 1547
ruvAB queA tgt yrbF 5 1005 707

For the definition of false positives we exploit the fact that each gene spot
had been duplicated on the microarrays and any difference measured for
two spots belonging to the same gene cannot have a biological cause. We
ranked the genes according to this “duplicate factor”, as a function of the
differences in their expressions, then identified “detected operons” and
calculated the MSI (seeSection 2for details). As there is no biological
cause for this detection, we find ourselves with false positives; they are
characterized by a large MSI; this leads us to conclude that a “detected
operon” is a false positive when MSI≥ 700. One exception is the operon
YonRSTUVXyopAB, detected by all four tools, with small MSIs. As we
cannot give a biological reason, we suspect that its detection is due to a
default on the microarray used in the experiments.

2.5.5. Identification of “relevant detected operons”
The definition of “relevant detected operons” follows from

the definition of false positives:
“relevant detected operons” have an MSI< 700.

2.5.6. Evaluating the accuracy of a “relevant detected
operon”

We define that an operon is detected with good accuracy
if its MSI is lower then a given threshold. This threshold
was determined such that 80% of the “detected operons”
have a MSI below the threshold. Our results lead us to state
that: Operons detected with good accuracy have an MSI<

150.

2.5.7. Evaluating the sensitivity of the tools
The sensitivity of the tools is estimated by comparing the

number or “relevant detected operons” identified by each
tool.

2.6. The comparison of the tools under three typical
experimental conditions

We have decided to compare the four statistical tools un-
der three experimental conditions biologists are frequently
faced with:

• The experimental factor is identified and fully controlled:
In the case of the microarray data used in this study,
this factor is the sulphur source contained in the growth
medium. In one case the sulphur source was methionine,
in the other case it was methylthioribose. These two com-
pounds are metabolically closely related. The four statis-
tical tools were tested on these experimental data. The
results obtained are displayed inTable 2.

• The experimental factor is identified but not under con-
trol: In this case it was “day”. The experiments were car-
ried out twice, on different days. The protocol followed
was the same on these 2 days; however, parameters like
“room temperature” were not necessarily the same, thus
introducing a factor in the experimental setup that was
identified but not under control. The results obtained are
displayed inTable 3.

• The interaction between experimental factors: The aim of
a protocol is to separate completely the different experi-
mental factors. However, the expression of certain genes
may be under the control of more than one factor. In this
case, one talks of an “interaction between experimental
factors”. ANOVA and PLS are adapted to the analysis of
variations due to a single experimental factor; they are
not well suited for the study of interactions between fac-
tors; they were not tested under this condition. On the
other hand, ICA and PCA are well adapted to cope with
possible interactions; these interactions are identified be-
cause more than one factor plays a major role in the def-
inition of an axis. The results obtained are displayed in
Table 4.

http://195.221.65.10:1234/~carpenti/
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Table 2
Comparison of the statistical tools when the experimental factor is identified and fully controlled

Operon name Operon size MSI (most significant interval)

ANOVA PLS PCA ICA

yqiXYZ 3 1 1 3 6
argCJBD carAB argF 7 15 28 201 56
argGH ytzD 3 1 1 6 2
ahpCF 2 46 7 11 13
lctEP 2 26 36 8
levDEFG sacC 5 316 220
sunAT yolIJK 5 635 13
ydcPQRST yddABCDEFGHIJ 15 1313 116
flgM yvyG flgK yviE yviF csrA hag 8 509
yxbBA yxnB asnH yxaM 5 15
ytmIJKLM hisP ytmO ytnIJ ribR hipO ytnM 12 92
fliLMY cheYfliZPQR flhBAF ylxH cheBAWCD sigD ylxL 19 350

Relevant detected operons 6 6 7 9

The identified and controlled experimental factor is the sulphur source (either methionine, or methylthioribose). Genes were ranked as a function ofthe
differences in their expressions, false positives (MSI≥ 700) and “relevant detected operons”(MSI< 700) were identified (seeSection 2for details). The
bold entry for PLS, with MSI= 635 is estimated to be a borderline case for a false positive; it has been included for PLS’s total of “relevant detected
operons”. Note that only PCA detects a false positive (shaded entry). ICA is the most sensitive tool under these experimental conditions, identifying the
largest number of “relevant detected operons”. ANOVA and PLS are the least sensitive.

3. Results and discussion

Microarrays are defined as a tool for analyzing gene ex-
pression that consists of a small membrane or glass slide
containing samples of many genes arranged in a regular pat-
tern. They are widely used for analyzing the relative tran-
scription level of genes. The number of statistical tools for
analyzing the huge amount of data created in the experi-
ments is continuously growing and no-one of these tools has
yet emerged as the definitive one.

We have developed a protocol for the comparison of sta-
tistical tools applied to the analysis of transcription data. We
have applied this method to compare four statistical tools
(ANOVA, PLS, ICA and PCA) under three typical experi-

Table 3
Comparison of the statistical tools when the experimental factor is iden-
tified but not under control

Operon name Operon
size

MSI (most significant interval)

ANOVA PLS PCA ICA

comGABCDEFG yqzE 8 16 26 6 4
comFABC yvyF 4 339 66 19
cotVWXYZ 5 147 315 417
groESL 2 15
yvaVWXY 4 53
yqxM sipW cotN 3 79
comEABC 3 35

Relevant detected
operons

2 3 5 4

The experiments were carried out twice, on different days, using the
same protocol; however, parameters like “room temperature” were not
necessarily the same on the 2 days, introducing an identified but not
controlled factor. PCA and ICA are the most sensitive tools, whilst
ANOVA is the least sensitive (please refer to the legend ofTable 2 for
details about the classification procedure).

mental conditions. All four tools were compared under two
of these conditions (seeTables 2 and 3for details), whilst
only ICA and PCA, which do not need the a priori defini-
tion of experimental factors, could be tested under the third
condition (seeTable 4for details).

Based on our observations, we have defined threshold
values to define “relevant detected operons” (MSI< 700),
false positives (MSI≥ 700) and to define a good accuracy
(MSI < 150); the sensitivity of the tools is estimated by
comparing the number of “relevant detected operons” iden-
tified by each tool.

Table 4
Comparison of the statistical tools to detect possible interactions between
the experimental factors

Operon name Operon size MSI (most significant
interval)

PCA ICA

purMNHD 4 71 57
ybaC rpsJ rplCDWB rpsS

rplV rpsC rplP rpmC
rpsQ rplNXE rpsNH
rplFR rpsE rpmD rplO
secY adk map

25 51 56

alsS alsD 2 25
rpsL rpsG fus tufA 4 21
yvaVWXY 4 73
yxbBA yxnB asnH yxaM 5 126
yyaEF rpsF ssb rpsR 5 408

Relevant detected operons 3 6

The expression of certain genes may be under the control of more than
one factor, leading to an interaction between experimental factors. Only
ICA and PCA are well adapted to cope with possible interactions; these
interactions are identified because more than one factor plays a major role
in the definition of an axis. ICA is more sensitive than PCA (please refer
to the legend ofTable 3for details about the classification procedure).
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Table 5
Overview of the results

ANOVA PLS PCA ICA

Relevant detected operons
Tables 2–4 8 9 15 19
Tables 2 and 3 8 9 12 13

Accuracy of detection (%)
Tables 2–4 75 78 80 84
Tables 2 and 3 75 78 83 77

The table sums up the results obtained in this study. The first part of
the table relates to the number of “relevant detected operons” identified
and thus to the tools’ relative sensitivities. “Tables 2–4”: adding the
results fromTables 2–4, the total of “relevant detected operons” has been
calculated for each tool. The entries for “Tables 2 and 3” have been
obtained accordingly. Note that in both cases, ICA has the highest overall
sensitivity, identifying the largest number of “relevant detected operons”,
whilst ANOVA is the least sensitive. The second part of the tables relates
to the tools’ accuracies: the percentage of “relevant detected operons”
identified with a “good accuracy” (MSI< 150) has been calculated for
each tool, adding the results fromTables 2–4(“Tables 2–4”), etc. (see
above). Overall, ICA has the highest accuracy, very closely followed by
PCA, whilst ANOVA has the lowest accuracy.

Table 5sums up the results obtained. Overall, we observe
that ANOVA has the lowest sensitivity, whilst ICA is the tool
with the highest sensitivity. The same observations can be
made regarding the accuracies of the tools. It is interesting
to note that even under the two experimental conditions for
which ANOVA was conceived (Tables 2 and 3), it performs
less well than ICA. PLS performs similarly to ANOVA. PCA
has an intermediate performance. However, each tool may
detect operons not identified by the other tools.

The results obtained by testing the four statistical tools
show us that ICA has overall the best performance. This
result holds true even if the criteria for “detected operon” are
changed (instead of “20; 100” using “10; 50” or “40; 200”,
results not shown; seehttp://195.221.65.10:1234/∼carpenti/
for details).

In this paper, we have set out to describe a simple and
efficient protocol to compare the reliability of different sta-
tistical tools available for microarray analyses. The criterion
used in our method is based on the expression coherence
of genes belonging to the same operon. The method is ob-
jective, reflects a biological reality and is not bound to one,
particular set of experimental conditions. It allows to com-
pare the sensitivity, the accuracy and the detection of false
positives of different statistical tools. As it is a comparative
method, any bias linked to the criterion (for example uncer-
tainties about the reality of a predicted operon) will influ-
ence in the same way the results obtained for each of the
tools tested.

Here, we have used this method to compare statistical
tools applied to the analysis of differential gene expression.
However, the above protocol can also be applied without
modification to compare the statistical tools developed for
other types of transcriptome analyses, like the study of gene
co-expression.
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