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Abstract
Background: To cancel experimental variations, microarray data must be normalized prior to
analysis. Where an appropriate model for statistical data distribution is available, a parametric
method can normalize a group of data sets that have common distributions. Although such models
have been proposed for microarray data, they have not always fit the distribution of real data and
thus have been inappropriate for normalization. Consequently, microarray data in most cases have
been normalized with non-parametric methods that adjust data in a pair-wise manner. However,
data analysis and the integration of resultant knowledge among experiments have been difficult,
since such normalization concepts lack a universal standard.

Results: A three-parameter lognormal distribution model was tested on over 300 sets of
microarray data. The model treats the hybridization background, which is difficult to identify from
images of hybridization, as one of the parameters. A rigorous coincidence of the model to data sets
was found, proving the model's appropriateness for microarray data. In fact, a closer fitting to
Northern analysis was obtained. The model showed inconsistency only at very strong or weak data
intensities. Measurement of z-scores as well as calculated ratios was reproducible only among data
in the model-consistent intensity range; also, the ratios were independent of signal intensity at the
corresponding range.

Conclusion: The model could provide a universal standard for data, simplifying data analysis and
knowledge integration. It was deduced that the ranges of inconsistency were caused by
experimental errors or additive noise in the data; therefore, excluding the data corresponding to
those marginal ranges will prevent misleading analytical conclusions.

Background
Since microarray data contain systematic variations that
are derived from various experimental sources, the data
should be normalized prior to comparison with other
such data. In order to perform such normalization, some
stable data characters that represent the data set are found
and/or assumed. By making such characters identical,

each data set is adjusted to other data sets, to a reference
experiment's data, or to a mathematics model. A normal-
ization method is based on ideas or concepts in which ele-
ments of data are considered to be the stable characters,
and on the design of calculations regarding how data sets
are to be adjusted. It is clear that these concepts affect the
normalization results; such concepts behind the
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normalization are often closely connected with the evalu-
ation of differences in data. Indeed, these concepts should
originate from experimental observations and/or biologi-
cally appropriate assumptions. As an introduction, it
might be helpful to describe the concepts on which previ-
ously reported methods for microarray data normaliza-
tion have been based.

Taking ratios with stable elements of the data is one of the
simplest methods by which a set of relative data has been
normalized. Candidates for such stable elements can be
data for house-keeping gene(s), data for control experi-
ments or the median of a set of data. Within a group of
data that share this stable element, the calculated ratio can
be compared. Such ratio-based methods have been fre-
quently used in the field of molecular biology, since many
of the determination methods of mRNA produce relative
values. The relative nature is also expected in microarray
data. One of the pioneer works in the statistical treatment
of microarray data followed the ratio-based scheme [1],
assuming a rigid distribution model for the ratios, and
allowing objective decisions by seeking the ratio data that
exceeded a cut-off value for their deviation. However, it
has become clear that such calculated ratios often fluctu-
ate depending on the signal intensity [2-7]. This unstable
character, or intensity-dependent effect of measured log-
ratio, disagrees with the original assumption, and
becomes problematic in data analyses.

Tseng et al. and Yang et al. [2,3] followed the ratio-based
scheme but stabilized the log-ratios by compensating
them using the LOWESS technique. In addition, Work-
man developed a method that used a different calculation
technique [4]. Due to the flexibility of their non-linear
compensations, the methods can adjust any pair of data
sets by resolving the fluctuations. However, even such
strong methods could not achieve the assumed stability of
the model in regard to log-ratio deviations, by which dif-
ferences in gene expressions are measured [1]; rather,
determined ratios were dependent on signal intensity.

In order to solve the intensity-dependence problem in
determined ratios, Huber et al. and Durbin et al. [5,6] pro-
duced a new scheme that recognizes the differences in
mRNA levels, not in terms of ratios but in terms of the dif-
ference values in arsinh functions, which have stability in
their statistical behaviors. The adjustment is performed by
linear transformation of one of the pair-wise data sets
prior to the arsinh conversion, by trial and improvement,
evaluated by likelihood analysis in arsinh values [5]. In
fact, this method adjusts the data over the entire range of
determination. However, since microarray data might
have additive noise [5,8], which will affect data especially
at lower intensities, the stability of deviations at all signal
intensities is still doubtful. Additionally, the processed

results are not comparable with those of authentic analy-
ses, such as Northern and/or RNase protection assays,
since the arsinh function is incompatible with ratios.

An alternative attempt involves the adjustment of a group
of data together at one time. Kerr et al. [9] assumed an
ANOVA model, in accordance to which data logarithms
are linearly adjusted to have the least differences in rela-
tion to each other. Since this method treats data sets
simultaneously, it finds the most suitable solution among
the data sets. However, this method cannot self-evaluate
the appropriateness of the model and the design of the
adjusting process. Additionally, this process requires an
inordinate amount of calculation and, if a set of data is
added afterwards, all the calculations have to be per-
formed from the beginning.

In order to reduce the amount of calculation, it is prefera-
ble to adjust each data set in terms of a rigid model. Such
a method can normalize data sets one by one, and the
normalized data can be compared directly with each other
without further adjustment. Additionally, if the model is
appropriate, normalization will be highly accurate. In
such model-based normalization methods, the simplest
assumed stability might be the total amount of mRNA in
a tissue, which forms the basis of the normalization of the
total intensity [7,10] or the global standardization
[11,12]. However, the appropriateness of the model in
terms of the stability, not of the total amount of mRNA
but of the sum of the determined numerals, is difficult to
evaluate; the determined data is not always proportional
to the amount of mRNA, since the determined data con-
tains background, the value of which is difficult to esti-
mate exactly [13]. Some alternative methods assume a
model for the statistical distribution of data. In many
cases, a lognormal distribution would be the optimal
model for microarray data, and indeed this distribution
has been reported for some data sets [2,14,15]. Addition-
ally, Hoyle et al. [16] have found that microarray data are
in agreement with both Benford's law and Zipf's law, and
suggested the lognormal model and power law model to
be good candidates for assumptions concerning the distri-
bution. However, the real data distributions sometimes
do not fit closely to these models [9,16]. Such inappropri-
ateness in a model can be found to skew data histograms
or probability plots.

The intensity data of microarray experiments always con-
tain a certain level of background [8], and inadequate esti-
mation of this background can affect the assumed
stabilities in ratio-based normalization methods as well as
lognormal data distributions. Background has been esti-
mated based on the hybridization image [13], which is
then subtracted from intensity data; this estimation tech-
nique is based on the supposition that the background
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level is consistent between the DNA spot and the sur-
rounding space. However, because surface properties may
differ between the DNA spot and the surrounding space,
the respective backgrounds can also differ (a possible
extreme example of such difference is the antiprobe [17]
with dark DNA spots against a bright surrounding area).
Indeed, failure in background estimation will originate
intensity dependency of calculated log-ratio; such an
effect can even be seen in simulation data [18]. Addition-
ally, an under-estimation of background in both data sets
will reduce the differences at lower signal intensities; such
a phenomenon has been observed in determinations eval-
uating a microarray's mechanical characteristics [19].
Adding or subtracting a constant to or from a series of
numerals affects the logarithm values in a non-linear way,
and biased errors in background estimation can affect the
distribution of microarray data in the same manner.

In this article, a model-based normalization method that
finds the background by calculation is introduced. The
method assumes stability in data distribution of each set
of single-channel microarray data. The method uses a
three-parameter lognormal distribution model; since the
image-based local background estimation [13] can gener-
ate a constant error deriving from the different surface
properties on a DNA chip, it is reasonable to handle the
background as an unknown quantity. The three-parame-
ter model was established by introducing the unknown as
the threshold parameter to a lognormal distribution
model [15]. To maintain the objectivity of data treatment,
the parameter is restricted as a common constant within a
single-channel data set; this treatment is based on
assumptions that the background is mainly provoked by
non-specific binding of pigments to DNA spots, and that
each DNA spot binds a fixed amount of the pigments. The
common constant is found as the value that, when univer-
sally subtracted, produces a data distribution that most
closely fits the model. The appropriateness of the assumed
distribution model is evaluated by means of coincidence
between the model and the resulting data distribution in
many different microarray experiments. Additionally, a
ratio-based treatment of the normalized data is intro-
duced. The stability of signal versus ratio relationship is
shown below, as well as a correlation with Northern blot
analyses.

Results
Fitness of the three-parameter model to data
In all the cases examined – approximately 300 different
samples with at least 16 cDNA stamping type chips, as
well as 50 samples with 4 synthetic oligonucleotide chips
– a threshold parameter whose subtraction could trans-
form the data distribution to fit the model could be
found. As an example, the distribution of open resource
data [20] from a study of human fibroblasts [21] is shown

in Figure 1. In this case, both the intensity data and the
local background-subtracted data clearly show distribu-
tions different from that of the model; the histograms are
asymmetric and the probability plots are distant from the
ideal value (Fig. 1, blue and green). However, subtraction
of the threshold parameter transforms the distribution to
one closer to the model (Fig. 1, red). The histogram shows
the ideal bell shape, and the probability plot at larger than
-1.4 shows a linear relationship; this area includes 92% of
the original intensity data. Such normality was also con-
firmed by a chi-square test [22]; at a range from 2.35 to -
1.55 standard units, seven out of eight randomly chosen
data [21] passed the test at a 5% significance level. The
only data set that failed the test was derived from an exper-
iment in which hybridization had apparently not taken
place (most likely due to the presence of an air bubble
during processing). This parametric nature of data was
also observed in experiments that used other DNA chips,
including yeast, rice, A. thaliana, B. subtilis, C. elegans, and
E. coli (some examples are shown in Fig. 2), as well as in
commercially available DNA chips such as Atlas Glass
Array (Clontech), and synthetic oligonucleotide probe
chips such as GeneChip (Affymetrix) and Agilent Oligo
microarray (data not shown).

During the threshold parameter estimation process, the
parameter became larger than some of the intensity data,
producing negative values whose logarithms could not be
calculated. In the experiment shown in Figure 1, for exam-
ple, 1.2% of the data fell into this class, although numbers
of such data were variable between experiments. Since
microarray data might contain a certain level of additive
noise [8], it is highly possible that some of the DNA spots
produce signals so faint that the negative noise can mask
them completely. Consequently, those data were simply
treated as "signals not detected".

Appropriateness of the three-parameter model evaluated 
from technical reproducibility
Although microarray data was consistent with the distri-
bution model over a wide range of intensities, no data
showed perfect consistence. Rather, the probability plots
necessarily bent downwards at lower intensities (Figs.
1,2). Such discrepancies could be caused either by addi-
tive noise in the measurement system or by the unsuitabil-
ity of the model. These possibilities were verified through
data reproducibility, which was confirmed on a scatter-
gram with repeated hybridization experiments involving
the same RNA sample. Since the breakdown of the model
occurs at different intensities, each data set is consistent
with the model at a different range of signals. Naturally,
we cannot expect data reproducibility at the inconsistent
ranges where the data does not obey the model. In such
ranges, if the inconsistency occurs because of model
unsuitability, the normalization may give the data a
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biased error; such bias will make a bend(s) in the scatter-
grams between repeated experiments. Alternatively, if the
inconsistency is caused by noise, the noise will affect the
reproducibility by dispersing the scattergram.

The reproducibility was verified using open resource data
in the Stanford Microarray Database [20]. The reproduci-
bility that should be issued here is not the biological one
but that of the hybridization process as well as that
between different dyes. Such artificial reproducibility [23]
can be measured with sets of repeated hybridization of the
same RNA. In the Stanford system, each hybridization
experiment contains control RNA; for example, in the
time course experiment on serum shock to human fibrob-
lasts [21], a zero-time RNA sample is labeled with Cy3
and hybridized to each DNA chip as the control. Data for
those controls were normalized and compared (Fig. 3a
and 3b) in order to visualize the reproducibility in hybrid-
ization. For another example, in the comparison with A.
thaliana tissues, Horvath et al. made dye-swap experi-
ments [24]. Two pairs of hybridizations were compared,

using data from the same RNA but differently colored and
hybridized separately to DNA chips (Fig. 3c and 3d). If the
difference in dyes could cause specific alterations to data,
the scattergram would be bent or tilted.

The scattergrams for repeated experiments showed con-
sistent data reproducibility (Fig. 3). Most of the data were
plotted within the 1.4-fold difference lines (the method
for calculating the ratio is described below) above the
breakdown levels of the model. In contrast, in the discrep-
ancy region (red dots), the reproducibility was lost and
the data became randomly plotted (Fig. 3), suggesting
that the discrepancies between data and the model were
caused by noise rather than unsuitability of the model. In
some cases, the upper part of the data also bent down
below the y = x line in the probability plots (Fig. 2, ID
1593 and 15973). Such a breakdown was typically found
in cases in which the signals of the intensity data were rel-
atively large. Such breakdowns may be caused by the sat-
uration of array scanners, which may ruin the signal
response. Since the diameters of the DNA spots and also

Effects of compensating the threshold parameterγFigure 1
Effects of compensating the threshold parameterγ. (a Histograms of the logarithms of human cDNA microarray data 
[21] (from the Stanford Microarray Database [20], ID 5731). The histograms for the original intensity data (blue) and local 
background-subtracted [13] data (green) both skew to the left, whereas that for the γ-subtracted data shows the typical shape 
of a normal distribution (red). ƒ, frequency of data. (b) Normal probability plots for logarithms of the original intensity data 
(blue), local background-subtracted data (green), and the γ-subtracted data (red). In the plot, x-axis presents theoretical values 
for normal order statistic medians, whereas y-axis presents ordered logarithms of data [26]. The γ-subtracted data show rea-
sonable linearity, characteristic of a normal distribution. Definitions of parameters and data treatments are described in Mate-
rials and Methods.

0

0.2

0.4

0.6

0.8

-4 -3 -2 -1 0 1 2 3 4

f

a

z-score

o
rd

e
re

d
re

s
p

o
n

s
e

v
a

lu
e

theoretical

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

b

z-score

class interval
Page 4 of 17
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/5
the DNA concentrations within each spot are uneven,
such saturation will also add a level of noise to the data,
rather than just creating distortion in the linear signal
response. Actually, the plotted data above the upper limit
of linearity showed inconsistent reproducibility (Fig. 3,
panel b). There were no bends observed in the scatter-
grams, showing the appropriateness of the three-parame-
ter model, and contradicting the dye-specific alterations to
data (panels c and d).

Stable nature of σ values found from logarithms of γ 
subtracted microarray data
Values of the shape parameter, σ, were found to be stable
within one set of experiments, between different hybridi-
zations and between clone sets. As an example, the values
obtained from human cells [21] showed little divergence,
and the values remained the same throughout the time-
course experiment on serum shock (Table 1). The shape
parameter was measured from each grid of data, which
were derived from clones spotted with identical pins, at
six intervals in the time-course experiment: zero to 24 hr

after the serum shock treatment. Each DNA chip consisted
of 4 grids, and each grid contained different sets of cDNA
clones. If the parameter had an unstable nature, the values
among the grids and/or among the time-course intervals
would have diverged. However, the averages of the six σ
values were almost identical among the grids (Table 1).
Additionally, the values were not affected by cellular con-
ditions; during the time course experiment, the standard
deviations of the values (Table 1, treatment) remained at
the same level as those obtained from control hybridiza-
tions, showing that small deviations may occur due to
experimental noise but not cellular conditions (Table 1).

Comparison of the normalized data on a ratio basis
The obtained results demonstrate that we can expect log-
normal distributions in microarray data. Within the range
in which data obey the distribution model, logarithms of
the data can be normalized to z-scores. How, then, can we
evaluate the change of expression levels presented in z-
scores? It will, of course, be useful if the normalized data
can also be compared to results obtained by conventional

Distributions of data obtained from the StanfordMicroarray Database [20]Figure 2
Distributions of data obtained from the StanfordMicroarray Database. [20]. These probability plots [26] show wide 
ranges of linearity, proving the appropriateness of the three-parameter lognormal model (red) for normalizing microarray data. 
The plots for the original intensity data are also shown (blue). Local background-subtracted [13] data (green) of ID 22592 
could not be normalized since a large proportion of the data (over 25%) was negative; the parameter σ, which is found from 
interquartile range, for those grids could therefore not be calculated.
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Examples of scattergrams for repeated hybridization data, normalized by means of the three-parameter lognormal distribution modelFigure 3
Examples of scattergrams for repeated hybridization data, normalized by means of the three-parameter log-
normal distribution model. The scattergrams are of two hybridization experiments with the same control probe, thus 
demonstrating the technical reproducibility of the experiments. Red colored dots indicate that one or both of the paired data 
is in the model-inconsistent range. Lines beside the dots show 2-fold (solid green lines) and 1.4-fold (dashed green lines) differ-
ences. The number of data used for each plot was 1,500. Data sets were obtained from control hybridizations in Iyer et al. [21] 
(panels a and b), and from dye-swap hybridizations in Horvath et al. [24] (panels c and d).
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methods, such as Northern analysis. In most conventional
analyses, ratios are used to indicate differences in expres-
sion levels. Since such analyses do not provide informa-
tion about the distribution of expression levels, the z-
scores cannot be calculated. In order to normalize the
data, the amounts of total RNA, rRNA, and/or housekeep-
ing genes are commonly used as standards instead. Under
such limitations, ratio methods are a convenient choice
for evaluating the differences in gene transcript levels, i.e.
the number of mRNA molecules transcribed from a gene
and accumulated in a cell.

Assuming stability in the population distribution or tran-
script levels of genes, ratios can be calculated from z-scores
obtained from microarray experiments according to the
following formula. Since background-subtracted micro-
array data may have a linear relationship to the transcript
level, each datum can be expressed as

(datum for ith spot at jth hybridization) = ajbixj,i,

where aj is a factor that compensates for differences in sen-
sitivities of detection between hybridization experiments,
bi is another sensitivity compensation factor between dif-
ferent DNA spots on a DNA chip, and xj,i is the transcript
level of a gene. Consider two sets of background-sub-
tracted data, a1bix1,i and a2bix2,i for i = 1...n, in different
hybridizations on identical array chips. Since the same
normal distribution is assumed for log(x1,i) and log(x2,i),
the values for the shape parameter (σ) are the same.
According to z-normalization of the data, the normalized
data will be,

Zj,i = {log(ajbixj,i)-µj}/σ

where µ j is the observed scale parameter for each hybrid-
ization experiment. The difference in the normalized data
between Z1,i and Z2,i can be presented as

Z1,i - Z2,i = {log(a1bix1,i)-µ1}/σ-log(a2bix2,i)-µ2}/σ

={log(x1,i /x2,i) +log(bi)-log(bi)+log(a1)-log(a2)-(µ1-µ2)}/
σ. (1)

In this formula, both µ1 and µ2 are the scale parameters
that can be defined as

According to the stable nature on the distribution of xj,i,

the average of log(xj,i), , will be com-

mon between the experiments. Here we can express µ1-µ2

appearing in formula (1) as

This leads to the difference of normalized data (1)

Z1,i - Z2,i = {log(x1,i / x2,i)}/σ

From this formula, the abundance ratio of RNA, x1,i /x2,i,
can be found from the difference of z-scores as

x1,i /x2,i = 10^{σ*(Z1,i - Z2,i)}.

Table 1: The stability of shape parameter σ values in human fibroblast data.

experiment σa SDb nc

control (ch1) 0.65 0.08 24
grid 1 0.61 0.08 6
grid 2 0.66 0.06 6
grid 3 0.65 0.09 6
grid 4 0.69 0.08 6

treatment (ch2) 0.65 0.06 24
grid 1 0.69 0.06 6
grid 2 0.68 0.04 6
grid 3 0.65 0.06 6
grid 4 0.60 0.04 6

ameans of σ ; bstandard deviations of σ ; cnumber of grids used for calculating the means and standard deviations.
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Data comparison with Northern analyses
Comparisons of normalized microarrays with other con-
ventional methods could constitute a rigorous inspection
for data treatments, the normalization and the transfor-
mation to a ratio-based method. If appropriate, the results
will be similar to those obtained using conventional
analytical methods. Based on this assertion, obtained
results were compared between microarrays and Northern
blot analyses in a cold-treatment time course experiment
using rice seedlings. Some of the clones issued in the
microarray experiment were semi-randomly selected, and
ratios were determined by Northern analysis (Materials
and Methods). Differences in the transcript levels of each
gene were calculated by means of both microarray and
Northern analysis, and the logarithms of the calculated
ratios were compared between the two methods (Fig. 4).
If the results coincided with each other, the scattergram
would show positive correlation.

The scattergram showed a close correlation between the
results of microarray and Northern blot analyses (panel
a), suggesting that the proposed treatment of the micro-
array data provides an appropriate method for analyzing
the data. For reference, the same comparison using other
normalization methods is shown in panels b and c, pro-
viding more dispersed results with different tendencies.
The coincidence shows the appropriateness of the pre-
sented data treatments, since the background subtraction
is critical to the ratio calculation. If the subtraction were
inaccurate, the scattergrams would never coincide.

Stability in signal intensity versus ratio relationships
As mentioned in the Background, ratio-based normaliza-
tion methods assume that a determined ratio should be
independent of signal strength [7]. Such an assumption,
however, is not prefigured in data normalized by means
of the parametric method, since the method normalizes
each single-channel data set and does not have restrictions
on the relations between pair-wise data. In order to check
the dependency of ratios in parametrically-normalized
data, log-ratios between 0 hr and 24 hr after serum treat-
ment [21] were presented on a plot [5] in which the x-axis
showed the rank of averages of signal intensity and the y-
axis showed the log-ratio (Fig. 5). If the ratio is independ-
ent of signal intensity, data would be plotted horizontally,
not be tilted or bent. Additionally, the vertical width of
the plot would be uniform. It should be recalled that
LOWESS is a calculation process that makes the plot hor-
izontal. Since LOWESS cannot make the width uniform,
the variance stabilization [5,6] and/or intensity-filtering
method [7] are proposed.

In the graph, the data normalized by means of the para-
metric method were plotted horizontally along the zero-
difference line, forming a uniform width above and below

the line at the model consistent ranges of data (Fig. 5,
black dots). In detail, the moving average (green line)
demonstrated the ratio to be independent of the signal
intensity. Part of the moving standard deviation (blue
line) showed larger divergences of the data at the model-
inconsistent range of data (red dots). However, such insta-
bility in the ratios was not observed within the model-
consistent range of data (black dots). Actually, the stabil-
ity in the moving deviations was much greater than that
achieved by global normalization [10] (Fig. 6a) or by the
LOWESS method [3] (Fig. 6b). Additionally, the paramet-
ric method is free from the inconsistencies found in a pair
of reciprocal calculations in variance stabilization [5]
(Figs. 6c and 6d). Furthermore, the log-ratios obeyed a
constant distribution that seems to be normal at any
model consistent ranges of signal intensity (Fig 5,
histograms).

The appropriateness of the parametric method and of the
rejection of the data class that does not obey the model
were further investigated in dye-swap experiments of a
two-colored system [24]. In experiments with high techni-
cal reproducibility, the determined ratios of expression
levels of the experimental pairs would coincide. Fig 7
shows a rank vs. log-ratio plot for one of the pair hybridi-
zations, after LOWESS treatment. Unlike the case in Fig.
6b, the plot showed a stable vertical width, showing no
clear intensity dependence in determined ratios. Hence,
the plot gives the impression that LOWESS achieves ideal
normalization. Indeed, the other set of data in the pair
showed an equally ideal rank vs. log-ratio plot (data not
shown). However, in comparing the determined ratios,
which showed the technical reproducibility of the experi-
ment, correlation was found at only limited range of the
rank (Fig. 7, lower part of the panel). Obviously, with
average intensities of large and very small, the two experi-
ments show a poor correlation. Such failure of reproduc-
tion, which can frequently be observed with other two-
colored experiments, reduces the total reproducibility of
the experiments. To make matters worse, the ranges of
data that have no reproducibility cannot be predicted
from a pair of data sets normalized by the LOWESS
method.

In contrast, the same data sets of Fig. 7 were normalized
by the parametric method in Fig. 8. The calculated ratios
showed independency of signal within the model-consist-
ent area (Fig. 8, plots colored in black; those colored in
red are the range of data that does not obey the distribu-
tion model; only one set of the pairs' rank vs. log-ratio
plots is presented at the upper part of the panel). Within
the model-consistent range, the determined ratio showed
high reproducibility (Fig. 8, lower part of the panel; plots
colored in black). If differences between the dyes created
bias in the data, the scattergrams would be bent, leaning
Page 8 of 17
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or apart from the zero point of the plot. However, the scat-
tergrams suggest that there were no such color-based
biases in the data. In contrast, in the model-inconsistent

area (plots colored in red), the plot showed a less signifi-
cant level of correlation, showing the low reproducibility
of determined ratios in that area.

Comparison of the results of microarray and Northern blot analysesFigure 4
Comparison of the results of microarray and Northern blot analyses. Data were obtained from a time-course exper-
iment for cold treatment of rice seedlings [15]. a. In the microarray analysis, intensity data were normalized by means of the 
three-parameter lognormal distribution model, and transformed to ratio-basis in comparison with control plants. The number 
of data points was 33, and the correlation coefficient was r= 0.8579. b. The same data set as in a., but the background of 
microarray data was subtracted using local background method [13] and then the data were normalized by globalization. The 
correlation coefficient was 0.7613. c. The same as b., but normalized using LOWESS method [3]. The correlation coefficient 
was 0.7845.
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Stability of determined log-ratio against signal intensityFigure 5
Stability of determined log-ratio against signal intensity. The upper part of the panel is an example of a rank vs. log-
ratio plot for data comparison [5]. Each channel of the data was normalized by means of the three-parameter lognormal distri-
bution model prior to the comparison. In the plot, the x-axis shows the ranks of average z-scores, and the y-axis shows the 
log-ratio that was calculated by means of the difference in z-scores. Intensity dependence of the determined log-ratio can be 
found by tilting and/or varying the width of the bands formed by the dots (see Results for details), as well as by noting changes 
in the moving averages (green line) and moving standard deviations (blue line). Red colored dots indicate that one of the paired 
data is in the model-inconsistent range. In the lower part of the panel, distributions of measurements are presented in histo-
grams at the indicated ranges of ranks. Variations in intensity dependence can be visualized in the particular shape, height, 
width, and/or the center value of such histograms. Data were obtained from 0 hr and 24 hr after serum shock treatment [21]; 
the total number of data was 9677, and the experiment ID was 5731 [20]. In the control and treatment experiments, data 
ranked below -1.4 and above 2.2 were considered inconsistent with the distribution model (red dots). The 300 lowest-inten-
sity data were excluded as "not detected" since they were found to be negative through γ subtraction. The window of the mov-
ing average and standard deviation calculation was 200.
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Detection of intensity dependence of measured differences in other normalization methods, using the same data sets shown in Fig. 5Figure 6
Detection of intensity dependence of measured differences in other normalization methods, using the same 
data sets shown in Fig. 5. The upper part of the panels are examples of rank vs. log-ratio plots for data comparison [5], and 
the lower part of the panels are histograms at the indicated ranges of ranks. a. Normalized by a globalization. b. Normalized by 
LOWESS method [3]. c. Normalized by a variance stabilization method [5]. d. The same method as seen in panel c but using 
the opposite direction of adjustment; the control data were adjusted to the 24 hr data. Since the method transforms only one 
of the data sets, the resulting normalized data can be different; in this case, the same result will form a mirror image of panel c. 
Green and blue lines show the moving average and moving standard deviation, respectively; the window of the calculation was 
200.
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Intensity dependence found in reproducibility of log-ratio measurementsFigure 7
Intensity dependence found in reproducibility of log-ratio measurements. Each channel of data in a pair of dye-swap-
ping hybridizations was normalized by means of LOWESS [3] method. The rank vs. log-ratio plots present intensity depend-
ence in terms of measured log-ratio (upper part of the panels; only one of the pair is shown). Scattergrams (lower part of the 
panels) present the reproducibility of the log-ratio measurements at the given range of intensity ranks. Data were obtained 
from dye-swap experiments [24]; the experiment IDs were 15972 and 15973 [20], and each channel was comprised of 11501 
data. The rank vs. log-ratio plots presented above are from the ID 15973 data. The green and blue lines show the moving aver-
ages and moving standard deviations, respectively; the window of the calculation was 200.
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Improved reproducibility achieved by means of predicting the noise-affected class of data by the parametric normalizationFigure 8
Improved reproducibility achieved by means of predicting the noise-affected class of data by the parametric 
normalization. The same data sets shown in Fig. 7 were used. Each channel of data in a pair of dye-swapping hybridizations 
was normalized by means of the parametric method. Red and black dots indicate model-inconsistent and consistent data, 
respectively. In the control experiment, data ranking below -2.3 and above 1.8 were inconsistent with the distribution model, 
while those below -2.8 and above 1.9 in the treatment experiment were inconsistent with the distribution model. The 223 
lowest-intensity data were excluded as "not detected" since they were found to be negative through γ subtraction. The rank vs. 
log-ratio plots present intensity dependence in terms of measured log-ratio (upper part of the panels; only one of the pair is 
shown). Scattergrams (lower part of the panels) present the reproducibility of the log-ratio measurements at the given range of 
intensity ranks. Data were obtained from dye-swap experiments [24]; the experiment IDs were 15972 and 15973 [20], and 
each channel was comprised of 11501 data. The rank vs. log-ratio plots presented above are from the ID 15973 data. The 
green and blue lines show the moving averages and moving standard deviations, respectively; the window of the calculation was 
200.

��

����

�

���

�

� ���� ���� ���� ���� �����

����

��

����

�

���

�

1 2 3 4 5

�� ���� � ��� �

1 2 3

4 5

�� �����

�������	�
Page 13 of 17
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/5
Discussion
The data distributions found in the public resources [20]
and rice cDNA microarray [15] demonstrate the appropri-
ateness of the three-parameter lognormal model for
microarray data distribution. All the probability plots
show wide ranges of coincidence between the normalized
data and the model (Fig. 2). Small classes of data, at the
largest and smallest intensities, are inconsistent with the
model, but these appear to be due to measurement errors
rather than the inappropriateness of the method. If this
assumption holds true, we can expect lognormal distribu-
tions in the transcript levels of genes, i.e. the number of
mRNA molecules transcribed from a gene and accumu-
lated in a cell. Since microarrays can be considered as
measurements of random samples of the transcript levels,
and the population has the same distribution manner
with its random samples, the transcript levels must be log-
normal. It may be the common nature of cells, since this
distribution is found ubiquitously in many experiments
on different DNA chips.

The assumed stability in the distribution of transcript lev-
els, which was the basis of the conversion of z-scores to
ratios, may represent the state of real cells in a sample. Sta-
bilities of the lognormal distribution, the expected distri-
bution of transcript levels, can be observed from those of
the two parameters, σ and µ. Since the parameter σ may
not be affected by experimental conditions, the value for
the population should be the same as that determined
from microarray data. The stability of the parameter σ is
observed clearly in data (Table 1). Unfortunately, the sta-
bility of µ cannot be confirmed from microarray data,
which has a relative nature; experimental conditions will
affect µ. The relativity is derived not only from the signal
detection method, but also from the RNA sample prepara-
tion process. However, since σ is stable, changes in µ
mean that most of the genes change their expression levels
down or up simultaneously. Such synchronous decrease
or increase of materials may rarely occur in cells, which
otherwise show homeostatic natures.

In a pair of normalized data sets, the ratios calculated by
means of the three-parameter model were distributed
approximately lognormally and the distribution was
found to be stable in relation to the signal intensities (Fig
5). Since each normalization method is based on different
assumptions, each of which reflects the criteria used to
evaluate the intensity of data or difference between data;
different methods can lead to different conclusions. Inter-
estingly, the distribution of log-ratios fortuitously satisfies
the assumptions that are used in other normalization
methods. For instance, where only a limited number of
gene expression levels are changed and they are well-
behaved [25], stability of signal versus log-ratio [1-4] and
intensity independence of measured log-ratio [1,5-7] can

be expected. Since these assumptions have been adopted
from a biological point of view, the stable distributions
may be an a priori characteristic of the differences in tran-
script levels. Confirming such a characteristic in real data
might be another means of verifying the appropriateness
of the parametric normalization method: finding the real
background as well as the center and deviation of data dis-
tribution, and managing the expressional changes. Cer-
tainly, such stabilities will be a great value in data mining
on a ratio-basis [1], since a fixed threshold value can be
used to select affected genes in sets of experiments. Fur-
thermore, such stability will help in designing compari-
sons of data [23] by reducing the possibility that different
designs will lead very different conclusions.

In normalization of microarray data, treatment of data at
lower intensities can seriously affect the calculation
results. According to the expected lognormality in signal
distributions, the range of signal data necessarily becomes
quite wide, and this characteristic complicates exact meas-
urements at the lower and higher intensity ends of the
signal. Additionally, unlike errors that are caused by signal
saturation, which can be resolved simply by re-scanning
the DNA chip at lower excitation intensity, the additive
noise is difficult to cancel or reduce. Such additive noise
will critically damage faint signals. If such tainted data is
included in the normalization process, the additive noise
can affect the entire data set. In order to avoid such effects,
the choice of a robust calculation method will be impor-
tant. For example, the parameter calculation used in this
article uses data only within the interquartile range. Of
course, in cases in which the additive noise becomes com-
parable to the lower quartile, even this method will
become noise-sensitive.

The range of data that are inconsistent with the distribu-
tion model should be canceled prior to further bioinfor-
matic analyses, since such data may contain additive noise
at a level that seriously affects the signal. Generation of
such a data class can be simulated using simple calcula-
tions, for example, addition of random numbers to an
ideal series that are lognormally distributed. Such noise
numbers will create a bend in the probability plot for the
resulting series (data not shown). Indeed, in the inconsist-
ent signal range of data, determined z-scores showed low
reproducibility in repeated hybridizations (Fig. 3) and in
the calculated ratios in the dye-swap experiment (Fig. 8).
The low reproducibility is not derived from the parametric
normalization method, since the corresponding range of
data normalized by LOWESS also lacks reproducibility
(Fig 7). Cancellation of such data classes by the model
does not mean sacrificing a range of measurement; rather,
it can prevent a waste of labor, which is often initiated by
noise in data.
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Many experimental errors are possible sources for additive
noise; however, in my experience, critical ones that can
affect a large part of data are derived from insufficient sig-
nal intensity or uneven hybridization. Shortage in the
amount and/or inadequate quality of RNA would lead to
the former problem. Unfortunately, re-scanning of
hybridized chips with higher extinction power rarely
changes the signal/noise ratios; it might expand the noise
levels as well as the signal level. Unevenness of hybridiza-
tion might be compensated with various calculation
methods. However, such compensations require informa-
tion for the differences and/or similarities in the uneven-
ness between the background and the signal; for example,
if the unevenness occurs on the backgrounds at the same
rate on the signals, compensation should be performed
before the g subtraction. In contrast, the parametric nor-
malization method does not determine the level of multi-
plicative noise from a set of data. The noise can occur from
variation of DNA amount in each spot, and this would
cause errors in the determination of expressional changes.
The error can be cancelled in multi-color comparisons
within the same chip's data; however, it will appear in
inter-chip comparisons of data.

Conclusions
A close fit was found ubiquitously between the three-
parameter model and real data. The coincidence was sta-
ble across biological treatments of subjects. Such com-
monness and stability in the manner of distribution can
be explained without inconsistency if these features are a
priori characteristics of a living cell.

Using the distribution model, data were successfully han-
dled parametrically. The calculation methods for the data
ratios as well as for normalization were introduced. Some
characteristics found in the normalized data and in the
results obtained from the analysis showed improved data
handling in the following categories:

Advances in data accuracy and reliability. Normalized
data and calculated ratios showed high levels of experi-
mental reproducibility. Moreover, it was shown that the
normalization method could identify the noise-affected
ranges of data intensity, allowing for the exclusion of
affected data prior to detailed analysis. Calculated ratios
and their determination reproducibility were independ-
ent of signal intensity.

Expansion of the groups of experiments and of measure-
ment methods that can compare data. The commonness
of data distribution suggests that the model-based
method may be applicable to a wide range of experiments.
At least, the removal of the need for special reference RNA
hybridization means that data comparisons are no longer
restricted. Additionally, differences between the

normalized data can be translated to a ratio basis. Indeed,
the calculated ratios correlated closely with those of
Northern analysis. It became possible to compare and
integrate the ratio-basis results among experiments and/
or with other measurement methods.

As mentioned above, and summarised in Table 2, it is
clear that data normalization and comparison based on
the three-parameter lognormal distribution model will
markedly improve the handling of microarray data.

Methods
Data resources
Data used in this article were obtained from open
resources at Stanford University [20] or from experiments
using rice seedlings [15].

The lognormal distribution model and estimation of the 
parameters
The method assumes that the original intensity data, (ri)
for i = 1,2...n, obey a lognormal distribution. The proba-
bility density function of the intensity data used was:

f(ri) = (1/σ/(2π)1/2)exp[{-log(ri-γ) + µ2/(2σ2)] for ri >γ,

where σ, µ and γ are the shape, scale and threshold param-
eters, respectively.

The parameter σ was found through trial and improve-
ment calculation processes; in the trial, the distribution of
log(ri-γ) was checked by normal probability plotting [26],
and the value that gave the best fit to the model was
selected for γ. The fitness was evaluated by the sum of
absolute differences between the model and log(ri-γ),
within the interquartile range of data. The parameter µ
was found as the median of log(ri-γ), and the parameter σ
was found from the interquartile range of log(ri-γ); these
are known as robust alternatives for the arithmetic mean
and standard deviation, respectively. Parameters µ and σ
were found for each data grid, a group of data for DNA
spots that were printed by an identical pin in order to
avoid divergences caused by pin-based differences [27]. Z-
normalization was carried out for each datum as

Zri ={log(ri-γ)-µ}/σ.

Intensity data (ri) less than γ were treated as "data not
detected", since such data might contain negative noise
larger than the signal (see Results).

Northern analyses
RNA samples were obtained from a time course experi-
ment on rice seedlings exposed to cold-stress [15]. During
the time-course experiment, 7 clones were randomly
selected from those showing a higher magnitude of
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increase or decrease (more than 1.5-fold) from microarray
experiments that were normalized with globalization, and
7 clones were selected by a totally random manner. For
those clones, northern blotting analyses were performed
with the same RNA batch that was used for probing micro-
array experiments. Radioactivity of detected bands on
probed membranes was measured using the BAS system
(Fuji). For each band on an image, the signal intensity was
detected as the sum of signal values in pixels within the
band. The background was estimated based on the
average intensities of the electrophoresis lane but exclud-
ing the band itself. The relative signal of a band was calcu-
lated by subtracting the background from the intensity
data. Each signal datum was normalized by creating ratios
to the control samples. For 4 clones out of 14 clones,
northern analyses could not detect the signals.
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