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ABSTRACT

Motivation: High-density DNA microarrays provide useful tools to

analyze gene expression comprehensively. However, it is still difficult

to obtain accurate expression levels from the observed microarray

data because the signal intensity is affected by complicated factors

involving probe–target hybridization, such as non-linear behavior of

hybridization, non-specific hybridization, and folding of probe and

target oligonucleotides. Various methods for microarray data analysis

have been proposed to address this problem. In our previous report,

we presented a benchmark analysis of probe–target hybridization

using artificially synthesized oligonucleotides as targets, in which

the effect of non-specific hybridization was negligible. The results

showed that the preceding models explained the behavior of probe–

target hybridization only within a narrow range of target concentra-

tions. More accurate models are required for quantitative expression

analysis.

Results: The experiments showed that finiteness of both probe and

target molecules should be considered to explain the hybridization

behavior. In this article, we present an extension of the Langmuir

model that reproduces the experimental results consistently. In this

model, we introduced the effects of secondary structure formation,

and dissociation of the probe–target duplex during washing after

hybridization. The results will provide useful methods for the under-

standing and analysis of microarray experiments.

Availability: The method was implemented for the R software and

can be downloaded from our website (http://www-shimizu.ist.osaka-

u.ac.jp/shimizu_lab/FHarray/).

Contact: furusawa@ist.osaka-u.ac.jp

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

DNAmicroarrays have been used for a wide range of studies on

expression analysis. High-density oligonucleotide microarrays

use a set of short oligonucleotide probes to measure gene

expression and they allow us to analyze the expression of

thousands of genes quantitatively in a single experiment

(Lipshutz et al., 1999; Selinger et al., 2000). Various methods
have been studied to improve the quality of analysis measured by

the microarrays (Cope et al., 2004; Irizarry et al., 2006). In the

standard protocol provided by Affymetrix’s tool [Microarray

Analysis Suite ver. 5.0 (MAS)], a number of probes are designed

for a single gene and an expression level is estimated by the

weighted mean of their signal intensities. To improve the
accuracy and robustness of the expression analysis, various

statistical models (Irizarry et al., 2003; Li and Wong, 2001;

Wu and Irizarry, 2004) have been proposed, in which affinities

between each probe and target are estimated using multiple

array data. These methods relied mainly on the linearity between

the concentration of any target molecule and the amount of
hybridization measured by the fluorescent intensity of its probe.

However, experimental results showed that the linearity is

maintained within a rather narrow range of concentration,

about 2–3 orders of magnitude (Chudin et al., 2002), which

depended on both the lower limit of fluorescence measurement
and the saturation level of probe–target hybridization.

To expand the dynamic range of the measurement, a pro-

mising approach is to model the non-linear behavior of hybrid-
ization in detail. It has been accepted that the Langmuir

adsorption model explains the behavior of hybridization

(Burden et al., 2006; Hekstra et al., 2003; Held et al., 2003).

Analysis based on that model showed that the signal intensity

significantly depended on the hybridization free energy between

probe and target (Mei et al., 2003) and the free energy can be
estimated from the probe sequence (SantaLucia, 1998; Zhang

et al., 2003). However, it has been problematic in that the

intensity level observed in usual spike-in experiments includes

the effect of non-specific target, namely, ensembles of oligonu-

cleotide fragments that do not complement the probes perfectly

(Wu et al., 2005). Although intense studies on the calibration of
this model have been performed (Shippy et al., 2004; Yuen

et al., 2002), experiments under more ideal conditions where

such non-specific hybridization can be negligible are needed for

the more accurate analysis of microarray data.
In Suzuki et al. (2007a) we presented spike-in experiments

without background, namely, in which only artificially synthe-

sized oligonucleotides were hybridized onto a custom designed*To whom correspondence should be addressed.
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microarray as a dilution series. The results provided us clear and
accurate information of hybridization behavior because we
could neglect the signal intensities of non-specific targets.
Analyzing these experimental results, we found that the intensity

showed two types of saturation, depending on the target con-
centration. When the target concentration was high, the probe
intensity saturated to the same level as Langmuir-type models

predict. This indicated that all probe molecules hybridized with
the target. On the other hand, when the target concentration was
low, the intensity saturated to different lower levels. Since the

levels were correlated with the target concentration, these results
suggested that the target molecules were depleted in the
hybridization process [see Suzuki et al. (2007a) for details].

In this article, we introduce an extension of Langmuir-type
thermodynamic model of hybridization to reproduce these
behavior of hybridization and improve the accuracy and
dynamic range of measurements. This model considers basic

duplex formation and depletion of both probe and target
molecules so that it explains the experimental results reported in
Suzuki et al. (2007a) consistently. Furthermore, based on this

hybridization model, we took other physical effects of probe–
target interaction into account in order to improve the accuracy
of the model. First, though it has been pointed out that the

probes undergo folding (Binder et al., 2004), the contribution
of this to microarray hybridization has not been estimated
quantitatively. In this study, we evaluated the effect of secondary
structure and integrated it into our model. We also considered

the effects of dissociation of the probe–target duplex during
the washing process after hybridization (Wick et al., 2006), to
explain the difference of the saturation level between observed

intensity and that expected by the equilibrium model.
Next, we present the results of another spike-in experiment

with background, namely, the oligonucleotide controls were

mixed with cDNA sample obtained from the transcriptome of
Escherichia coli. The comparison between the experiments with
and without transcriptome background made clear the effects of

the non-specific targets for microarray analysis. We found two
major effects. First, when the target concentration was low,
some probes in the case with cDNA sample showed much
greater intensity than those in the case without cDNA sample.

This can be attributed to non-specific hybridization which has
long been discussed as a cause of spurious signals (Kane et al.,
2000; Naef and Magnasco, 2003; Wu et al., 2005). On the other

hand, we also found that the probes tended to show lower
intensity in experiments with cDNA sample than those without
them, when the target concentration was high. The result

suggested that target molecules that hybridize with non-specific
targets in the bulk solution decrease the effective target
concentration (Binder, 2006; Halperin et al., 2004). For an
accurate estimate of target concentrations, these effects of

non-specific hybridization and bulk hybridization should be
taken into account. In this study, we introduced the terms
for both hybridization effects and showed that the model

reproduced the behavior of the observed intensity. Finally, using
this model, we estimated the nominal target concentration from
observed intensity in the experiments with non-specific targets.

This showed that the dynamic range of the measurement achiev-
able with our improved physico-chemical model was over
5 orders of magnitude.

2 MODELS

2.1 Langmuir model

The Langmuir adsorption model has been used widely to model

microarray hybridization (Burden et al., 2006; Hekstra et al.,

2003; Held et al., 2003). In the Langmuir model, the probe

intensity is given as follows:

ILangmuir ¼ �
Kx

1þ Kx
þ I bg; ð1Þ

where � gives the scale of intensity, K gives the equilibrium

constant of probe–target duplex formation, x gives the

concentration of target molecules and I bg denotes the optical

background intensity. The equilibrium constant is defined by

K¼ exp(��G/RT ), where �G denotes the free energy of the

hybridization, R denotes the gas constant and T denotes the

temperature. In this model, when Kx� 1, namely, the affinity

of the probe is very strong or the target concentration is high

enough, the first term saturates to the constant �, which implies

that all probes bind to their target molecules.

2.2 Zhang’s gene-specific hybridization model

Zhang and others used slightly different functions to estimate

their position-dependent nearest neighbor model (Zhang et al.,

2003), which is given by:

IZhang ¼ �0 x

1þ K
0 þ

N

1þ K
00

� �
þ I bg; ð2Þ

where x and N denote the population of the target molecules

for gene-specific hybridization and that of RNA molecules

that contributes to non-specific hybridization, respectively.

K0 ¼ exp(E ) and K00 ¼ exp(E*), where the E and E* are the free

energy for gene-specific hybridization and the average free

energy for non-specific hybridization, both scaled by RT,

respectively. This model also assumes that the intensity

saturates as the affinity of the probe increases, but that the

saturation level is proportional to the target concentration.

It represents the state where all available target molecules are

bound to their probes.

2.3 Finite hybridization model

In this article, we introduce a Finite Hybridization (FH) model.

Held and others proposed a simple equilibrium model of the

binding between probe and target molecules (Held et al., 2003)

based on the equation:

Pfree þ Tfree ()
Ksp

PTsp; ð3Þ

where Pfree, Tfree are free probe and target molecules and PTsp is

their duplex, Ksp gives the equilibrium constant of gene-specific

hybridization between them. If one assumes that the system

reaches equilibrium, and takes mass conservation of probe and

target molecules into account, the amount of probe and target

molecules can be described by the following equations:�
PTsp

�
¼ Ksp

�
Pfree

��
Tfree

�
ð4Þ�

Ptotal
�
¼

�
Pfree

�
þ
�
PTsp

�
ð5Þ�

Ttotal
�
¼

�
Tfree

�
þ
�
PTsp

�
ð6Þ

1279

Hybridization model of oligonucleotide microarrays



where [Ptotal] and [Ttotal] represent their total concentration.

From Equations (4–6), we obtain the amount of hybridized

molecules. Then the intensity expected by the FH model is

given as follows:

IFH ¼ C
�
PTsp

�
þ Ibg

¼
C

2

n 1

Ksp
þ Aþ x

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ksp
þ Aþ x

� �2

�4Ax

s o
þ Ibg;

ð7Þ

where C is the scale of intensity, A ¼
�
Ptotal

�
, x ¼

�
Ttotal

�
and

Ibg is the optical background intensity.
It is worth noting that the both Langmuir and Zhang models

are limiting cases of the FH model. Namely, when x�A,

Equation (7) can be approximated by the following equation:

IFH ’ AC
Kspx

1þ Kspx
þ Ibg: ð8Þ

It is clear that Equation (8) is identical to the Langmuir

equation [Equation (1)], given that �¼AC. On the other hand,

when x�A, Equation (7) is approximated by:

IFH ’ AC
Kspx

1þ AKsp
þ Ibg: ð9Þ

Given that �0 ¼C and K0 ¼ 1/AKsp, it corresponds to the first

term of Equation (2).

2.4 Nearest neighbor model

The free energy of specific hybridization is calculated using

the nearest neighbor (NN) model (SantaLucia, 1998). Given the

base sequence of the probe provided by b¼ (b1, . . . , bl), the

hybridization free energy is given as follows:

�GspðbÞ ¼
Xl�1

k¼1

�spðbk; bkþ1Þ; ð10Þ

where �sp (b1, b2) denotes the binding and stacking energy of

two given base pairs and l indicate the probe length.

2.5 Effect of secondary structure

Folding of the probes affects the efficiency of hybridization

(Binder et al., 2004). To estimate this effect, we consider the

equilibrium of the probes between the folded (Pfold) and free

(Pfree) states:

Pfree ()
Kfold

Pfold: ð11Þ

Taking mass conservation into account, the amount of probe–

target duplex at equilibrium is described by the same equation

as Equations (4–6) except that the equilibrium constant K sp is

replaced by an effective equilibrium constant:

Keff ¼
Ksp

1þ Kfold
: ð12Þ

An algorithm named UNAfold, based on the thermodynamics

of DNA folding, has been proposed (Markham and Zuker,

2005) to calculate the free energy of hybridization. Although the

folding of microarray probes is affected by the interaction with

surface of microarray, we assume that the free energy of the

folding is proportional to that in the bulk solution calculated

by UNAfold. Therefore, the equilibrium constant of the folding
is as follows:

Kfold ¼ exp �
wfold�Gfold

RT

� �
; ð13Þ

where wfold is an adjustable weight factor and �Gfold denotes
the free energy of the folding calculated by UNAfold.

2.6 Effect of dissociation

Dissociation of the probe–target duplex during the washing

process has been considered as a non-equilibrium process that
decrease signals (Burden et al., 2006; Held et al., 2006; Wick
et al., 2006). We assume that the dissociation rate constant kdis

depends on the hybridization energy, namely, it is proportional
to exp(�wdis�Gsp/RT), where wdis is an adjustable weight
parameter. According to the dissociation rate, the amount of

duplex after the wash decreases exponentially, thus, Equation
(7) is changed as follows:

d ¼ exp �B exp �
wdisG

RT

� �� �
ð14Þ

IFH ¼ Cd
�
PTsp

�
þIbg; ð15Þ

where B is another adjustable constant related to the duration
of the wash.

2.7 Competitive hybridization of specific and

non-specific targets

Next, we consider the competitive hybridization of specific and
non-specific targets. To explain the effect of non-specific targets
observed in experiments with cDNA samples, we introduced two

effects: non-specific hybridization and bulk hybridization. By
addition of Equations (3) and (11), we consider the following
reactions:

Pfree þ Tns ()
Kns

PTns ð16Þ

where Tns represents the non-specific target, that is, the

ensemble of DNA fragments that hybridize randomly with
the probe or target, Kns and Kbulk represent the average affinity
of non-specific hybridization and bulk hybridization, respec-

tively. Zhang and others described the average free energy of
non-specific hybridization using a similar model to that of
specific hybridization (Zhang et al., 2003). In our model, the

average free energy of non-specific hybridization is calculated
using another set of parameters as follows:

�GnsðbÞ ¼
Xl�1

k¼1

�nsðbk; bkþ1Þ; ð17Þ

where �ns represents the binding energy of non-specific
hybridization.

Following the model of bulk hybridization proposed in
(Binder, 2006) we regard the bulk hybridization as hybridiza-
tion with non-specific targets in the solution.

Tfree þ Tns ()
Kbulk

TTns: ð18Þ

As the analogy of non-specific hybridization with the probes
we estimate Kbulk, assuming that the free energy of bulk
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hybridization is proportional to that of non-specific hybridiza-

tion �Gbulk
¼wbulk�Gns, where wbulk is an adjustable para-

meter which represents the difference of hybridization

condition between solution and the array surface.
Because we consider the average effect of non-specific

hybridization with various fragments of DNA, we assume that

the total amount of non-specific targetN does not depend on the

probes, and it is much larger than either the amount of the

specific target or that of the probes. Then, the intensity is given

by the sum of specific and non-specific hybridization, thus:

IFH ¼ Cðd sp
�
PTsp

�
þdns

�
PTns

�
Þ þ Ibg; ð19Þ

where d sp and d ns denote the dissociation coefficients for

specific and non-specific targets given by Equation (14) and

�
PTsp

�
¼

1

2

n 1

Keff
þ Aþ x

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Keff
þ Aþ x

� �2

�4Ax

s o
ð20Þ

�
PTns

�
¼

ðA�
�
PTsp

�
ÞKnsN

1þ Kfold þ KnsN
ð21Þ

Keff ¼
Ksp

ð1þ Kfold þ KnsNÞð1þ KbulkNÞ
: ð22Þ

2.8 Parameter optimization

In the FHmodel, there are 27 parameters that are adjusted to fit

the model to the observed data: 10 parameters of the NN model

to estimate the free energy of hybridization; 10 parameters for

non-specific hybridization; three parameters to scale the system,

namely, the total amount of the probes, the coefficient for

intensity, and optical background constant and four weighting

factors for the estimation, one for folding, two for dissociation

and one for bulk hybridization, respectively. We optimized these

model parameters by minimizing the mean residual error (R)

between the observed and expected probe intensity:

R ¼
X
i; j

ðlog10 I
obs
ij � log10 I

pre
ij Þ

2=M;
ð23Þ

where Iobsij and Ipreij are the observed and predicted probe

intensities of the ith probe in jth experiments, respectively, and

M is the number of data points. In this study, M¼ 37 800 data

points—5400 probes in seven experiments—were used for the

analysis. The optimization of the parameters was performed

using a greedy method based on Monte Carlo simulation the

detailed algorithm is described in Supplementary Material.

3 RESULTS

3.1 Design of oligonucleotide probes

We synthesized 150 species of 25 mer oligonucleotides using

artificial random sequences as control targets, and designed

a custom microarray whose probes were complementary to the

control targets. The oligonucleotidemicroarraywere synthesized

on the Maskless Array Synthesizer platform (Nuwaysir et al.,

2002; Singh-Gasson et al., 1999). We arranged 25 mer probes,

which were perfectly complementary to the targets, but also

placed shorter probes to observe the effect of any difference in

hybridization affinity. The original 25mer probeswere shortened

from one end by one base, so that 12 different probe lengths

ranging from 14 mer to 25 mer were designed for each of the 150

targets. Because we arranged three copies for each probe, 5400

probes could be used in total for the analysis (see Suzuki et al.,

2007a for detail). The extracted microarray data were analyzed

using custom-designed scripts in R software (R Development

Core Team, 2006). In each experiment, replicates correlated well

(r40.94), indicating a high level of reproducibility. To obtain a

single absolute signal intensity for each probe, we average logged

values of the replicated measurements.

3.2 Evaluation of the three hybridization models

First, we evaluated the three hybridization models, i.e. the

Langmuir, Zhang and FH models, by the experiments without

background. We optimized the three models using intensity

data of the probes that were complementary to the control

targets in the seven experiments. Then, we compared how the

models reproduced the behavior of the observed intensity at

1.4 fM to 1.4 nM. Although the microarray had some other

probes whose sequences were irrelevant to these targets, the

intensities of these probes were very low compared with that of

the specific hybridization (data not shown). Thus, the effects

of non-specific hybridization were negligible in this series of

experiments.
Remember that we have arranged different lengths of probes

for each target. As Equation (10) implies that �Gsp is roughly

proportional to the length of the probe, we first focused on the

dependency of probe intensity on probe length. Figure 1a

shows the results of experiments at seven target concentration

levels. Each line represents the average intensity of 150 probes

observed in the experiments as a function of the probe length.

The intensity saturated as the probes become longer, i.e. as

the affinity of each probe increases. However, the behavior

depended on the target concentration. When the target con-

centration was lower than 1.4 pM, the saturation level was

proportional to the concentration. On the other hand, when the

target concentration was higher than 14 pM, the intensity

saturated to the same level.
Next, Figures 1b–d illustrate the averages of the predicted

intensity as a function of the probe length using each model,

after parameter optimization. The Zhang model (Fig. 1b)

reproduced the actual behavior in that the saturation level was

proportional to the target concentration when it was lower than

1.4 pM. The Langmuir model (Fig. 1c) explained saturation to

its maximum intensity, when the target concentration was

higher than 14 pM. The FH model reproduced both types of

saturation, so that it fit to the observed data better than the

other models over the whole range of target concentrations

(Fig. 1d). Still, there was a difference between the experimental

data and those expected by the model, that is, the signal

intensities of experimental data gradually increased with the

probe length in the range of longer probes (e.g. longer than 22

mer), where the prediction of the model converged to constant

levels. This difference will be explained in the next section by

the effect of dissociation during the washing process.
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3.3 Effect of secondary structure and dissociation

Based on the FH model evaluated in the previous section, we

then attempted to improve the accuracy of the model’s
predictions. First, we took the effect of secondary structure

formation into account. Although it has been pointed out that
probes with stable secondary structures tend to show lower

intensity (Matveeva et al., 2003), it has been difficult to
quantify this effect. To evaluate this effect on probe intensity,

we compared the stability of the expected secondary structure
of the probes against the residual errors between the observed

intensity and that calculated by the FH model. The stability of
the secondary structure was evaluated using the UNAfold

model, as proposed by Zuker and others (Markham and Zuker,
2005). We found that the residual errors between observed and

predicted intensity correlated negatively (r¼� 0.36) with the

free energy of the secondary structure of probes calculated

using UNAfold (Supplementary Fig. 1). This suggested that

incorporating the effect of secondary structure formation into

the FH model can help decrease the residual errors. To

incorporate this effect, we took the equilibrium between the

folded and unfolded state of the probes Equation (11) into

account so that the equilibrium constant Ksp was replaced by

Keff given by Equation (12). Using this model, we re-optimized

all parameters to reduce the residual errors.
As we pointed out in Figures 1a and d, the signal intensities

of shorter probes are smaller than the expected saturation

levels. To explain this difference, we focused on the relationship

between the saturation level and the hybridization free energy

of the probes. We compared the saturation level of the probes

with different hybridization energies and confirmed that the

saturation levels of probes with lower hybridization free

energies are significantly lower than those with higher free

energies (Supplementary Fig. 2). However, the model expects

that their intensities reach the same saturation level when all

probes are hybridized with target molecules. Possible causes of

this difference were that the hybridization had not yet reached

equilibrium, or that the probe–target duplexes dissociated after

hybridization. Therefore, even if the saturation level at

equilibrium is the same, the dissociation rate in the washing

process might depend on probe–target affinity. It has been

pointed out that the washing process after hybridization of the

labeled targets affects the intensity of the less stable probe–

target duplexes, for example, duplexes containing mismatched

base pairs are washed out more easily (Suzuki et al., 2007b;

Wick et al., 2006). Following the previous studies, we

introduced terms of dissociation Equations (14) and (15) into

the model to estimate their effect.
To confirm validity of the introduced parameters, we

evaluated the three models: 1) estimation of duplex formation

based on only the NN model; 2) the effect of introducing a

secondary structure and 3) the effect of dissociation by esti-

mating their prediction error using 5-fold cross-validation

method. As we added three adjustable parameters (wfold for the

secondary structure model, and B and wdis for the dissociation

model) to the normal NN model, the estimated prediction

errors of these models reduced to 6.7� 10�2 and 6.1� 10�2,

from that of the original model (7.0� 10�2). The difference of

the prediction errors between these models were significant

(by Mann–Whitney U-test, P510�2).

3.4 Effects of non-specific hybridization

In this section, we introduce the effects of non-specific hybrid-

ization to the FH model and evaluate it using experimental data

from a spike-in experiment with background. In this experiment,

the spike-in control oligonucleotides were mixed with cDNA

generated from the total RNAofE.coli. The concentration levels

of the spike-in controls were the same as in previous experi-

ments: i.e. 1.4 fM to 1.4 nM (Suzuki et al., 2007a).
First, we compared the intensity of spike-in controls

observed under the condition without background (Iwithout)

and that mixed with the background (Iwith). It is worth noting

that two different effects can be observed in the distribution of

the intensity ratio (Iwith/Iwithout) (Fig. 2), depending on the
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Fig. 1. Behavior of the observed probe intensity and comparison with

theoretical models. The average intensities of all 150 species are plotted

as functions of the probe length. (a) Observed intensity. When the

target concentration x was lower than 1.4 pM, the saturation level

depended on the target concentration, whereas it saturated to the same

level when the target concentration is higher than 14 pM. Average

intensity is shown as predicted by the Zhang (b), Langmuir (c) and FH

(d) models. Because the Zhang model ignores the saturation of probe

molecules and the Langmuir model ignores the depletion of target

molecules, they fit only partially to the observed data. The FH model

reproduced the behavior of observed intensity well over the whole

concentration range.
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target concentration. When the target concentration was lower

than 14 fM, Iwith tended to show a higher intensity than Iwithout

because of non-specific hybridization. On the other hand, as the

target concentration increased, Iwith became slightly smaller

than Iwithout. This result can be attributed to bulk hybridization.

It has been suggested that the target molecules might hybridize

with other target molecules non-specifically in bulk solution

(Binder, 2006; Burden et al., 2006; Halperin et al., 2004). This

effect would decrease the amount of free target oligonucleotides

available to hybridize with the probes.
In the FH model, we introduced 12 more parameters to

estimate the effect of non-specific and bulk hybridization,

namely, 10 parameters for the estimation of non-specific hybridi-

zation energy (�ns), the weight parameter wbulk for bulk hybridi-

zation, and the total amount of molecules that contribute to the

non-specific hybridization (N). We optimized all parameters

again using the observed data of the spike-in experiments with

background. We confirmed that the NN model for non-specific

hybridization provided a reliable estimation of signals caused by

the background addition. The analysis for non-specific hybridi-

zation is shown in Supplementary Material.
Figure 3 shows the distribution of the residual error of the

prediction using the FHmodel. Scatter plots of observed against

expected intensity are shown in Supplementary Figure 3. The

mean residual error was 6.1� 10�2, and 93% of the observed

points were within a 3-fold range of the predicted intensity. Since

the model was heavily parameterized, we evaluated the predic-
tion error of the model using 5-fold cross-validation method.

When the model of specific hybridization presented in the

previous section was applied for the spike-in experiments with

background, the estimated prediction error was R¼ 8.1� 10�2,

while that of the model with the effects of non-specific

hybridization reduced to R¼ 6.1� 10�2 and the difference was

significant (by Mann–Whitney U-test, P510�2). Since the test

datasets were separated from training data for parameter

optimization in the scheme of cross-validation, it is clear that

the results were not an artifact due to over parameterization.

3.5 Accuracy test

Next, based on the FH model, we propose a method to estimate

the target concentration from the observed intensity. Given the

probe sequences and the model parameters, the residual error R

in Equation (23) is computed as a function of target concentra-

tion. Therefore, the target concentration can be estimated by

minimizing the residual error between the observed and

predicted intensity. In this section, we evaluated this method

using the data of the spike-in experiments under the condition

with the background. To evaluate this method. We used 100 sets

of 25 probes to estimate the target concentration, which were

randomly chosen from all the probes on the array. Using the

same set of probes, we also estimated target concentrations

using a) Affymetrix’s MAS (Affymetrix, 2001) and b) Robust

Multiarray Average (RMA) (Irizarry et al., 2003) (Figs 4a

and b). We also compared the Langmuir and Zhang models, in

that we estimated the optimal target concentration using

Equations (8) or (9) instead of the first term of 20, and other
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Fig. 4. Estimation of target concentrations. We evaluated 100 probe

sets each contains randomly chosen 25 probes. The average estimated

concentrations are plotted against nominal concentration. The error

bars represent the SD of the 100 estimations.
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secondary effects were calculated as in the FH model. The
estimations produced by MAS and RMA tended to be lower
than nominal values at higher concentrations because these

methods are based on linear models that do not consider any
saturation, as shown in Figures 1a and b. Furthermore, the
Langmuir model failed to fit the parameters because of the

difference in saturation behavior between experimental results
and those assumed by the model. For the Langmuir model, the
estimated target concentration did not correlate with the

nominal concentration (data not shown) and the residual error
of each probe set was much larger than that of the other
methods. The results of the Zhang and the FHmodels are shown

in Figures 4c and d. Estimation using the Zhang model was also
affected by saturation. However if all the probes in the given

probe set do not completely saturate, the FH model could
estimate the nominal target concentration quantitatively by
comparing the prediction and observed intensity.

Finally, we evaluated our model using Affymetrix’s
HUG133a Latin square spike-in experiments data (http://
www.affymetrix.com/analysis/download-center2.affx). Since

the physical features of the microarray and the conditions of
hybridization were different, the model parameters were
changed to fit the given data. The results showed that the

prediction errors of the model were as small as that in our
experiments (see Supplementary Material, Section 3, in detail),
and the estimations of target concentration by our model

reproduced the nominal target concentration quantitatively in
all concentration range as shown in Supplementary Figure 4.

4 DISCUSSION AND CONCLUSION

These experiments using artificially synthesized oligonucleo-

tides as targets have revealed details of probe–target hybridiza-
tion. Based on the results of the experiments, we have identified
the source of the errors in previous hybridization models and

have introduced an improved thermodynamic model. First, the
non-linearity between probe intensity and target concentration
was attributed to the depletion of probe and target molecules.

Second, we took the effect of secondary structures and
dissociation during the washing process into account to
improve the accuracy of the prediction. Though in this study,

we roughly approximated the activation energy of dissociation
in wash process to explain the relationship between estimated

hybridization energy and the decrease of the intensity observed
in the saturated hybridization condition. However, detailed
dynamics of dissociation would be more complicated. For

example, in Pozhitkov et al. (2007), it was pointed out that no
significant difference was found between Perfect Match (PM)
and the corresponding MisMatch (MM) probes whose hybri-

dization energy is expected to be lower than that of PM probes.
Detailed understanding of non-equilibrium dynamics in wash
process will be required for more accurate analysis.

Because our model is based on a physico-chemical model of
hybridization, it would be easy to add other physical effects, for
example, the effect of base position (Zhang et al., 2003),

mismatch (Binder et al., 2005; Naef et al., 2002), and others into
this framework.
Using this model, we proposed a method for the estimation

of target concentration. We confirmed the model using a

spike-in experiment and showed that the concentration range

over which the estimation was valid over 5 orders of magnitude,

which was much wider than preceding methods. This algorithm

will allow us to analyze gene expression in more detail. For

example, when there are 108 cells in a sample, our method

makes it possible to measure from 0.01 to 1000 mRNA

molecules per cell. Development of analysis based on this

method will greatly improve quantitative analyzes of gene-

expression levels using microarrays.
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