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ABSTRACT

Motivation: In the Affymetrix GeneChip system, preprocessing occurs

before one obtains expression level measurements. Because the

number of competing preprocessing methods was large and growing

we developed a benchmark to help users identify the best method

for their application. A webtool was made available for developers

to benchmark their procedures. At the time of writing over 50 methods

had been submitted.

Results: We benchmarked 31 probe set algorithms using a U95A

dataset of spike in controls. Using this dataset, we found that back-

ground correction, one of the main steps in preprocessing, has the

largest effect on performance. In particular, background correction

appears to improve accuracy but, in general, worsen precision. The

benchmark results put this balance in perspective. Furthermore, we

have improved some of the original benchmark metrics to provide

more detailed information regarding precision and accuracy. A handful

of methods stand out as providing the best balance using spike-in

data with the older U95A array, although different experiments on

more current arrays may benchmark differently.

Availability: The affycomp package, now version 1.5.2, continues

to be available as part of the Bioconductor project (http://www.

bioconductor.org). The webtool continues to be available at http://

affycomp.biostat.jhsph.edu

Contact: rafa@jhu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The development of preprocessing methodology for Affymetrix

GeneChip has become an active research field. Various alternative

procedures are available and new ones are being developed. Con-

flicting reports have been published comparing the more popular

methods. Furthermore, developers of new methods usually find a

way to claim overall superiority. It is common to see different

papers using different assessment data and/or assessment statistics.

To help users of the technology make sense of the discrepancy

found in the literature and to help them identify the best method

for the particular task, Cope et al. (2004) developed a benchmark. A

webtool implementing this benchmark made it possible to compare

all methods using the same assessment data and summary statistics/

plots. Since its inception in the summer of 2003 developers and

users have submitted more than 30 methods. Table 1 gives a brief

overview of the main methods being compared. More details are

available in Supplementary Table 1. Alternative versions of these

methods have also been submitted and are described in Supplement-

ary Table 2. Throughout the paper we will use the nicknames shown

in the first column of this table to denote the different methods.

Columns 2, 3 and 4 contain descriptions of the three main prepro-

cessing steps: background correction, normalization and summar-

ization. Because various methods combine two or more of these

steps under one unified methodology, some of the columns are

merged to described these. Notice that background correction

can be global and/or probe-specific. These distinctions are made

within the table cells. In column 5 we provide references containing

more detailed descriptions.

In this paper we summarize the comparison of these methods,

identify the most discriminating characteristics and describe current

and future enhancements to the original benchmark that improve

the ability to compare methods. Although, currently, the benchmark

provides three assessment datasets, obtained from Affymetrix’s

HGU95A and HGU133 Latin square experiments and GeneLogic’s

dilution experiment, in this paper we demonstrate its utility using

only the HGU95A data. We use this particular dataset because many

developers have submitted entries based only on this dataset. How-

ever, the limited comparisons that are possible with the other two

datasets lead to similar conclusions. The reader is welcomed to visit

the webtool’s entry comparison tool where one can create assess-

ment plots and summaries, such as those shown in this paper, on the

fly. Screen shots, included as Supplementary Material, provide

some examples.

We assume that the reader is familiar with the original bench-

mark, Affymetrix terminology and the basic issues of prepro-

cessing. See Cope et al. (2004) for a summary.

2 MOTIVATION

Figure 1 shows the results of hierarchical clustering of all the above

mentioned methods (Supplementary Figure 1 shows similar result

obtained with the dilution data). Figure 1 helps us ascertain three

important facts: The first is that methods that differ only in nor-

malization (RMA_NBG/VSN/GL and RMA/RMA_VSN) result in

practically identical measures. The second is that methods that do

not perform probe-specific background correction cluster together.

The third fact is that methods that do perform probe-specific back-

ground do not cluster tightly. This is in agreement with the previ-

ously published results (Irizarry et al., 2003; Cope et al., 2004).�To whom correspondence should be addressed.
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These facts suggest that background correction is the main factor

that explains differences between methods.

Throughout the text we use the terms precision and accuracy.

Notice that in the context of detection of differential expression

these translate to more familiar terms: specificity and sensitivity.

However, to provide guidance to those interested in other micro-

array applications we describe assessments using the more general

terms.

Statistical models for probe-level data predict that no back-

ground correction leads to attenuated estimates of differential

expression (bias) and that naive background correction procedures

can lead to highly variable estimates of differential expression

(Durbin et al., 2002; Huber et al., 2002; Wu et al., 2004). In
particular, methods that produce expression measures close to 0

can have particularly large variance. This fact probably led Affy-

metrix to submit entries that add a constant to their expression

measures, such as PLIER+16 (Table 1). Adding this constant greatly

improves the variance of the measure because we no longer divide

by numbers close to 0 when computing fold-changes.

Figure 2a, which plots benchmark assessments of overall accur-

acy and precision against each other, provides empirical corrobora-

tion of how background correction affects the accuracy/precision

trade-off. This picture demonstrates that the most precise methods

are, in general, the least accurate. Furthermore, the statistical

models for probe-level data also predict that the bias owing to

lack of background correction is greater for low-expressed genes

(Wu et al., 2004). Figure 3a (Fig. 4a in the benchmark) confirms

this empirically. In this figure, we included six methods as

representative of methods that do no or little background correc-

tion (RMA_NBG and VSN_scale), global background correc-

tion (RMA, RSVD) and probe-specific background correction

(PLIER+16, GCMRA). Notice that methods that do not background

Table 1. Description of methods submitted for comparison

Method Summarization Background correction Normalization Citation

ChipMan A multiplicative model similar to that of dChip is fit to the PM Linear transformation (Lauren, 2003)

dChip A multiplicative

model is fit

MM intensities

are subtracted

Spline fitted to rank

invariant set

(Li and Wong, 2001)

GL As RMA None Loess fitted

to subset

(Freudenberg, 2005), http://www.izbi.uni-leipzig.

de/izbi/Working%20paper/2005/03dipl.pdf

gMOSv.1 Parameters from a gamma model are estimated from the PM and MM. These account

for background and signal

(Milo et al., 2003)

GCRMA As RMA Based on probe sequnece As RMA (Wu et al., 2004)

GSVDmod Generalized SVD is used None Scale normalization (Zuzan, 2003)

MAS5.0 A robust average

(Tukey biweight)

Spatial effect and

MM subtracted

Scale normalization (Affymetrix, 2002), http://www.affymetrix.

com/support/technical/whitepapers/

sadd_whitepaper%.pdf

MMEI A linear mixed

model is fitted

None Linear mixed model

used as well

(Deng et al., 2005), http://math.bnu.edu.cn/

startprob/CSPS-IMS2005/Abstracts/

ShibingDeng.pdf

PerfectMatch Model accounts for background and signal. The non-specific and specific effects

are predicted using a free energy model

(Zhang et al., 2003)

PLIER A multiplicative model is fitted to PM-MM.

Accounts for heteroskedacity

As RMA (Hubbell et al., 2004), http://www.affymetrix.

com/community/publications/affymetrix/

expr_supp.pdf

ProbeProfiler Proprietary algorithm (http://www.corimbia.com)

RMA A robust linear model is fitted A global correction is performed Quantile (Irizarry et al., 2003)

RSVD The robust singular value decomposition methodology is applied to probe-level data (Liu et al., 2003)

UMTrMn A trimmed mean of the PM-MM is computed

Negatives are truncated

Similar to RMA (Giordano et al., 2001)

VSN As RMA Generalized log transform is used to normalize

and background correct

(Huber et al., 2002)

ZAM A robust linear

model is fit

Similar to RMA Averaged

pairwise Loess

(Åstrand, 2003)

ZL Model used to motivated a generalized log transform that normalizes,

background corrects and summarizes.

(Zhou and Rocke, 2005)
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Fig. 1. Deprogram showing the results of hierarchical clustering applied

to the log expression data obtained from each method when applied to the

HGU-95 spike-in data. The y-axis represents the clustering height. Cor-

relation was used as a similarity metric. We used the median correlation

to summarize across the 59 arrays.
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correct result in curves that flatten out when the nominal

concentration is small. This fact is better illustrated by Figure 3b,

which we describe in the next section. To better understand the

relationship between accuracy/precision and overall expression

we have extended some of the current assessment measures

and plots. In the next section we describe these extensions

as well.

3 ENHANCEMENTS TO BENCHMARK

For the below described measures, a 28 array subset of the HGU95

spike-in that balances concentration levels across experiment was

used. This subset is described by Wu et al. (2004).

3.1 Accuracy

Because accuracy depends on the overall expression of genes, we

separated the main accuracy assessment, [Signal detect slope (row 6

in Table 1 of Cope et al., (2004)] into three components. To do

this, we stratified the spiked-in genes into low expressed (nominal

concentration <4 pM), medium expressed (nominal concentration

Fig. 2. Accuracy versus precision plots. The solid line is the identity line.

(a) A slope estimate that represents the expected log-fold-change of a gene

with a fold-change of 2 is plotted against the 99.9th percentile of log-fold-

change among genes that are not differentially expressed. Notice that in a

microarray with 10 000 genes, 100 false positives are expected to surpass the

value represented in the x-axis. dChip, PLIER and ProbeProfiler are not

shown because their x-axis values were too high (10.83, 18.75 and 123.27,

respectively). (b)As (a) but the y-axis has the slope estimate for lowexpressed

genes. The range of the x-axis has been limited to show the better performing

measures.
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Fig. 3. (a) Observed log (base 2) expression versus nominal log concentration

(in picoMolar). (b) The difference between one (the desired value) and

local slopes, or bias, versus nominal log concentration (in picoMolar).
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between 4 and 32) and high expressed (nominal concentration >32).
For each of these subgroups we followed the same procedure used

to compute the signal detect slope. Specifically, a regression line

was fitted to the observed log expression values for the spiked-in

genes using nominal concentration as the predictor, and the slope

estimate recorded as the assessment measure. The new assessment

measures are referred to as low, med and high slopes and are

shown in Table 2.

To better assess the concentration dependent bias, we added the

plot shown in Figure 3b to the benchmark. In this figure, local slopes

are calculated by taking the difference between the average

observed log expression values between consecutive nominal con-

centration levels. The difference between 1 and these local slopes

are plotted against the larger of the two concentration levels. We

subtract from 1 because we are in the log-scale, thus all these

slopes should be 1 (when nominal concentration doubles so

should the observed concentrations). Notice that these curves follow

an upside-down U shape. This shape illustrates the fact that bias is

worst for low expressed genes and high expressed genes. The low

expressed genes are affected by background noise as described

above. The high expressed genes are affected by scanner attenuation

(not discussed in this paper).

3.2 Precision

To provide a more practical context for the new accuracy assess-

ment measures, we defined the null log-fc 99.9% statistic shown in

Figure 2. Row 6 in Table 1 of Cope et al. (2004) presented the inter-
quartile range (IQR) of the observed log-fold-changes among the

genes that are known not to be differentially expressed. The new

statistics gives the 99.9% instead of the IQR. We have also added a

measure related to the Median SD represented by row 1 in Table 1of

Cope et al. (2004). The previous measure used the dilution study

data. Similarly, a spike-in experiment version of Figure 2 in the

original benchmark was added.
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Fig. 4. A typical identification rule for differential expression filters genes

with fold change exceeding a given threshold. This figure shows average

ROC curves which offer a graphical representation of both specificity and

sensitivity for such a detection rule. (a) Average ROC curves based on

comparisons with nominal fold changes equal to 2. (b) As (a) but consider

only low concentration spiked-in genes.

Table 2. Table showing the new assessment summary statistics described in

the text

Slope

Method SD 99.9% Low Med High AUC

GCRMA 0.08 0.74 0.66 1.06 0.56 0.70

GS_GCRMA 0.10 0.79 0.62 1.03 0.55 0.66

MMEI 0.04 0.23 0.16 0.54 0.46 0.62

GL 0.05 0.25 0.16 0.55 0.46 0.62

RMA_NBG 0.04 0.24 0.16 0.56 0.46 0.61

RSVD 0.00 0.58 0.42 0.85 0.40 0.61

ZL 0.22 0.52 0.35 0.71 0.45 0.61

VSN_scale 0.09 0.43 0.28 0.91 0.70 0.59

VSN 0.06 0.28 0.18 0.6 0.46 0.59

RMA_VSN 0.09 0.48 0.31 0.74 0.46 0.57

GLTRAN 0.07 0.42 0.23 0.61 0.45 0.55

ZAM 0.09 0.50 0.30 0.70 0.47 0.54

RMA_GNV 0.11 0.58 0.35 0.76 0.47 0.52

RMA 0.11 0.57 0.35 0.76 0.47 0.52

GSrma 0.11 0.57 0.35 0.76 0.47 0.52

GSVDmod 0.07 0.44 0.22 0.64 0.42 0.51

PerfectMatch 0.05 0.40 0.18 0.56 0.43 0.50

PLIER+16 0.13 0.83 0.49 0.80 0.46 0.48

GSVDmin 0.08 0.60 0.22 0.62 0.41 0.41

MAS 5.0+32 0.14 1.07 0.35 0.71 0.44 0.12

ChipMan 0.27 2.26 0.44 1.11 0.68 0.12

qn.p5 0.12 1.09 0.13 0.50 0.52 0.11

dChip PM-only 0.13 1.44 0.31 0.67 0.39 0.09

mmgMOSgs 0.40 3.27 1.34 1.13 0.45 0.07

gMOSv.1 0.29 3.35 0.98 1.12 0.42 0.06

ProbeProfiler 0.31 18.75 1.61 1.57 0.39 0.03

dChip 0.23 14.83 1.40 0.86 0.35 0.02

mgMOS_gs 0.36 2.86 0.83 0.86 0.43 0.01

MAS 5.0 0.63 4.48 0.69 0.81 0.45 0.00

PLIER 0.19 123.27 0.75 0.85 0.46 0.00

UMTrMn 0.32 2.92 0.58 0.83 0.42 0.00

The methods are ordered by their performance in the weighted average AUC value.
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3.3 Overall detection ability

One of the chief uses of expression arrays is the identification of

genes that express differently under various experimental condi-

tions. The simplest identification rule filters genes with fold change

exceeding a given threshold. Receiver operator characteristic

(ROC) curves offer a graphical representation of both specificity

and sensitivity for such a rule. ROC curves are created by plotting

the true positive (TP) rate (sensitivity) against false positive (FP)

rate (1�specificity) obtained at each possible threshold value.

Cope et al. (2004) presented two ROC plots, both using log fold

change as a filter. Since only spiked-in genes are actually dif-

ferentially expressed in these experiments, it is easy to determine

TP and FP. For the first plot every concentration pair was used to

determine TP. Because many concentration pairs result in unreal-

istically high nominal fold-changes, a second plot used only com-

binations yielding fold-changes of 2 (Fig. 4a). The x-axis stops

at 100 false positives because lists of genes with more errors are

not typically useful. As summary statistics we reported the area

under the curve (AUC).

According to Figure 4a, methods with no or little background

correction performed best. However, many of these methods

performed rather poorly in the accuracy plots seen in Figure 3.

The reason for this apparent discrepancy is that in the benchmark

experiment the spiked-in concentration resulted in abnormally high

levels of observed expression. This is demonstrated by Figure 5

which compares the intensity distributions of the spiked-in genes

and non-spiked-in genes. To allow the ROC curves to provide

a more realistic summary we divided the ROC curve plots into

three components. For each of the concentration groups, defined

for the accuracy assessment, we created a different ROC curve

and we consider only sample pairs with fold-changes equal to 2.

Figure 4b shows the low intensity ROC curves for the same six

methods in Figure 3. The AUC for these three ROC curves are

added as summary statistics. To give a one number summary we

consider a weighted average of these three AUCs (Table 2). The

weights are chosen according to the percentage of genes expected

to be in each concentration group.

An MA-plot that only shows the spiked-in genes in each of

these concentration groups with fold-changes <4 was also added.

4 DISCUSSION

Figure 2a plotted the original benchmark’s signal detect slope

against the 99.9 percentile log-fold-change among the genes that

are not differentially expressed. The value in the y-axis represents
the expected log-fold-change of a gene with a true fold-change of 2.

These two statistics give an intuitive and practical summary related

to the ability to detect differentially expressed genes. In general, the

higher above the identity line, the more preferable the method.

Notice that various methods are well below the identity line

(very large variance). This is probably explained by the use of

naive background correction procedures. For most of these, a

method with the same accuracy exists but with much better preci-

sion. However, there are various methods above the identity line

with differences in both accuracy and precision. To compare such

cases we turn our attention to Figure 3 which demonstrated that

methods that do not background correct have worst bias for low

expressed genes. We will focus our attention on VSN_scale and

RMA_NBG, the methods that appears to perform best in 2a and 4a.

In Figure 3a, we see that the curve for RMA_NBG, which does no

background correction, flattens out dramatically at the low end.

Notice that, except for a stretch caused by the multiplication of a

constant, VSN_scale (which by definition will have an identical

curve to VSN) has a similar shape to RMA_NBG. Figure 2b

plots the signal detect slope obtained for genes with low expression,

as described in Section 3.1, against the 99.9 percentile seen in

Figure 2a. Notice that some of the methods that appeared to be

performing best in Figure 2a, such as VSN_scale and RMA_NBG,

are no longer performing very well. In general, the bias resulting

from lack of background subtraction will be most noticeable in the

summary statistics plotted in the y-axis of this figure. Methods such

as PLIER+16 and GCRMA, which use model-based probe-specific

background correction, maintain relatively good accuracy without

losing much precision. RSVD maintains relatively good accuracy

except for very low concentrations.

The advantage of background correcting can be seen in the

ROC curves as well. Figure 4 shows ROC curves for six methods.

Figure 4a shows the overall results presented in the original

benchmark. Figure 4b shows the ROC curve that considers only

low expressed genes. Notice that for low concentrations methods

such as VSN_scale and RMA_NBG do not perform as well as

GCRMA and RSVD.

Table 1 suggests that many methods are developed to perfect

accuracy without taking precision into account. Others appear to

be doing the opposite. In general, the latter are preferred because

detection ability is much better. However, some methods such as

RSVD, ZL, PLIER+16 and GCRMA appear to be finding a balance

between accuracy and precision that permits them to perform well

across the range of gene expression. Furthermore, we need to keep

in mind that in practice it is typical to have replicate arrays which

improves precision but not accuracy. For example, in experiments

with many replicates a user might be willing to sacrifice accuracy

for precision. In classification and clustering problems where the

variance from all genes can be accumulated to degrade results,

a user is likely to benefit from a very precise measure. Furthermore,

some methods, such as gMOS, provide estimates of uncertainty

which affycomp does not take into consideration. It is possible

that these methods will perform better in comparisons of statistical

tests where such estimates can be used to improve specificity.
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Affymetrix’s spike-in experiments have been an invaluable

resource to develop and assess preprocessing methodology. How-

ever, it is important to consider other assessment datasets. For this

reason, the original benchmark includes the GeneLogic dataset.

Results obtained from this experiment lead to similar conclusions

(see Supplementary Figure 2). Because the spiked-in-genes in the

benchmark data are known, over-training is a concern. For this

reason we have enhanced the benchmark web tool to accept

results from an independent spike-in experiment (http://www.

affymetrix.com/support/technical/sample_data/datasets.affx). We

have recently asked all submitters to make results from both experi-

ments available. At the time of writing, most of the better perform-

ing methods had only been submitted with one dataset. Assessment

plots and tables, e.g. Supplementary Figure 3, suggest that at least

for the methods submitted, the conclusions are similar to those

obtained with the HGU95 data.

To further improve the benchmark, we plan to add benchmark

datasets, such as the one obtained from a mixture experiment

described by Lemon et al. (2002), in the near future. Furthermore,

we are currently developing a spike-in experiment that uses biolo-

gical replicates instead of technical ones. Currently, there is another

spike-in experiment in the public domain (Choe et al., 2005).

Unfortunately, the design of this experiment is not compatible

with the assessments we propose. Furthermore, the existence of

an artifact makes it difficult to define true and false positives.

We therefore have no plans to include this dataset in our benchmark.

Further details are given in the supplemental material.

It is important to note that both precision and accuracy depend on

the signal/noise ratios both intrinsic to the species, the experiment

and the specific microarray utilized. Thus, the benchmarking of

precision and accuracy we describe for the older U95A microarray

and the artificial spike-in dataset may or may not be generalizable.

We anticipate that the webtool will continue to be populated with

additional datasets from a range of experiments and chips.

5 CONCLUSION

In this paper we described some enhancements to the benchmark

assessment plots and summaries that further elucidate differences

among existing preprocessing methods. In Section 4 we compared

the methods submitted for scrutiny via the benchmark. For the sake

of clarity, most of the figures in this paper compared only six

methods. However, using the benchmark web tool one can compare

any combination of methods via any summary statistic or plot.

Beware that results for the original benchmark, as described by

Cope et al. (2004), are available from the original assessment

link on http://affycomp.biostat.jhsph.edu, while the enhancements

described here are available from the new assessment link on that

webpage.

The benchmark has been an invaluable tool for comparing

different preprocessing methods. It has also been useful for

determining the characteristics that differentiate these methods.

The comparison made evident that the accuracy/precision

(bias/variance) trade-off is driven mostly by background correction.

It is important to note that the benchmark is not intended to be

used to determine the ‘best’ method but rather to permit users to

judge each method using scientifically meaningfully summaries.

These can be used to decide the most appropriate method

for their specific application. We expect this paper, along with

the benchmark web tool, to help researchers continue to improve

preprocessing algorithms. In particular, we have clearly laid out

the importance of balancing precision and accuracy.

Conflict of Interest: none declared.
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