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Abstract
Background: There are currently many different methods for processing and summarizing probe-
level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods
and identify those that are most effective. There is no single best way to do this validation, and a
variety of approaches is needed. Moreover, gene expression data are collected to answer a variety
of scientific questions, and the same method may not be best for all questions. Only a handful of
validation studies have been done so far, most of which rely on spike-in datasets and focus on the
question of detecting differential expression. Here we seek methods that excel at estimating
relative expression. We evaluate methods by identifying those that give the strongest linear
association between expression measurements by array and the "gold-standard" assay.

Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is generally considered
the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm
findings from microarray data. Here we use qRT-PCR measurements to validate methods for the
components of processing oligo array data: background adjustment, normalization, mismatch
adjustment, and probeset summary. An advantage of our approach over spike-in studies is that
methods are validated on a real dataset that was collected to address a scientific question.

Results: We initially identify three of six popular methods that consistently produced the best
agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three
methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and
high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip
mismatch) and a sequence-based method of background adjustment (as in gcRMA) as the most
important factors in methods' performances. However, we found poor reliability for methods using
mismatch probes for low-intensity genes, which is in agreement with previous studies.

Conclusion: We advocate use of sequence-based background adjustment in lieu of mismatch
adjustment to achieve the best results across the intensity spectrum. No method of normalization
or probeset summary showed any consistent advantages.
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Background
Affymetrix GeneChip® oligonucleotide arrays are a popu-
lar platform for the high-throughput analysis of gene
expression in mRNA. Nguyen et al [1] give an introduc-
tion to the technology for quantitative scientists. Briefly,
an oligonucleotide array contains 11–20 probe pairs for
each gene. Probe pairs consist of an oligonucleotide that
is a "perfect match" (PM) to a subsequence of the mRNA
transcript for a gene and a corresponding "mismatch"
(MM) oligo that differs from it in one base in the middle.
These MM probes are meant to provide information on
cross-hybridization.

Quantitative researchers have proposed a variety of meth-
ods for handling probe-level data from Affymetrix® oligo-
nucleotide arrays. Methods employ different procedures
for adjusting for background fluorescence, normalizing
the data, incorporating the information from "mismatch"
probes, and summarizing probesets (combining all the
data from the different probes for a given gene). In partic-
ular, the value and proper use of data from MM probes
have been subjects of some controversy [2]. It is important
to validate a method for its effectiveness in achieving sci-
entific goals, such as estimating relative gene expression or
detecting differentially expressed genes [3]. Note that dif-
ferent methods may be preferable for different scientific
goals [4].

Previously, spike-in studies have been used to study the
variance and bias of different estimates of relative expres-
sion derived from oligo array data. These studies are use-
ful and important, but are not the end of the story. First,
spike-in datasets are inherently artificial, and may not
realistically represent the operating characteristics of a
methodology on real data [5]. For example, the Affymetrix
Latin Square Dataset studied by Bolstad et al [6] has only
42 genes changing from sample to sample. In addition,
this dataset was used to develop several methods, so it is
not appropriate to use for validation. Finally, a criterion
often not considered in the spike-in studies is the accuracy
of measurements across genes. Instead, Bolstad et al [6]
largely considered measurements across RNA samples for
single genes. Obviously, these problems are related, yet
they are not identical.

Choe et al [7] conducted a study using an experiment
where 100–200 RNAs were spiked-in at various fold-
changes. All RNAs other than the spike-ins had the same
level in all samples. Impressively, the authors considered
over 100 different combinations of methods for back-
ground adjustment, normalization, use of MM probes,
and probeset summary methods. Many of the study's con-
clusions are based on the shared features of the ten best-
performing combinations. However, eight of those ten
combinations used a normalization based on the known

subset of genes that were constant between the RNAs that
were compared. Such a normalization scheme could not
be implemented in an actual experiment where the iden-
tity of unchanging genes is unknown. This casts some
doubt on the generalizability of the study's findings. Fur-
ther concerns about generalizability arise from the study's
non-standard RNA production protocol. In addition, one
of the study's RNA samples contained unlabeled poly(C)
RNA, to unknown effect.

Among evaluations that do not rely on spike-in datasets,
Ploner et al [8] favored methods that produced zero cor-
relation, on average, between randomly selected pairs of
genes. Though creative, this criterion unfortunately does
not correspond to a scientific question of interest. Further-
more, the criterion might favor methods that "over-nor-
malized" the data – removed signal as well as systematic
biases. Shedden et al [5] identified methods that opti-
mized sensitivity for detecting differentially expressed
genes. The authors relied on estimates of false discovery
rates rather than using data from an independent valida-
tion technique for comparison.

In contrast to the studies that use spike-in datasets, our
study is based on a real dataset that was collected to
answer biological questions. The studies by Choe et al [7]
and Shedden et al [5] are directed at identifying the best
methods for selecting differentially expressed genes,
which are not necessarily the best methods for estimating
relative expression. In contrast, we focus here on the prob-
lem of estimating relative expression. We do not mean to
suggest that previous approaches lack merit. Rather, dif-
ferent approaches have advantages and disadvantages,
and a plurality of studies is needed.

In our experiment, heart tissue was collected from 24 indi-
vidual mice in a 2 × 2 design (see Table 1). Affymetrix
GeneChips® (Murine Genome Array U74Av2) were used
to assay RNAs from these tissue samples. Quantitative RT-
PCR measurements for 47 genes were taken on these same
24 RNAs. As the "gold-standard" method of measuring
gene expression, we treat the qRT-PCR measurements as
"truth" for the purposes of this study. In our "overview"

Table 1: Biological Samples. RNA samples were from an 
unbalanced 2 × 2 factorial design. The 24 mice were young or old, 
wild-type or carried the MCAT transgene, which directs 
overexpression of human catalase to the mitochondrial cellular 
compartment. Transgene overexpression extends lifespan[16], 
and thus gene expression differences between MCAT and age-
matched wild-type mice would be expected.

Wild-type MCAT

Young N = 6 N = 8
Old N = 5 N = 5
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investigation, array data were processed in six different
ways to arrive at estimates of gene expression among the
24 mice. The six methodologies are MAS5, gcRMA, RMA,
VSN, and two versions of dChip (see Table 2 for informa-
tion on methods and references). We used Pearson Corre-
lation to measure the agreement between array and qRT-
PCR measurements on six group comparisons, or "con-
trasts," among the mice (see the 'Contrasts' section of
METHODS and Figure 1). In a follow-up investigation, we
considered 56 different combinations of the components
of these methods.

Our choice to use Pearson's correlation, r, is motivated by
the following formula. While not the standard textbook
definition of r, a more instructive approximate formula is

where β is the slope of the line for predicting Y from X,
Var(X) is the variance of X, and Var(Y|X = x) is the variance
of Y in groups that have the same value of X. In our appli-
cation, X is the measurements from qRT-PCR and Y is the
measurements from array. X is fixed, and so also Var(X),
but Y depends on what method is applied to the array
data. Since Var(Y|X = x) appears in the denominator, a
method's performance is improved if it minimizes
Var(Y|X = x). Therefore, this metric tends to favor methods
with smaller variability. Similarly, the larger the slope
between Y and X, the larger r is and the more favorable a
method's performance. In this sense, by using Pearson's
correlation, we simultaneously take into account both the
variance and bias of the measurements produced by
arrays. That is, we seek methods that achieve the right bal-
ance between variance and bias to yield the strongest asso-
ciation between array measurements and qRT-PCR.
However, it is also of interest to specifically examine vari-
ance and bias, and we will come back to this.

We note that the 47 genes assayed with qRT-PCR were
selected based on primer availability, initial evidence for
differential expression, signal intensity, and biological
interest. The 47 genes do not comprise a random sample.
In particular, the genes for which we have qRT-PCR data
do not include low-intensity genes (see Figure 2 and Addi-
tionalFigures.doc for the additional contrasts). The 47
genes are medium- and high-intensity genes, with the
larger fold-changes tending to be for the medium-inten-
sity genes. Therefore, our results about inter-platform
agreement pertain primarily to high- and especially
medium-intensity genes. We will return to this important
issue.

Results
MAS5, gcRMA, and dChip mismatch model achieve the 
best agreement between array and qRT-PCR
We examined six methods (see Table 2) to identify those
that yield the strongest linear association between array
and qRT-PCR measurements of relative gene expression
(see METHODS). Figure 3 shows that three methods,
MAS5, gcRMA, and dChip.mm, consistently outperform
the other three. While we are not able to compute confi-
dence intervals to evaluate the statistical significance of
the differences, we argue that the improvement in correla-
tion by using one of the three best methods is compelling.
Some caution is warranted however, due to the non-ran-
dom selection of the genes; see DISCUSSION.

We conducted sensitivity analyses out of concern that a
single gene or a pair of genes might disproportionately
influence the results, which is a general concern with the
correlation metric. Table 3 gives the results of the leave-
one-out sensitivity analysis. Across the six contrasts, there
were 41 instances where the ranking of methodologies
changed when one gene was left out of the dataset. How-
ever, in 39 of these instances the ranking changed via a
transposition of two adjacent methodologies in the rank-
ings, or a shuffle of three adjacent methodologies. The
only exceptions are (1) the interaction contrast and gene
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Table 2: Methods under Evaluation. Summary of the six methodologies for oligonucleotide array data that were compared in this 
study. Details on the methodologies can be found in the references. An asterisk (*) marks components of methods that were studied in 
the follow-up analysis (see Table 5).

Method Background Adjustment Normalization Mismatch adjustment Probeset Summary Reference

MAS5 regional adjustment* scaling by a constant* subtract idealized 
mismatch*

Tukey biweight average* [17]

gcRMA by GC content of 
probe*

quantile normalization* PM only* medianpolish* 
(robust fit of linear model)

[9]

RMA whole array adjustment quantile normalization* PM only* medianpolish* 
(robust fit of linear model)

[2]

VSN none* variance stabilizing 
transformation

PM only* medianpolish* 
(robust fit of linear model)

[18]

dChip none* invariant set* PM only* Li-Wong multiplicative [19]
dChip.mm none* invariant set* subtract mismatch* model*
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12, and (2) the OWT-OMCAT contrast and gene 26.
Removing gene 12 produces a shuffle of the top four per-
forming methodologies for the interaction contrast.
Removing gene 26 produces a shuffle of the top five per-
forming methodologies for the OWT-OMCAT contrast.
Notice, however, that the rankings are inherently unstable
for the interaction contrast simply because all methodol-
ogies performed comparably for this contrast (Figure 3).
Similarly, the top five methodologies performed compa-
rably for the OWT-OMCAT contrast, so a shuffle among
them is not alarming.

Table 4 summarizes the results for the leave-two-out sen-
sitivity analysis. In total, these sensitivity analyses provide
assurance that our results are robust and not overly influ-
enced by a single or pair of genes in our study.

Variability is intensity-dependent
Figure 4 shows the variance of methods within biological
replicates. We see that variability is highest for MAS5.
MAS5 and the dChip mismatch model exhibit dramati-
cally increased variability at lower intensities. This
increased variability could be explained by greater biolog-
ical variability at low intensities. However, statistically,
one expects that subtracting mismatch data should
increase variability, and that excess variability would be
dramatic at low intensities [9]. This explanation is also
entirely consistent with previous empirical data [2]. The
four methods that do not use MM probe data are roughly
comparable across the intensity spectrum with respect to
variability, with the dChip method exhibiting the smallest
variability. An interesting side note is that VSN does not
exhibit constant variability across the intensity spectrum,

Agreement between array and qRT-PCR for the comparison of Y-WT and O-WT miceFigure 1
Agreement between array and qRT-PCR for the comparison of Y-WT and O-WT mice. For the Y-WT vs. O-WT 
contrast, the figure shows estimates of relative expression from the array data, processed with six different methodologies, 
compared to qRT-PCR. Estimated differences are on the log2 scale. Genes indicated with an open circle are influential genes 
according to the sensitivity analysis. The number on each scatterplot is the Pearson correlation.
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despite incorporating a transformation specifically
intended to achieve this.

For medium- and high-intensity genes, variability is offset 
by reduced bias
Figure 5 is similar to Figure 3 but displays the slope of the
least-squares regression lines that we fit to the scatterplots
like Figure 1 (data not shown). These slopes can be con-
sidered a measure of the bias of methods, with slopes
closer to 1 indicating less bias. Notice that the slopes for
the three methods with the best correlation, MAS5,
gcRMA, and the dChip mismatch model, are consistently
closer to 1, and also larger than the slopes for the remain-
ing three methods. Although these methods have more
variability (Figure 4), they achieve better agreement with
qRT-PCR by having smaller bias.

No apparent relationship between gene characteristics 
and agreement between platforms
As an exploratory aspect of our study, we sought to iden-
tify factors that influence the level of agreement between
array and qRT-PCR measurements. We considered

whether gene sequence GC content or Affy probe GC con-
tent was associated with agreement in the measurements
produced by the two platforms. Neither variable showed
a consistent association. See ProbeLevelAnalysis.doc for
more information on this exploratory analysis.

We also failed to corroborate the finding of Etienne et al
[10] that large distance between qRT-PCR probe and the
Affy probe set leads to poor agreement between platforms.
We believe the likely reason for this discrepancy is the dif-
ference in RT-PCR methods. Etienne et al [10] used stand-
ard 2 primer PCR followed by radioactive Southern blot
hybridization. The use of a real time PCR machine in our
study allowed greater assurances that all amplifications
measured were consistent, specific, and within the appro-
priate linear range. Our use of the Taqman system with a
fluorogenic minor groove binding probe also increased
specificity and stabilized binding sites. These factors com-
bined could reduce any sequence-specific error in qRT-
PCR measurement.

Genes selected for qRT-PCR are medium to high intensity in array dataFigure 2
Genes selected for qRT-PCR are medium to high 
intensity in array data. The plot highlights the genes 
selected for qRT-PCR in a scatterplot of the YWT vs. OWT 
contrast against the mean signal intensity. Data were proc-
essed with gcRMA for this plot. Selected genes span a large 
range of average signal intensity with the notable exception 
of low-intensity genes. See AdditionalFigures.doc for similar 
figures for the other contrasts.

Relative performance of the six methodologies for six sum-mary contrasts of the dataFigure 3
Relative performance of the six methodologies for 
six summary contrasts of the data. MAS5, gcRMA, and 
dChip.mm consistently outperform the other methods, 
although all methods performed comparably on the 'Interac-
tion' contrast. Correlations are lower for contrasts for which 
there is less differential expression, as seen in the scatter-
plots such as Figure 1 [see AdditionalFigures.doc]. However, 
the interesting comparisons are between the six correlations 
for a given contrast.
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Use of mismatch data or sequence-based background 
correction is the most influential factor
We sought to better understand why MAS5, gcRMA, and
the dChip mismatch model performed better in our corre-
lation analysis. Similar to Choe et al [7], we considered all
compatible combinations of the components that com-
prise these three methods. Table 5 delineates those meth-
ods and also gives a shorthand notation that we will use
to discuss them here. Altogether, we evaluated 56 combi-
nations.

Figure 6 shows a first look at the results of the follow-up
analysis. No particular sub-method stands out as uni-
formly superior to its alternatives. However, this way of
viewing results can hide combinations of sub-methods
that work well together. For example, we found that each
probeset summary method worked well when combined
with certain other components.

Using the shorthand notation established in Table 5, Fig-
ure 7 shows that the BA-GC and Li-Wong appear to work
consistently well together (green curves). Such combina-
tions arguably work better than BA-GC combined with
medianpolish (blue curves), even though BA-GC was
developed in conjunction with medianpolish. Similarly,
combining Li-Wong with subtractMM (yellow curves)
instead of BA-GC does not correlate with RT-PCR data
quite as well. In other words, combinations of compo-

nents of two top-performing methods, gcRMA and the
dChip mismatch model, outperformed both.

As another example, the adjustedMM worked consistently
well when combined with TukeyAverage (Figure 8, black
curves) as long as BA-GC is not also used (presumably the
combination is an over-adjustment). Both adjustedMM
and TukeyAverage are components of MAS5. The green
and red curves in Figure 8 show the arguably worsened
results when adjustedMM was combined with Li-Wong or
medianpolish.

Figure 9 summarizes results for some groups of methods
that consistently performed well. Note that each method
of background adjustment, each method for MM probes,
and each probeset summary method is involved in at least
one group. The most notable feature, however, is that each
group in Figure 9 uses exactly one of BA-GC, adjustedMM,
or subtractMM. Therefore, these are the components that
lead to the superior performance of MAS5, gcRMA, and
the dChip mismatch model in our initial analysis. This
result, that the method for MM data is the most important
choice in data processing, was also found by [11].

Figures 7, 8, 9 also indicate that differences in normaliza-
tion had a generally minor effect on results – performance
changed little when normalization method varied while
all other components were held constant. We do not iden-

Table 3: Results of the leave-one-out sensitivity analysis. For each contrast, an individual gene is listed if its removal produced a change 
in the ranking of the six methodologies. The third column shows how the ranking of the six methodologies changed upon removal of 
the gene. Here, M = Mas5, G = gcRMA, R = RMA, V = VSN, D = dChip, D- = dChip.mm. Bold font highlights changes. Note that all 
changes in rankings, with two exceptions, were transpositions of two adjacent methods or a shuffle of three adjacent methods.

CONTRAST GENE RANKING

Age 36 (M,D-,G,R,V,D)→(G,M,D-,R,V,D)
Genotype 3 (G,M,D-,R,V,D)→(D-,G,M,R,V,D)
Genotype 12 (G,M,D-,R,V,D)→(M,G,D-,V,R,D)
Genotype 26 (G,M,D-,R,V,D)→(G,M,R,D-,V,D)
Genotype 27 (G,M,D-,R,V,D)→(G,D-,M,R,V,D)
Interaction 4,19 (M,D-,G,R,D,V)→(M,G,D-,R,D,V)
Interaction 6,11,24 27,34,37,43,47 (M,D-,G,R,D,V)→(D-,M,G,R,D,V)
Interaction 8 (M,D-,G,R,D,V)→(M,D-,R,G,D,V)
Interaction 26 (M,D-,G,R,D,V)→(G,M,D-,R,D,V)
Interaction 32 (M,D-,G,R,D,V)→(M,D-,G,R,V,D)
Interaction 12 (M,D-,G,R,D,V)→(G,D-,R,M,V,D)

YWT-OWT 3 (M,G,D,R,V,D-)→(M,G,D,R,D-,V)
YWT-OWT 37 (M,G,D,R,V,D-)→(G,M,D,R,V,D-)

YWT-YMCAT 3 (M,G,D,R,V,D-)→(M,D,G,R,V,D-)
OWT-OMCAT 2,4,8,15,16,20,27,31,34,35,43,47 (D-,G,V,M,R,D)→(D-,G,V,R,M,D)
OWT-OMCAT 10,12,17,18,21,36,39,40,45 (D-,G,V,M,R,D)→(D-,G,M,V,R,D)
OWT-OMCAT 23 (D-,G,V,M,R,D)→(D-,V,G,R,M,D)
OWT-OMCAT 5,6,13,32,33 (D-,G,V,M,R,D)→(D-,G,R,M,V,D)
OWT-OMCAT 3 (D-,G,V,M,R,D)→(D-,M,G,V,R,D)
OWT-OMCAT 26 (D-,G,V,M,R,D)→(G,R,M,V,D-,D)
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tify any compelling evidence in favor of any particular
method for normalization.

Discussion
Just as we pointed to limitations of previous studies, it is
important to point out limitations of this study. One lim-
itation is that the genes assayed with qRT-PCR were not a
random sample or even a representative sample of genes
on the array (see METHODS). Genes were initially
selected primarily for their biological interest, but then
some of these candidates were excluded. Two elements of
the selection process are notable. First, genes were selected
if they appeared to be promising candidates for differen-
tial expression based on processing the data with gcRMA.
This introduces a possible bias for gcRMA into our results.
Second, genes with average signal intensity less than 2
were excluded. These factors resulted in the selection of
primarily high- and medium-intensity genes. Previous
work [2] has suggested that difficulties with methods that
subtract mismatch data arise for low-intensity genes due
to extreme variability. It is likely that the omission of low-
intensity genes in our study favored MAS5 and the dChip
mismatch model. The remaining criteria used to select
genes were the availability of RT-PCR assays and whether
existing knowledge of a gene made it an interesting candi-
date in the study of aging. We are unaware of any biases
produced by these latter selection criteria.

We argue that correlation is a reasonable measure of
agreement in this study because it accounts for both the
bias and variance of measurements, favoring methods
that find the right balance between the two. However, Fig-
ure 4 shows that "the right balance" really depends on sig-
nal intensity. For example, for highly expressed genes, the
variability across methods is roughly comparable and so
our metric favors methods with the least bias. Figure 3 and
Figure 5 show that this is exactly what happens. For genes
at the lowest level of intensity, methods that use mis-
match probes have been found to be extremely variable
[2], which is consistent with our data (Figure 4). For such
genes our metric favors methods with lower variability
even if the bias is large. Unfortunately, the qRT-PCR anal-

ysis did not include low intensity genes. While we had
qRT-PCR data for some high-intensity genes, they tended
to have smaller fold-changes across group and thus
exerted less influence on the correlations (see Figure 2 and
similar figures in AdditionalFigures.doc). Our correlation
results really pertain to medium-intensity genes, where
bias and variation both come into play as sources of error.

Our results, narrowly interpreted, favor MAS5, gcRMA,
and the dChip mismatch model. However, our assess-
ment of variability, together with previous studies that
demonstrate the unreliability of using MM data for low-
intensity genes [2], leads to a more precise conclusion.
Specifically, the sequence-based background adjustment
of gcRMA emerges as a method that may be most effective
across the intensity spectrum.

We have treated the qRT-PCR measurements as "truth"
because they are the gold standard laboratory measure-
ment of gene expression. Yet qRT-PCR measurements are
also subject to error. However, our sensitivity analysis
should partly address this concern.

We reiterate that we have compared the performance of
array methodologies for estimating relative gene expres-
sion levels for a chosen list of genes. We have not com-
pared methods on their abilities to identify differentially
expressed genes, which is an important goal that is related
but not identical. Still, it is useful to compare our findings
with other validation studies, including those that used
other criteria to evaluate methods. Of the three recent
studies [5,7,8], our results are somewhat consistent with
Choe et al [7] and Ploner et al [8] and least consistent with
Shedden et al. [5]. Choe et al [7] concluded that (1)
regional background adjustment is better than foregoing
background adjustment, (2) using the MAS5 method for
use of MM probe data is better than simple MM subtrac-
tion or discarding MM data, and (3) the probeset sum-
mary method used by gcRMA and RMA performs slightly
better than the methods used by MAS5 or the dChip
model. Our results suggest a more complicated scenario –
that each of these sub-methods performs well if combined

Table 4: Results of the leave-two-out sensitivity analysis. The table shows that removing gene pairs affected only minor changes in our 
findings.

CONTRAST # gene-pairs considered 
(non-influential singleton 

genes)

# influential gene-pairs # of these pairs that 
produce a single 

transposition of neighbors

# of these pairs that 
produce a shuffle of the 

top-three methods

Age 1035 11 11 0
Genotype 903 3 3 0
Interaction 528 51 43 8

YWT-OWT 990 10 10 0
YWT-YMCAT 1035 14 14 0
OWT-OMCAT 153 2 2 0
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with particular other sub-methods. On the other hand, we
clearly corroborate the finding of Choe et al [7] that no
method of normalization appears to be advantageous,
and that gcRMA and MAS5 perform well. Ploner et al [8]
concluded that MAS5 gave better results than RMA or the
dChip mismatch model. We also found that MAS5 out-
performed RMA but it was not clearly better than the
dChip mismatch model. The results of Shedden et al [5]
favored the dChip method using MM subtraction over
MAS5 and gcRMA, while these three performed compara-
bly for the medium- and high-intensity genes in the main
part of our study.

Conclusion
Using qRT-PCR data as an independent measurement
tool, we compared the performance of six methodologies
for the quantification of gene expression from Affymetrix
oligonucleotide arrays. Three methods – MAS5, gcRMA,
and the dChip mismatch model – performed better than
VSN, dChip without mismatch, and RMA. The factor driv-
ing these results was whether a method used mismatch
data or, alternatively, a sequence-based background

adjustment. Other differences among methods, such as
the normalization scheme, made little difference in over-
all performance. Further analysis of variability lead us to
favor the sequence-based background adjustment over
procedures using mismatch probes. In summary, for esti-
mating relative expression using oligonucleotide array
data, we advocate (1) foregoing methods that use mis-
match subtraction and (2) using the sequence-based back-
ground adjustment method in gcRMA.

Methods
RNA assays
Total RNA was extracted from flash-frozen heart tissue
using Trizol (Invitrogen, Carlsbad, CA) extraction fol-
lowed by cleanup with the RNeasy kit (Qiagen, Valencia,
CA). Samples were prepared for Affymetrix arrays using 7
µg total RNA and following the manufacturer's instruc-
tions for One Cycle Eukaryotic Target Preparation
(Affymetrix, 701025 Rev. 5) including first and second
cDNA generations from oligo-dT and linear in vitro tran-
scription using biotinylated ribonucleotides (Enzo,
Farmingdale, NY). Samples were hybridized to mgu74av2
arrays at the University of Washington Center for Expres-
sion Arrays according to recommended procedures
(Affymetrix, 701028 Rev. 3).

Bias across contrasts for the six methodsFigure 5
Bias across contrasts for the six methods. Slopes of the 
least squares regression lines fitted to scatterplots such as in 
Figure 1. The three methods that showed the best correla-
tion between array and qRT-PCR, MAS5 gcRMA, and the 
dChip mismatch model, consistently show the least bias, with 
slopes closest 1.

Variability of methods within biological replicates as related to signal intensityFigure 4
Variability of methods within biological replicates as 
related to signal intensity. For each version of the data, 
the standard deviation of measurements within each of the 
four biological groups was calculated, and these were pooled 
to form a single standard deviation for each gene. These 
were plotted against the mean intensity for that gene, and fit-
ted with a non-parametric smoother to summarize the trend. 
The fitted smooths are shown above. MAS5 shows the great-
est variability, and MAS5 and the dChip mismatch model 
both show greater variability at low intensities.
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Samples were prepared for qRT-PCR using the cDNA
archive protocol (Applied Biosystems, Foster City, CA),
which uses random hexamers for first strand cDNA syn-
thesis. cDNA samples representing 50 ng total RNA and
2× Universal PCR master mix (Applied Biosystems) were
loaded into each port of the 384 well Applied Biosystems
Low Density Arrays, which were custom designed for this
experiment, and run in an Applied Biosystems 7900 real
time PCR instrument according to manufacturer's instruc-

tions. Technical and biological replicates were balanced
across ports and cards for each of the groups to minimize
any effect of loading port position or variability between
cards. Each cDNA sample was run in duplicate on 2 differ-
ent cards.

qRT-PCR data were quantified using SDS 2.1 (Applied
Biosystems). For the Low Density Arrays, baseline and
threshold were identified automatically by the software

Correlations for each of the six contrasts for 56 combinationsFigure 6
Correlations for each of the six contrasts for 56 combinations. See Table 5 for notation. Curves are colored by (a) the 
method of background adjustment, (b) the method of normalization, (c) the use of MM probe data, (d) the method for summa-
rizing data across a probeset. No sub-method is clearly uniformly superior.

Table 5: Components of Methods Examined in Follow-Up Analysis. The table gives abbreviations for the methods in Table 2 that are 
studied in the follow-up analysis. These abbreviations are used in RESULTS and Figures 6–9.

Method Background 
Adjustment

Normalization Mismatch adjustment Probeset Summary Reference

MAS5 BA-RA constant adjustedMM TukeyAverage [17]
gcRMA BA-GC quantile PMonly medianpolish [9]

dChip.mm BA-none invariantset subtractMM Li-Wong [19]
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and adjusted manually where necessary and the settings
were applied to all arrays. Gene expression values were
normalized to the 18s endogenous control and corrected
for measured efficiency as calculated by a standard curve
run on one of the Low Density Arrays [12].

Selection of genes for qRT-PCR
Genes were selected for qRT-PCR based on an analysis of
the entire Affymetrix data set (all 24 individual samples)
processed using gcRMA. Chosen genes either exhibited a
large average fold-change or highly statistically significant
evidence of differential expression as determined by the
LIMMA package of Bioconductor [13]. Therefore, selected
genes tended to represent genes with large changes for at
least one contrast and genes with smaller changes and
lower variability.

In detail, we generated gene lists that contained the top
200 candidates for each of the 6 contrasts we study. These
gene lists were filtered based on magnitude of signal
(average log2(signal) >2) and magnitude of change
(log2(ratio) >0.5) for each contrast. Some genes were cho-
sen based an analysis of additional array data from pools
of the RNA samples, choosing the 200 genes with the larg-
est changes for the contrasts listed, and then filtering
based on magnitude of signal and magnitude of change as
above. 110 genes were selected by these methods. This
number was then reduced based on availability of assays

on the ABI low density arrays and availability of annota-
tion to yield the 47 genes studied here. The 18s endog-
enous control is included on the Applied Biosystems Low
Density Arrays by default and was used for normalization
of the qRT-PCR data as described above.

Methodologies for array data
All array data were processed in the statistical language 'R'
[14] using the "affy" package in Bioconductor [13]. The
Bioconductor document available at [15] provides a use-
ful overview of different methods. In our initial "over-
view" investigation, six different methodologies were
applied to array data. Table 2 briefly summarizes the six
methodologies in terms of the four stages of data process-
ing (adjustment for background, normalization, use of
data from MM probes, and summarizing of data across a
probeset). References are provided for background on the
methods and they are not described here.

In the follow-up analysis there are three options in each
stage of data processing (Table 5), so nominally there
would be 81 combinations. However, certain combina-
tions resulted in zero or negative values and could not be
further evaluated. See the FollowUpAnalysis.xls. We eval-
uated 56 combinations in total.

Contrasts
Our goal in this study is to validate methods for oligonu-
cleotide array data for estimating the relative expression of

adjustedMM and TukeyAverage perform well togetherFigure 8
adjustedMM and TukeyAverage perform well 
together. See Table 5 for notation. Combinations that used 
two components of MAS5, adjustedMM and TukeyAverage, 
perform consistently well (black solid curves), as long as BA-
GC was not also used (dotted black curves). Using another 
probeset summary method with adjustedMM was not as 
effective (red and green curves).

BA-GC and Li-Wong perform well togetherFigure 7
BA-GC and Li-Wong perform well together. See Table 
5 for notation. Combinations that used both BA-GC and the 
Li-Wong summary method perform consistently well (green 
curves). Replacing BA-GC with subtractMM was not as good 
(yellow curves). Replacing the Li-Wong with medianpolish is 
also arguably less effective (blue curves). Note: BA-GC could 
not be combined with subtractMM, because this resulted in 
negative values.
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genes in different RNA samples. However, it would be
unwieldy to consider all 276 pairwise comparisons of the
24 RNA samples.

Instead, we consider summary contrasts. Each contrast
uses averages among biological replicates.

We give results for six summary contrasts. Three contrasts
use the data on all 24 animals (Figure 1): Age (the contrast
between the 10 old mice and the 14 young mice), Geno-
type (the contrast between the 13 MCAT mice and the 11
wild-type mice), and the interaction between age and gen-
otype. We also give results for three simple pairwise group
contrasts: YWT vs. OWT (age differences among wild-type
mice), YWT vs. YMCAT (genotype differences among
young mice), and OWT vs. OMCAT (genotype differences
among old mice). We worked with the processed data on
the log scale and computed contrasts as differences in per-
group averages. The contrasts are interpretable as log-fold
changes.

Quantification of agreement
For each contrast and each method for processing array
data, we have a scatterplot. Each of the 47 data points in a
scatterplot represents the log-fold-change for one gene for
the given contrast as measured by array (vertical axis) and
by qRT-PCR (horizontal axis). For a given contrast, the
data plotted on the horizontal axis are the same. See Fig-
ure 1 for the YWT vs. OWT contrast and the six methods
studied in our initial analysis.

We considered several metrics for quantifying agreement
within a scatterplot. While it would be ideal if array meas-
urements and qRT-PCR measurements agreed exactly, it is
satisfactory for there to be a linear relationship. Therefore,
we considered the most important characteristic of these
plots to be the overall linear trend. This led us to use Pear-
son Correlation as a measure of agreement. AdditionalFig-
ures.doc gives results for four other measures of
agreement: mean squared error, median absolute error,
Canberra distance, and Spearman correlation. However,
findings using these four measures were inconclusive.

Sensitivity analysis
Our measure of agreement, Pearson Correlation, is not
robust as it can be disproportionately influenced by indi-
vidual data points. For example, a gene with a large
change for a certain contrast could heavily drive the results
for that contrast, but this would be misleading. Therefore,
we performed a sensitivity analysis to ensure that our find-
ings were not driven by one or two genes. We systemati-
cally removed the data for (1) all single genes and (2) all
pairs of genes from the processed datasets, and then re-
computed the correlation of the scatterplot with the
removed gene(s). We called a gene (or gene-pair) "influ-
ential" if the ranking of the six methods changed upon
removal of the gene (or gene-pair). For the leave-two-out
sensitivity analysis, we only considered gene pairs that
were not influential singleton genes.

This sensitivity analysis also takes the place of computing
confidence intervals for the correlations we compute.
Because the set of genes included in this study was not a
random sample, such confidence intervals would not be
valid.

Authors' contributions
LXQ analyzed the qRT-PCR data and performed the over-
view analysis including the sensitivity analysis. RPB par-
ticipated in all stages of design and analysis, provided
expertise on Bioconductor, and reviewed all code. NJL and
FNH conducted all of the RNA assays. NJL additionally
provided biological expertise to the project. DEM con-
ducted the exploratory aspect of the study and the follow-
up analysis. KFK directed the project and wrote the manu-
script. All authors read and approved the final manu-
script.

Groups of methods that consistently performed wellFigure 9
Groups of methods that consistently performed well. 
Methods that combine BA-GC with Li-Wong are consist-
ently near the top (green curves), as well as adjustedMM 
combined with Tukey Average (black curves), as long as GA-
GC was not also used. Other consistent performers are also 
noted in the Figure.
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This excel file gives the results of the follow-up analysis. For each combi-
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This MS Word document gives examples from our exploratory analysis 
seeking associations between probe-level data and agreement between 
array and qRT-PCR data.
Click here for file
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