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ABSTRACT
Motivation: High-density oligonucleotide arrays
(GeneChip, Affymetrix, Santa Clara, CA) have become
a standard research tool in many areas of biomedical
research. They quantitatively monitor the expression
of thousands of genes simultaneously by measuring
fluorescence from gene-specific targets or probes. The
relationship between signal intensities and transcript
abundance as well as normalization issues have been the
focus of much recent attention (Hill et al., 2001; Chudin
et al., 2002; Naef et al., 2002a). It is desirable that a
researcher has the best possible analytical tools to make
the most of the information that this powerful technology
has to offer. At present there are three analytical methods
available: the newly released Affymetrix Microarray Suite
5.0 (AMS) software that accompanies the GeneChip prod-
uct, the method of Li and Wong (LW; Li and Wong, 2001),
and the method of Naef et al. (FN; Naef et al., 2001). The
AMS method is tailored for analysis of a single microarray,
and can therefore be used with any experimental design.
The LW method on the other hand depends on a large
number of microarrays in an experiment and cannot be
used for an isolated microarray, and the FN method is
particular to paired microarrays, such as resulting from
an experiment in which each ‘treatment’ sample has a
corresponding ‘control’ sample. Our focus is on analysis of
experiments in which there is a series of samples. In this
case only the AMS, LW, and the method described in this
paper can be used. The present method is model-based,
like the LW method, but assumes multiplicative not additive
noise, and employs elimination of statistically significant
outliers for improved results. Unlike LW and AMS, we do
not assume probe-specific background (measured by the
so-called mismatch probes). Rather, we assume uniform
background, whose level is estimated using both the
mismatch and perfect match probe intensities.

∗To whom correspondence should be addressed.

Results: We present a new method for GeneChip analy-
sis, based on a statistical model with multiplicative noise.
We demonstrated that this method yields results superior
to those obtained by the Affymetrix Microarray Suite
5.0 software and to those obtained by the model-based
method of Li and Wong (Li and Wong, 2001). The present
method eliminates the hard-to-interpret negative expres-
sion indices, and the binary ‘presence’ calls (present
or absent) are replaced by the statistical significance
(p-value) of gene expression. We have found that thresh-
olding the p-values at the (0.1)16–level produces about
the same number of ‘present’ calls as the AMS software.
By testing our method on a pair of replicate GeneChips
(hybridized with the same cRNA), we found that 95.6%
of data points lie within the 1.25–fold interval. In other
words, our method had a 4.4% type I error rate at the
1.25–fold level. The error rate of the LW method was 15%,
and that of the AMS method was 29%. There were no
points outside the 2–fold interval with the present method.
Analysis of variance (ANOVA) of another experiment with
multiple replicates shows that this reduction of variance is
not accompanied by a corresponding reduction of signal.
On the contrary, the signal-to-noise ratio (as measured by
the distribution of F-statistics) of the present method is on
average 3.4-times better than that of AMS, and 1.4-times
better than that of Li and Wong.
Contact: sasik@corgon.ucsd.edu
Availability: A Fortran 90 source code of this method is
available from the corresponding author upon request.

INTRODUCTION
Gene expression array technology (Lockhartet al., 1996)
is rapidly becoming standard in many areas of biomed-
ical research. High-density oligonucleotide GeneChips
(Affymetrix, Santa Clara, CA) in particular provide a
convenient medium on near-genomic scale for human
research, and are ade facto industry’s standard. Each
gene (EST, or a chromosome segment) is represented on
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the GeneChip by an array of probe pairs (typically 16 or
20). Each probe pair consists of a perfect match (PM)
probe and the corresponding mismatch (MM) probe. Each
PM probe contains thousands of short (ideally identical,
25-mer) sequences that are taken from the transcribed
sequence of the gene represented by that probe set. The
MM probe on the other hand contains sequences identical
to the PM probe except for a single nucleotide at the center
of the sequence which is different. Upon hybridization
with a fluorescent-dye-labeled RNA, each probe in the
probe set captures a certain amount of RNA, whose fluo-
rescent intensity is subsequently measured. The measured
intensities of all probes in the probe set reflect in a unique
way the expression level of that particular gene. Since
the hybridizing efficiency of the sequences contained
within a probe set is unknown and varied, it is impossible
to determine the concentration of the transcript in the
solution in an absolute way. Rather, we must content
ourselves with arelative determination (i.e. the relative
amount of change between two measurements). Although
the AMS software that accompanies this technology is a
sophisticated analytical tool forindividual arrays, there
are statistical methods which, when applied to aseries of
arrays, yield superior results. In the following we describe
a method based on a statistical model with multiplicative
noise and outlier detection and elimination. We apply this
method to analysis of seven arrays, two of which were
hybridized with the same RNA solution, and compare the
results with two other methods, the AMS method and the
LW method. We further perform analysis of variance on a
larger set of murine microarrays with multiple replicates.

METHODS
T-cell RNA used in this study was extracted and prepared
for hybridization using standard protocols available at
http://genomics.ucsd.edu/protocols.html. Mouse mRNA
was provided by Dr Fernand Labrie and processed by
Dr Thomas Hudson’s Microarray facility at the Montréal
Genome Centre.

ALGORITHM AND ANALYSIS
Li and Wong (2001) introduce a statistical model based on
the differencesP M − M M :

P Mi j − M Mi j = θiφ j + εi j , (1)

whereθi is the fitted expression index of samplei , i =
1 . . . ns , φ j is the sensitivity of probej , j = 1 . . . n p,
and εi j ∼ N (0, σ 2). Probe sensitivities are subject to
a constraint

∑
j φ j = n p in order that the solution be

unique.
Their model is an improvement over the AMS software

in that it does not average over the probes in a probe set,
which results in the reduction of variance (cf. Figure 3a,

b). However, it shares one troubling feature of AMS 5.0,
in that the expression indexθi can be negative (in analogy
to the ‘average difference’ in the AMS 5.0). Furthermore,
genes with negativeθ can still be classified as present (as
can genes with negative average difference in AMS 5.0).
Both of these features are highly undesirable. We think
that the root cause of these problems is the subtraction
of the MM probe intensity in Equation (1), a practice
adopted by both algorithms. This subtraction would be
justified if the MM probes measured hybridization that is
non-specific to the sequence of the PM probes. There is
evidence however, that the MM probes are rather specific
and are not an independent reference, as discussed by
Naef et al. (2002b). Perhaps this is not surprising since
there is only a single-nucleotide difference between the
PM and MM sequences. A related factor is the hybridizing
temperature, which should ideally be set so that the PM
probes bind their corresponding RNA whereas the MM
probes do not. Because of the varying G–C content of
individual probes, the optimum hybridization temperature
varies among the probes. When the actual hybridizing
temperature, set at 42◦C by the experimental protocol, is
lower than ideal, the MM probe will bind the transcript
with non-zero affinity. In view of these facts we find
the practice of subtraction of the MM probe intensities
unjustifiable.

Here we propose a statistical model that does not
suffer from the above problems. It is based on a similar
assumption as the LW model, that fluorescent intensity
of a PM probe (properly adjusted for backgroundb)
is directly proportional to the concentrationci of the
transcript, P Mi j − b ∼ φ j ci . We choose to write this
relationship in the form log2(P Mi j − b) ∼ log2 φ j +
log2 ci . Defining ιi j ≡ log2(P Mi j − b), ϕ j ≡ log2 φ j ,
andγi ≡ log2 ci , wewrite our model as

ιi j = ϕ j + γi + εi j , (2)

whereεi j ∼ N (0, σ 2). There is one such equation for
each transcript, and we allow for the possibility that the
varianceσ of the error term is different for each transcript.
Since the errorsεi j are additive at this level, they are
multiplicative at the level of the original variables. We
observe that in this model, regardless of the fitted values
of ϕ j or γi , the probe sensitivitiesφ j and concentrations
ci can never be negative, becauseφ j ≡ 2ϕ j > 0; likewise
for ci .

It is an empirical fact that ratios of corresponding probe
intensities between two samples, and other quantities
derived from probe intensities, which are typically non-
Gaussian distributed, become nearly normally distributed
in the logarithmic space. We therefore proceed with
the hope that Equation (2) will be better-behaved than
Equation (1), and that the residualsεi j will be nearly
normally distributed.
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Fig. 1. Distribution of (log2) intensities of background PM cells.

Our program aims to find the best fit to Equation (2)
by minimization of the sum of squares

∑
i j ε2

i j . Then, if
the distribution of residualsεi j is found to be significantly
non-Gaussian, we eliminate the probe which contributes
most to the sum of squares, and fit again Equation (2) us-
ing the reduced set of probes. We repeat this process until
the distribution of residuals is not significantly different
from Gaussian or the number of retained probes drops be-
low a certain threshold. For mathematical convenience we
choose the constraint onϕ j ’s to be

∑
i j µi jϕ j = 0, where

µi j is a function which is unity if the probe(i, j) is re-
tained in the probe set and zero if it has been eliminated
from the probe set.

When analyzing a batch ofns samples, we first nor-
malize all samples to each other using quantile normal-
ization (Bolstad, 2002). In order to assess the background
fluorescence in each sample, we adopt the procedure first
proposed by (Naefet al., 2001), in which a PM probe is
considered to be a background probe when its intensity is
within a δ-neighborhood of the corresponding MM probe
intensity. The distribution of background probes (Figure 1)
is not very sensitive to the value ofδ—we useδ = 50. This
step is the only one in which MM probes are used. Next
we subtract the modeb of the background probe inten-
sity from every PM probe in the array. The probes whose
intensity becomes negative as a result of background sub-
traction are eliminated (theirµi j is set to zero) even before
the first iteration is done.

Note that we do not simply dispose of the mismatch
probes—they are used to estimate the level of background
b, which is subsequently subtracted from all PM probes.
Complete disposal of mismatch probes would lead to
a loss of sensitivity for small-abundance transcripts, as
demonstrated by a calibration experiment (Affymetrix,
2002). It is conceivable however that our method of
subtracting flat backgroundb is less than ideal in the very
low-intensity region. This issue will be investigated in the
future.

There are other authors (Efronet al., 2002) who propose
another way of dealing with the mismatch probes, in
which the mean of log(P Mi j )−c · log(M Mi j ) (taken over
the probe set) is suggested as the expression index. Herec
is some constant (the authors suggestc = 1/2), which is
found empirically. Since averaging is done over the probe
set regardless of the probes’ individual properties, this
approach is not fundamentally different from that of AMS.
Furthermore, it is not clear what the physical interpretation
of the mismatch probes is in their prescription.

Our assessment of the normality of the residuals is
based on the fact that a sum of squares ofn independent
normal variables with zero mean and unit variance has
the χ2-distribution with n degrees of freedom (Steel
and Torrie, 1960). To this end we construct a variable
s2
σ = ∑

i j ε2
i j/σ

2, where σ is the standard deviation
of the Gaussian ‘core’ of the residual distribution. We
estimateσ as the interquartile range of the residual
distribution divided by 1.3489. . . (this relationship holds
true for a Gaussian distribution). Of course the residual
distribution is generally non-Gaussian, but here we merely
use this estimation ofσ because the interquartile range is
insensitive to outliers. Whens2

σ is significantly large, i.e.
when itsp-valuep ≡ P(χ2 ≥ s2

σ ) as derived from theχ2-
distribution is small, the residual distribution is deemed
significantly non-Gaussian (has outliers) and the process
of elimination of the worst offending probe continues.
Iterations stop when thep-value ofs2

σ is sufficiently large
(we usep > 0.2), or the number of retained probes drops
below a threshold (we usens). Since bothσ and s2

σ are
derived from the same data, this is a self-consistency test
for normality of the residuals.

How this procedure works is depicted graphically in
Figure 2. We show quantile–quantile plots of the residuals
against the normal distribution. Figure 2a is the plot
for a strongly expressed gene (probe ID 31330at) after
the initial fit to the model. All 16× 7 = 112 PM
probes were used in this fit. Deviations from normality
are obvious andp = 1.5 × 10−21. Figure 2b displays
the final distribution of residuals when 17 probes had been
eliminated by the algorithm outlined above. The residual
distribution is much closer to normal, andp = 0.43. In
the like manner, Figure 2c displays the Q–Q plot of the
residuals against the normal distribution for a gene which
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Fig. 2. Normal quantile-quantile plots of residualsεi j for probes 31330at (a,b) and 160029at (c,d), before (a,c) and after (b,d) iterations.
The black lines pass through the first and third quartiles of the residual distribution.

is not significantly expressed (probe ID 160029at). The
initial number of probes used was 71 (the remaining 41
had intensities below background and were rejected), and
p = 4.3 × 10−5. After elimination of 6 outlier probes
(Figure 2d),p = 0.76.

After a few iterations, when the residual distribution has
become approximately Gaussian, we calculatens p-values
of a gene as follows: First, we calculate thep-value for
every one of then p × ns probes. Probes rejected from the
fit are assigned ap-value of 1, and the remaining probes
have p-values equal to the probability that a randomly
chosen background cell has intensity greater or equal to
theirs. This probability is found from the background

probe distribution specific to that sample, such as the one
in Figure 1. The heavy tail of this distribution at high
intensity is probably caused by GC-rich probe pairs whose
PM and MM probes both bind RNA with high affinity at
the hybridizing temperature which is lower than optimal.

If the probe intensities were independent of each other,
the p-value of a probe set would be given by the product
of p-values of the probes in that set. We take thep-value
of a probe set to be the product of thep-values of its
constituent probes. This way thep-value of a probe set is
the probability that a transcript is absent from the mixture,
as measured simultaneously by all probes.

Wenow proceed with comparison of the present method
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Fig. 3. The A − M plots and distributions ofM for the AMS 5.0 method (a,b), the LW method (c,d), and the present method (e,f). The AMS
method produces 29% of points outside the 1.25-fold range, the LW method 15%, and the present method 4.4%.
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R.Šášik et al.

log2(F)

D
en

si
ty

–10 –5 0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 4. Distribution of F-statistics for 4553 genes involved in the
mouse study (black histogram). The black line traces the distribution
of F-statistics obtained after a random permutation of sample labels.

of analysis with two established methods, the AMS and
LW. To this end, we use an experimental standard to
which all three methods will be compared. The standard
in this case will be two samples, 1 and 2, hybridized
with the same RNA solution. These two samples along
with another five samples hybridized with RNA obtained
from the same tissue type, harvested under a variety of
conditions, form a set of seven to which we applied all
three algorithms. Samples 1 and 2 are expected to report
equal amounts of RNA for all genes. We will therefore
compare measurement taken on sample 1 against sample
2, for all expressed genes.

Figure 3a shows theA − M plot for the AMS method.
Here A ≡ log2(A1 ∗ A2)/2 and M ≡ log2(A2/A1),
whereA1 and A2 are the average differences reported by
the AMS software for a particular transcript in samples 1
and 2. Here we used only genes identified as present by
the AMS software in both samples. A total of 2869 data
points were plotted. Ideally, the points should line up at the
M = 0 horizontal. The data have the characteristic spread
as the agreement withM = 0 becomes progressively
worse at low average differences. Figure 3b shows the
histogram ofM .

Figure 3c shows theA − M plot for the LW method.
Here A1 and A2 are the expression indices found by this
method. Only genes identified as present in both samples
by the LW software were used. It turns out that we had to

further screen out genes with negative expression indices.
A total of 3522 data points were plotted. The characteristic
splay at low expression indices is there, but there is a
marked improvement over the AMS method, as shown in
the histogram ofM (Figure 3d).

Figure 3e shows theA − M plot obtained by the present
method. HereA1 andA2 are the fitted concentrationsc of
transcripts in samples 1 and 2. We plotted data points for
genes whosep-value was no greater than(0.1)16 in both
samples. This criterion selected a total of 3517 genes.

Inspection of histograms (Figure 3b, d, and f) and the
corresponding scatterplots reveals that the LW method
performs better than the AMS method in reducing the
variance, and that the present method performs better than
either the AMS or LW methods in this respect. Quantita-
tively, the number of genes with|M | > log2(1.25) is 833
(29%) for the AMS 5.0 method, 545 (15%) for the LW
method, and 156 (4.4%) for the present method.

Reduction of variance is certainly a desirable feature.
However, one also has to show that the signal has
not been reduced in the same proportion, in essence
defeating our purpose. To this end we analyzed a series
of experiments with murine RNA, in which there are
six replicates for each of four different experimental
conditions (classes). The four classes are characterized
by different periods of time elapsed between injection
of GDX and necroscopy, and by different tissue types.
Each six replicates come from scanning three different
microarrays—hybridized with the same cRNA—twice;
once ‘as is’, and once after adding fluorescently-labeled
antibody, which increases the fluorescent signal about
two-fold. In order to determine whether there are any
genes that are differentially expressed between any of the
four classes, we perform analysis of variance (ANOVA),
and compute theF-statistics for all genes (we use the
logarithm of expression indexes in the calculation ofF).
We restrict ourselves to a subset of 4553 genes for which
the product ofp-values in any of the four classes was less
than(0.0316)6. The F-statistic is always positive, and in
general largeF-statistics indicate differential expression
between at least two of the four experimental conditions.
The F-statistic is a quantitative measure of bias versus
variance—low within-class variance and large between-
class bias makes for a largeF and vice versa—and
therefore very suitable for our purpose to objectively
compare the three methods.

First we need to convince ourselves that there are dif-
ferentially expressed genes in this experiment. In Figure 4
we plot the distribution ofF-statistics as obtained in
this experiment (black histogram), and the distribution
of the same when the class labels have been randomly
permuted. A random permutation of labels should create
large within-class variance and, as a consequence, the
F-statistics should drop. This is indeed the case. It is
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Fig. 5. The A − M plots of F-statistics and distributions ofM for significantly differentially regulated genes (bold points, adjustedp-value
less than 0.05). HereA ≡ log2(F ∗ F ′)/2 andM ≡ log2(F/F ′), whereF is the F-statistic obtained in the present method, andF ′ is the
same for the AMS method (panels a, b) or the LW method (panels c, d).

obvious that a large fraction of genes in this study are
differentially expressed. In order to find the subset of
genes that are differentially expressed with statistical
significance, we first calculate the unadjustedp-values
for all F-tests using a permutation algorithm. In this
algorithm the class labels are randomly permuted 10 000
times, theF-statistics are calculated, and the (unadjusted)
p-values are given by the fraction of instances in which
the permutationF-statistics were greater or equal to the
F-statistics before permutation. Because of the large
number of statistical tests performed (equal to the number
of genes), adjustment ofp-values for multiple testing is
in order. We use the step-down permutation algorithm of
(Westfall and Young, 1993), as described by Callowet
al. (2000). Genes whoseadjusted p-values were smaller
than 0.05 (a total of 2412) were considered significantly
differentially expressed. These genes are denoted by bold

points in Figure 5a, c. Thex-axes on these figures are
the (log2) geometrical means of theF-statistic calculated
from the present method, andF ′ calculated from AMS
data (Figure 5a) and LW data (Figure 5c). They-axes
are the (log2) ratios of F and F ′. The right-hand panels
(Figure 5b, d) are histograms of (log2) ratios ofF andF ′
for the 2412 significantly differentially expressed genes.
In both instances (AMS and LW), both the mean and
median F/F ′ ratio are positive, which means thaton
average the present method performs better in detecting
differentially expressed genes than any of the other two
methods considered.

DISCUSSION
The medianF/F ′ ratio for the AMS 5.0 method is 21.75 =
3.4, and that of LW is 20.52 = 1.4. Such significant
improvement, especially with respect to the AMS method,
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is apparently due to our algorithm’s ability to reduce
variance while maintaining the signal. As another aspect
of the same issue, 92% of the total number of significantly
differentially expressed genes have a higherF-statistic in
the present method compared to AMS 5.0, and 66% have
ahigherF-statistic in the present method compared to the
LW method. The LW method compares fairly well to our
method in theF test, but has more variance (Figure 3c,
d). We think that the LW method could be improved by
considering a uniform backgroundb instead of the probe-
dependent background it currently uses.

Weconclude that overall the present method of analysis
is a substantial improvement over the AMS method, and a
significant improvement over the LW method.
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