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ABSTRACT
Motivation: Microarray experiments measure complex
changes in the abundance of many mRNAs under differ-
ent conditions. Current analysis methods cannot distinguish
between direct and indirect effects on expression, or calculate
the relative importance of mRNAs in effecting responses.
Results: Application of modular regulation analysis to micro-
array data reveals and quantifies which mRNA changes are
important for cellular responses. The mRNAs are clustered,
and then we calculate how perturbations alter each cluster
and how strongly those clusters affect an output response.
The product of these values quantifies how an input changes
a response through each cluster.

Two published datasets are analysed. Two mRNA clusters
transmit most of the response of yeast doubling time to
galactose; one contains mainly galactose metabolic genes,
and the other a regulatory gene. Analysis of the response
of yeast relative fitness to 2-deoxy-d-glucose reveals that
control is distributed between several mRNA clusters, but
experimental error limits statistical significance.
Contact: rkc24@cam.ac.uk

INTRODUCTION
Experiments using microarrays can measure the relative
concentrations of all mRNA transcripts in a preparation, and
illuminate many aspects of biology, including differentiation
(Le Naouret al., 2001), cell cycle (Choet al., 1998), envir-
onmental stress (Gaschet al., 2000) and cancer (van’t Veer
et al., 2002). Changes in gene expression are complex, some-
times thousands of mRNAs change expression between states.
There are many different ways of analysing microarray data,
depending upon the purpose of the experiments.

Microarray data can be used to classify samples, e.g. to dis-
criminate between cancer types (Alizadehet al., 2000). This
uses supervised clustering, requiring prior knowledge about
the training set used to classify the remaining samples. Prin-
cipal components analysis can identify the individual genes
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within a disease signature that correlate best with the pheno-
type (Alter et al., 2000; Raychaudhuriet al., 2000), but it
does not quantify the importance of those few genes for a
response. Gene expression patterns can be used to predict
the functions of unknown genes, because genes with similar
functions may be coexpressed and, therefore, cluster together
(Eisenet al., 1998). However, these analyses do not reveal
which of the unknown genes are most important, to allow their
targetting for early investigation. Finally, microarray data may
be used to infer the structure of regulatory networks, predict-
ing the regulatory interactions between genes (Runget al.,
2002; Schlitt and Brazma, 2002). This method can predict
the direct and indirect interactions between genes, but is not
quantitative. Induction kinetics can indicate which are the dir-
ect (rapid) responses and which are indirect (slow), but this
method requires targeted genetic mutants and a time course
(Devauxet al., 2001; Le Cromet al., 2002).

Despite abundant microarray publications, there is no
means of analysing microarray data to find and quantify
the important gene expression changes. If a gene of interest
changes expression between two conditions, such as healthy
and diseased, it is unclear whether that gene is important and
involved in causing the disease response. The changed expres-
sion could be crucial in causing the symptoms, but it could also
be coincidental, part of a downstream reaction to the disease,
or a minor component of the response. It is also not neces-
sarily the genes with the greatest expression changes that are
most important in causing the response; it will depend on how
strongly the response depends on the expression of the gene.
Transcripts with weak effects may be more strongly upregu-
lated to achieve the same response as transcripts with strong
effects. Finally, while some mRNA changes may be direct,
many may be indirect. None of the existing analytical tech-
niques can discriminate between direct and indirect mRNA
changes, and quantify the importance of those changes for a
response. Many analysis methods require prior knowledge of
the system under investigation: knockouts targeted to the path-
way of interest or a classified subset of samples as a training
set. We show here that control analysis (Fell, 1997; Kacser
and Burns, 1973) can identify important mRNAs, quantify
how much of the response they mediate and identify whether
they are regulated directly or by the expression of other genes.
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Metabolic control analysis is a mathematical framework
for quantifying regulation of biological systems (Fell, 1997;
Heinrich and Rapoport, 1974; Kacser and Burns, 1973). It
has mainly been applied to complex metabolic systems such
as mitochondrial bioenergetics (Brand, 1996, 1997). The
modular approach to control analysis involves simplifying a
complex system by grouping reactions into biologically mean-
ingful modules, allowing the regulation of large, complex
systems to be experimentally solved (Ainscow and Brand,
1999b). Regulation analysis is a subset of control analysis that
allows the response to an effector to be partitioned (Brand,
1997). For example, the response to adrenaline of glucose
release from hepatocytes has been partitioned, to quantify
how much of the response is transmitted through each of the
system’s reaction blocks (Ainscow and Brand, 1999a). Mod-
ular regulation analysis also determines whether the response
involves direct action of adrenaline on the glucose-producing
and glucose-releasing reactions, or is indirect and mediated
through other reaction blocks.

Here, we apply modular regulation analysis to microarrays
using a worked example and then analyse two published data-
sets. We first simplify expression data by clustering mRNAs
with similar expression patterns, then quantify how much of
the response of some output (e.g. growth rate) to an external
change is mediated by each cluster of mRNAs. Clusters that
mediate a large proportion of the response contain genes
that are potential targets for manipulating the response. We
also show how the analysis can quantify how each cluster of
mRNAs is regulated, and whether regulation by the external
change is direct (e.g. via direct activation of transcription
factors) or is mediated by direct changes in other mRNA
clusters (e.g. via altered expression of transcription factor
mRNAs). Control analysis uses relative changes in vari-
ables rather than absolute values and so is ideally suited to
microarray data, which are often represented as ratios of gene
expression between conditions.

METHODS
Dataset requirements
An appropriate set of experiments is required before modular
control analysis can be applied. First, full microarray data are
required for the reference system (such as wild-type cells),
compared with the same system under the input stimulus of
interest. The input might be a change in growth medium, a
genetic modification, the addition of an effector (e.g. hor-
mone or drug) or the change to a new state (e.g. disease)
or physiological condition. Second, an extensive series of
genetic modulations of the reference cells is required, with
full expression data for these modulations compared with the
reference. Third, an output of interest must be measured in
each of these reference, input and modulation experiments.
This can be any quantifiable response, including the rate of
an enzyme or pathway; the concentration of a metabolite,

Fig. 1. Modular regulation analysis of the effect of an input on an
output, showing the structure of the system. An input changes the
expression of each of the four mRNA clusters as described by integ-
rated response coefficients,IR. The mRNA clusters then change the
output of interest, as described by elasticity coefficients,ε. The
integrated response and elasticity coefficients for each cluster can
be multiplied to give partial response coefficients, which quantify
the relative importance of each mRNA cluster in transmitting the
response of the output to the input.

signalling intermediate, protein, mRNA molecule or mRNA
cluster; or a physiological marker, such as growth rate, cell
volume, performance or mortality. Fourth, to allow statist-
ical analysis of significance, repeat microarrays and output
measurement are needed.

Clustering of transcripts
To simplify the microarray data and make the analysis experi-
mentally feasible, transcripts are first grouped into a relatively
small number of clusters according to how they respond to
experimental manipulations, as described later.

Application of control analysis
The system is conceptually organized as shown in Figure 1.
The input affects the expression of the mRNA clusters. This is
described using integrated response coefficients (IR), which
represent the relative change in expression of each cluster in
response to the input stimulus (Fig. 1, left). Positive integ-
rated response coefficients indicate that expression increases;
negative coefficients mean it decreases. At this stage we are
not interested in whether responses are direct or indirect, but
simply in quantification.

How each mRNA cluster affects the output response is
described using elasticity coefficients (ε) (Fig. 1, right). Pos-
itive elasticity coefficients mean that increased expression of
a cluster increases the output response; negative coefficients
indicate it decreases this response.

Finally, partial response coefficients (R) are obtained by
multiplying each integrated response coefficient (how much
the cluster changes) by the relevant elasticity coefficient
(how much the cluster affects the response). Partial response
coefficients describe how much of the change in the output
response is transmitted by each mRNA cluster. Positive par-
tial response coefficients mean that the signal transmitted by
a cluster increases the output response, e.g. the upregulation
of genes that enable or downregulation of genes that oppose
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the response. Negative coefficients characterize clusters that
transmit decreases in the output.

In this way, the analysis partitions the response of the output
to the input, and quantifies how much of that response each
mRNA cluster is responsible for: how much of the response
would be absent if the expression of that cluster did not change.
Clusters with high partial response coefficients contain one or
more mRNAs that are important for the response.

The amount of response transmitted by non-mRNA routes
not requiring changes in gene expression, e.g. by allosteric
alteration of enzymes, is obtained by subtracting the sum of
the partial response coefficients (the response transmitted by
the various mRNA routes) from the observed overall response.
Any contribution of mRNAs not represented in the microarray
because it is incomplete will appear as part of this non-mRNA
route.

The analysis step by step
To illustrate the analysis, we simulated a dataset that fulfilled
the requirements discussed above (using modified random
numbers). It consists of hypothetical mRNA expression data
and quantified output data for the reference and test (‘input’)
conditions and for 11 different genetic manipulations. A
worked example using this simulated dataset is shown in
Figures 2 and 3 and described below.

Clustering The first step is to group mRNAs into clusters,
based on their expression across all genetic manipulation
experiments. Clustering reduces the number of independ-
ent experiments required in the second step for calculation
of elasticity coefficients: the number of mRNA clusters can-
not exceed the number of genetic modulations. The simulated
dataset contains 11 genetic modulation experiments, so the
mRNAs are grouped into 11 clusters using Euclidean hier-
archical clustering (Fig. 2.1). The average expression of each
of the 11 clusters for the reference and input conditions and for
each of the 11 simulated genetic manipulations is calculated,
to give a data matrix (Fig. 2.2).

Even for yeast, with its genome of about 6000 genes, 6000
independent experiments would be required if the mRNAs
were not clustered. de la Fuenteet al. (2002) and de la Fuente
and Mendes (2002) used a related method to reverse-engineer
gene networks from microarray data, but without clustering;
this method is conceptually different as it could be used to
investigate a subsystem of 50 individual genes. Our analysis
looks at all the genes in a system, simplified into 50 clusters,
lowering resolution but simplifying a complicated problem.

Before clustering, it may be helpful to reduce a microarray
dataset by excluding mRNAs that do not change significantly
in any experiments, assigning them integrated and partial
response coefficients of zero.

There are various types of clustering algorithm. Hierarch-
ical clustering is preferred because the number of clusters
is dictated by cutting the dendrogram at different points

(Fig. 2.1). Hierarchical clustering also simplifies merging and
splitting of clusters compared with other techniques such as
K-means (Tavazoieet al., 1999). We need to calculate the
mean expression of the mRNAs in a cluster, so Euclidean
hierarchical clustering (which groups using absolute values)
is more appropriate than correlation-based clustering (which
groups by expression trends). For example, correlational
clustering groups mRNAs with the same trends of increas-
ing or decreasing in particular experiments, but if one has
much larger expression changes than the others, the mean
expression level will not quantitatively represent the whole
cluster. There are several clustering packages available, such
as Eisen’s cluster and treeview (Eisenet al., 1998). We use
the European Bioinformatics Institute’s online Expression
Profiler (www.ebi.ac.uk/microarray/).

Microarray data often contain missing values. If a gene has
only occasional missing values, it should be assigned the mean
expression value for its cluster at those missing values. If the
expression of a particular gene is missing in all experiments,
any response it transmits will appear as part of the non-mRNA
route.

Changing the clustering can affect the calculated partial
responses, showing the importance of determining the statist-
ical significance of the coefficients. It is not important whether
the genes in a cluster share biological function (although it
is likely that they will have related functions, since cluster-
ing reflects the underlying biological design). It is important,
however, that the genes in a cluster have similar expression
across the series of experiments performed. There is a trade-
off between the number of clusters used and the accuracy
of the microarray data. Decreasing the number of clusters
involves forcing mRNAs together into clusters where they
do not necessarily fit, making the clustering less meaning-
ful. The minimum number of clusters is two, requiring two
genetic modulation experiments, but at this very low resolu-
tion the analysis is unlikely to be informative. As the number
of clusters increases, resolution improves, but experimental
accuracy must also improve for statistically significant results.
Conversely, microarrays are expensive, limiting the number
of experiments and therefore the number of clusters.

Calculation of coefficients Integrated response coefficients
(Ainscow and Brand, 1999a; Fell, 1997; Kacser and Burns,
1979; Kholodenko, 1988) describe how each mRNA cluster
responds to the input stimulus. They are system responses that
incorporate all the interactions of the clusters with each other
and with other system components, such as metabolites. All
the routes by which the change is effected are included so
that knowledge of the individual routes is irrelevant. ‘Integ-
rated’ shows that they apply to large step changes in the input,
to distinguish them from true response coefficients that refer
to infinitesimal changes. These coefficients are simply the
normalized change in the average expression of each cluster
between the reference sample (r) and the cells given the input
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Fig. 2. Worked example showing calculation of partial response coefficients from a synthetic dataset of one input, 11 experimental modulations
and a quantified output under each condition. The picture of microarray data is for illustration and is unrelated to the data used. (2.1) First, the
mRNAs are clustered into 11 clusters. (2.2) The mean expression of each cluster in each experiment is calculated. (2.3) Integrated response
coefficients describing how each cluster responds to the input are calculated using Equation (1). (2.4) Elasticity coefficients describing how
the mRNA clusters affect the output are calculated using Equation (2). (2.5) Partial response coefficients describing how much of the response
is transmitted by each mRNA cluster are calculated using Equation (3).

stimulus (i) [Equation (1)]. For each of the 11 clusters in the
worked example, an integrated response is calculated using
Equation (1) (Fig. 2.3).

IR mRNA cluster
input = ratio(i:r) − ratio(r:r)

ratio(r:r)
. (1)

An elasticity coefficient (Fell, 1997; Kacser and Burns, 1979)
describes how a small change in the expression of one mRNA
cluster affects the output response. Because the elasticities
are calculated by solving a set of simultaneous equations,
several independent modulations (m) of the system, differ-
ent from the input experiment, are needed (Ainscow and
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Fig. 3. Worked example illustrating the testing process that finds and excludes problematic experimental modulations. The dataset described
in the text and Figure 2 is used. (3.1) The number of clusters is reduced by one: from 11 to 10. (3.2) Each of the 11 experiments is omitted in turn
and each time elasticity coefficients andwj values are calculated. If omitting any experiment makes no difference to the elasticity coefficients,
these 11 experiments are satisfactory. (3.3) Omitting an experiment does affect the elasticity coefficient values. (3.4) The experiment that, when
omitted, gives the highestwj value (experiment 3) is excluded permanently from the dataset. The microarray data are then reclustered into nine
clusters and this process repeated. At nine clusters and 10 modulations, leaving out any experiment does not change the elasticity coefficients,
indicating that the remaining 10 modulations are satisfactory. (3.5) The remaining 10 experimental modulations (i.e. not experiment 3) are
used, with clustering into 10 clusters, to calculate a final set of coefficients.
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Brand, 1999b; Giersch, 1994; Kacser and Burns, 1979). Use
of the multiple modulation method (Giersch, 1994; Kacser
and Burns, 1979) means that it is not necessary to perturb
each gene individually. In each experiment, expression and
the output response are measured and used to solve a set of
simultaneous equations to obtain the unknowns: the elasticity
coefficients [Equation (3)]. The worked example illustrates
the calculation of elasticity coefficients using matrix algebra
to solve the equations constructed from the 11 manipulation
experiments (Fig. 2.4).

outputm − outputr
outputr

=
∑

all mRNA clusters

[
εoutput

mRNA cluster ·
ratio(m:r) − ratio(r:r)

ratio(r:r)

]
.

(2)

The modulations could involve gene knockout or overexpres-
sion, or other genetic manipulation of the reference cells, but
not an environmental change such as altered growth con-
ditions. This is because environmental changes could act
through the non-mRNA route, adding an extra and different
unknown to each of the simultaneous equations, making their
solution impossible. Points from a time course are probably
unsuitable because they may represent non-steady states and
the non-mRNA routes may be different at different times.
Genetic modulations are good, as they directly affect the
mRNA clusters. Changes in genes for transcription factors
may be ideal, changing many transcripts in characteristic
patterns. The modulations must be independent, each indu-
cing a different pattern of mRNA changes. Exactly what the
genetic manipulations are is not important, as long as they alter
gene expression in different ways. It is not even necessary to
identify which gene has been overexpressed or knocked out in
a modulation. However, if there is information about the sys-
tem, it can be used to increase the chances of a manipulation
being useful, e.g. by deliberately modifying the expression
of transcription factors. If two manipulations result in very
similar expression patterns, then only one of the pair should
be used.

Why are elasticity coefficients used to describe how the
mRNA clusters affect the output, rather than control coeffi-
cients? Typically, modular regulation analysis of a metabolic
system would group enzymes into reaction modules, having
concentration control coefficients over connecting metabolite
intermediates and elasticities to these intermediates. Because
mRNAs are also grouped into blocks or clusters, they might
appear equivalent to these reaction modules. However, the
mRNAs are instead equivalent to metabolite intermediates,
whose concentrations are controlled by the input. All routes
by which they affect the output are downstream of their con-
centration. The output is treated as a large module containing
all these downstream mechanisms, such as translation of the
mRNA into protein, and that protein’s direct or indirect action

on the response. This complex output module (the response)
has elasticities to the concentration of each mRNA cluster.

Partial response coefficients (Ainscow and Brand, 1999a;
Kholodenko, 1988) are the main result of the analysis because
they describe how much of the change in the output response
is transmitted through each mRNA cluster. This does not
necessarily mean that every mRNA in an important cluster
is involved in transmitting the response, one or more of the
mRNAs in the cluster may be important. These coefficients are
calculated by multiplying the integrated response and elasti-
city coefficients corresponding to each cluster (Ainscow and
Brand, 1999a; Kholodenko, 1988) [Equation (3), Fig. 2.5]. In
the worked example, a partial response coefficient is obtained
for each of the 11 clusters.

mRNA clusterRoutput
input = IRmRNA cluster

input · εoutput
mRNA cluster. (3)

Validation Some of the genetic modulation experiments
may be inadequate, leading to invalid values for the coeffi-
cients. An experiment may be inadequate because it is not
independent of other experiments, has unusually high experi-
mental error, or directly changes the nature of a cluster and
affects its coefficients. Figure 3 illustrates the validation of
experiments.

A ‘leave one out’ method identifies problematic experi-
ments. The number of clusters is reduced by one, which is
easy using hierarchical clustering. In the worked example,
clusters 5 and 6 are the most similar and are merged into a
single larger cluster, 5&6, leaving 10 clusters and 11 genetic
modulation experiments (Fig. 3.1). Each experiment is then
omitted in turn, leaving 10 clusters and 10 experiments, and
the elasticity coefficients are recalculated each time (Fig. 3.2).
If the resulting 11 sets of elasticities are similar, then all the
genetic modulation experiments are satisfactory: leaving out
any experiment makes little difference to the calculation, and
the 11 cluster-11 experiment solution can be used.

If, as in the worked example (Fig. 3.3), omitting an experi-
ment does make a difference to the calculated elasticities, then
the dataset contains at least one genetic modulation experi-
ment that disagrees with the rest. This could be one with
particularly large experimental error, but more probably two
experiments are similar, not independent. There is insuffi-
cient information to solve the simultaneous equations if both
are included, and the calculation is biased by the small dif-
ferences between them. When using matrix algebra to solve
simultaneous equations, a matrix containing two identical
equations (identical genetic modulation experiments) is singu-
lar: its determinant is zero and the matrix cannot be inverted. A
matrix containing two almost identical experiments is closer
to being singular than one that does not. The lastwj value
from a singular value decomposition of the matrix indicates
how close to singular the matrix is: values near zero indicate a
matrix almost singular. The absolute value of the determinant
of the matrix could also be used for this purpose. We want to
find the least independent experiment, i.e. when excluded it
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makes the matrix the least singular. In the worked example of
10 clusters and 11 experiments, for each of the 11 matrices
produced by leaving out each experiment in turn, the last
wj value is calculated. Experiment 3 gives the highestwj

when omitted, so it is rejected, leaving a dataset of 10 clusters
and 10 experiments. The testing process is repeated, redu-
cing the number of clusters by one, omitting each experiment
in turn, until leaving out any experiment makes little differ-
ence to the calculated elasticities (Fig. 3.4). At this point, the
remaining experiments are used to calculate the final elasti-
city coefficients. The worked example gives a final solution
of 10 clusters and 10 experiments (Fig. 3.5).

Partial response coefficients measure the relative import-
ance of the different routes through the system, and are
indicated by the weights of the arrows in Figure 3.5. In the
worked example, when the input rises the mRNAs in cluster 1
(and clusters 3, 4 and 5&6) are important in tending to increase
the output, and those in cluster 2 are important in tending to
decrease the output; other clusters are less important.

Monte Carlo analysis Microarray data are error-prone. Each
step in the experiment, mRNA extraction, PCR amplific-
ation, hybridization and fluorescence scanning, introduces
experimental error, perhaps from preferential labelling, or
dust on the microarray slide. This results in well-documented
problems with reproducibility and accuracy of the expres-
sion data (Yuenet al., 2002). The final step is to use
Monte Carlo methods for statistical analysis of the coefficients
(Ainscow and Brand, 1998). Information about experimental
error obtained from the repeated microarrays is used. The
repeated experiments give a mean and SD for each data point,
i.e. the expression of each gene and the output response in
each experiment. Each data point in the dataset is simulated,
based on a normal distribution of its mean and SD. Integrated
response, elasticity and partial response coefficients are then
calculated for the simulated dataset. This process is repeated
many times, giving a distribution for each calculated coeffi-
cient, based on the experimental error in the original dataset.
If 95% of the values for a particular coefficient share a feature,
such as being greater than zero, we have 95% confidence in
that feature, and assign it a statistical significance of ‘pseudo
P ≤ 0.05’ (Ainscow and Brand, 1998).

Datasets with more error will give values for the coefficients
that are less statistically significant. Elasticity coefficients
are obtained by solving simultaneous equations, so for two
sets of calculations from a single dataset, the set with less
equations (less experiments and clusters) should produce
coefficients that are more statistically significant. There is
a relationship between number of clusters, amount of error
in the microarray data and the statistical significance of the
resulting coefficients. This relationship is data-dependent.
Currently, the most accurate microarray experiments quote
a coefficient of variation (SD/mean) of about 0.2 (Piperet al.,
2002).

Fig. 4. Tolerable error and number of clusters. Matrices of differ-
ent sizes, containing data randomly selected from a real microarray
dataset (Hugheset al., 2000), were simulated. For each, we cal-
culated the maximum coefficient of variation it could tolerate and
still produce at least one statistically significant elasticity coefficient
(pseudo-P ≤ 0.05). Any greater experimental error would result
in no significant elasticity coefficients. Closed diamonds, maximum
coefficient of variation tolerated by simulated matrices; open circles,
mean coefficient of variation for simulated matrices containing that
number of clusters (connected by a line).

We used Monte Carlo analysis to estimate the relationship
between the number of clusters and the amount of error in a
dataset that the analysis can tolerate and still result in stat-
istically significant coefficients. Simulations used matrices
of different sizes, containing data randomly selected from a
real microarray dataset (Hugheset al., 2000). We calculated
the maximum coefficient of variation that the analysis could
tolerate and still produce at least one statistically significant
(pseudo-P ≤ 0.05) elasticity coefficient (Fig. 4). The results
indicate that, with the best reproducibility of current micro-
array technology, regulation analysis should use no more than
15–20 clusters. If the analysis demands many more clusters
than this, the maximum coefficient of variation has to be below
0.1. This calculation underestimates the maximum tolerable
error: only taking into account variation in the microarray
data used to calculate elasticities, not in the measurement
of the output response or calculation of integrated response
coefficients.

Interpretation of results An mRNA cluster with a high abso-
lute partial response coefficient contains one or more mRNAs
important for the mRNA-mediated response. Because par-
tial response coefficients are the product of the integrated
response (how much the cluster responds to the input) and
elasticity coefficients (how much that cluster affects the out-
put response), a high partial response could be because of a
large elasticity, a large integrated response or both. So it is
not necessarily the mRNA cluster that changes the most that
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is the most important for the response: a cluster with a small
integrated response to the input may affect the output strongly
and result in a large partial response coefficient.

Information about the mechanisms of the response can
be obtained from the signs of the integrated response and
elasticity coefficients. A cluster with positiveIR andε rep-
resents the upregulation of a system that acts to increase
the response. If both coefficients are negative, a system that
opposes the response is downregulated, and overall this will
increase the response. A positiveIR and a negativeε describes
the upregulation of mechanisms that oppose the response,
and so on.

Clusters containing mRNAs for regulatory pathways are
unlikely to have large partial response coefficients over
physiological outputs. Because they will be upstream of their
target mRNAs that do have direct effects on the output, their
effects will appear as part of the integrated response coefficient
of the target mRNA to the input. To establish how strongly the
‘regulatory’ mRNAs control the target mRNAs, the data can
be reanalysed with the cluster containing the target mRNAs
as the output. Each cluster in turn can be used as output, to
determine which mRNA clusters are involved in its regulation.
In this way, the integrated response of a cluster to the input can
be partitioned into the direct effects that are not transmitted
by other clusters (e.g. via activation of pre-existing transcrip-
tion factors) and each of the indirect effects through the other
clusters (e.g. via changed expression of mRNAs coding for
transcription factors).

Expanding the analysis Important clusters can be dissec-
ted using bioinformatic approaches such as searching the
Saccharomyces Genome Database (Ballet al., 2000) to
identify their mRNAs. They can also be subdivided to see
which sub-clusters are most important, by adding additional
experiments to the dataset and repeating the analysis. Once the
set of elasticities is established, many different input experi-
ments can be analysed to obtain the integrated response of each
cluster to the new input. The existing elasticities can then be
used with these new integrated responses to calculate partial
response coefficients describing how the new input affects the
mRNA-mediated response. Important transcripts (and those
unexpectedly found to be much more or less important than
anticipated) should be directly modulated, to confirm the res-
ult. If many transcripts that were expected to be important
have low partial response coefficients, the problem will have
been greatly simplified even if it has not been solved. Con-
versely, previously uncharacterized genes may be recognized
as important, flagging them for further investigation.

The output has an elasticity to each mRNA cluster. If the
individual mRNAs in the cluster have identical expression,
the elasticity to the cluster is the sum of the elasticities to
each of the individual mRNAs. If not, the summed elasti-
city is weighted by how much component mRNAs deviate
from the cluster mean. As the genes in a cluster have slightly

different expression, some accuracy of this summed cluster
elasticity will be lost. Extra experiments could be performed to
obtain higher resolution and accuracy by dividing clusters and
obtaining elasticity coefficients for smaller mRNA clusters.

Control analysis is strictly valid only for infinitesimal
changes, but this is not experimentally practical. Results using
large changes will be acceptable if assumptions of linearity are
reasonable. We propose the use of gene knockouts as modu-
lations, but these large changes may overstep the range where
responses are linearly related to inputs. The assumption of
linearity is testable by carrying out the analysis following
smaller experimental changes in gene expression around the
condition of interest. This could involve small genetic manip-
ulations such as 25% overexpression. If the results are similar,
linearity is adequate.

RESULTS
Application of modular regulation analysis to
published microarray datasets
Because microarray datasets are large and complex, we used a
program written in Python (www.python.org) to automate the
calculations. We applied modular regulation analysis to two
published datasets that had many (but not all) of the features
required for a modular regulation analysis. The published
experiments had other aims, so were not designed for our
analysis and therefore were not ideal. However, some useful
information could be extracted.

Effect of galactose on yeast doubling time
Idekeret al. (2001) measured all 6200 transcripts in the yeast
Saccharomyces cerevisiae growing in the absence and pres-
ence of galactose, to investigate regulation of the galactose
utilization pathway. They investigated wild-type and nine
mutant strains with different genes of the galactose utilization
pathway disabled. Hybridizations were repeated four times,
but experimental errors were not provided. Doubling times
for each yeast strain were given. We performed a modular
regulation analysis to determine which mRNA changes were
important for the doubling time response to the addition of
galactose.

First, the dataset was reduced from 6200 mRNAs to the 997
that changed significantly in one or more condition (Ideker
et al., 2001). The nine different knockout strains (in the pres-
ence of galactose) were used as modulation experiments.
Therefore, the maximum number of clusters was nine. To
check the dataset for any problematic experiments that con-
tained high error or were too similar to others, we followed
the validation process described above and in Curtis and
Brand (2002). The microarray data were grouped into one less
cluster than there were experiments, i.e. eight clusters. Each
experimental modulation was omitted in turn, and each time
a set of elasticity coefficients was calculated. This process
was repeated until a stable solution was reached, using five

1279



R.K.Curtis and M.D.Brand

Fig. 5. Euclidean hierarchical clustering of the dataset of Ideker
et al. (2001) into six clusters using the six validated experiments. The
expression(log10) of each cluster across the series of experiments is
shown: each line is a different mRNA. For clarity, only 200 of the
640 mRNAs in cluster D are shown.

clusters and six experiments. A final solution of six clusters
and six experiments was obtained. The three experiments
that were omitted (GAL2, GAL6 andGAL10 knockouts) were
too similar to other experiments in the dataset. Grouping the
997 mRNAs into only six clusters gave reasonably coherent
clusters (Fig. 5). Table 1 gives the composition of the clusters
and the results of the modular regulation analysis. Figure 6
shows the results graphically.

Modular regulation analysis shows that two mRNA clusters
(E and F) mediate the change in doubling time in response
to galactose. Cluster E transmitted∼60% of the mRNA-
mediated response and contained 23 genes, including the
galactose metabolism regulatory geneGAL80. Cluster F medi-
ated about 40% of the response and contained four genes:
the metabolic genesGAL1, GAL7 andGAL10, and the reg-
ulatory geneGAL3. This result was obtained without prior
knowledge of the mRNA cluster contents. The two important
clusters had large partial response coefficients because they
had large integrated response and large elasticity coefficients.
It is not necessarily the clusters that change the most that are
most important, but here they were. The integrated response
of cluster F to galactose was heavily biased by the presence of
GAL3. Without GAL3, this cluster would have an integrated
response of around 300, making cluster F the single most
important cluster for the response.GAL3 is clustered with the
other three mRNAs in cluster F on the basis of its expression in

the knockout experiments, not the galactose-addition experi-
ment. This allows the clustering and calculation of elasticity
coefficients to be independent of the input stimulus.

To investigate the regulation of cluster F, the system was
reanalysed with cluster F as the output (data not shown).
One cluster was responsible for the regulation of cluster F.
A total of 9 of the 13 genes in this cluster encoded proteins
involved in amino acid biosynthesis, e.g. ARG4. This sug-
gests that increased amino acid biosynthesis is required for
the large upregulation of the GAL1, 7 and 10 proteins, allow-
ing galactose metabolism, and leading to faster growth. The
important cluster did not contain transcription factors, sug-
gesting that the proteins regulating gene expression in this
system are not themselves transcriptionally regulated, instead
they are allosterically activated. This analysis shows how
modular regulation analysis of microarray data can discrimin-
ate between direct and indirect effects. Cluster F was found to
be directly involved in the doubling time response to galactose.
When the dataset was reanalysed, one cluster was found to be
the most important for the regulation of cluster F. Therefore,
the mRNAs in this cluster transmitted an indirect doubling
time response to galactose.

The sum of the partial response coefficients predicts that the
overall response transmitted by the mRNAs is a decrease in
doubling time. This was observed by Idekeret al. (2001): the
yeast grow faster with an additional carbon source. The differ-
ence between the sum of the partial response coefficients and
the observed response (Table 1) is theoretically equal to the
response transmitted by the non-mRNA routes. This would
require the non-mRNA route to transmit an opposing large
increase in doubling time, which is unrealistic. More likely,
there are problems with linearity of the integrated response or
elasticity coefficients: addition of galactose (or deletion of a
gene) is a large step-change, rather than the small change that
control analysis requires. Use of an intermediate concentra-
tion of galactose as an input could confirm the precise values
of the integrated responses.

The dataset provided no experimental errors, precluding
use of Monte Carlo analysis to test for statistical significance.
Assuming significant results, our analysis revealed that sev-
eralGAL genes were important for the response to galactose,
without requiring any prior knowledge of the functions of
genes. The analysis did not require the genetic modulations
to be in theGAL genes; as long as the modulations were inde-
pendent and resulted in different patterns of expression, the
function of the knockouts was not important. All the knock-
outs in the dataset were of genes in the galactose utilization
pathway, because this was the pathway under investigation by
Idekeret al. (2001).

Effect of 2-deoxy-d-glucose on yeast relative fitness
Hughes et al. (2000) published a large dataset of 300
microarray experiments, measuring the full transcriptome of
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Table 1. Coefficient values and cluster contents for the six-cluster solution of the dataset of Idekeret al. (2001)

Cluster IR mRNA cluster
galactose εdoubling time

mRNA cluster
mRNA clusterRdoubling time

galactose Percentage of
partial response

GAL genes Size

A −0.90 0.21 −0.19 0.2 21
B −0.74 −7.76 5.70 −6.9 229
C −0.63 0.68 −0.43 0.5 5 80
D 0.16 7.81 1.23 −1.5 2, 4, 6 640
E 4.53 −11.71 −53.05 64.3 80 23
F 6.09 −5.87 −35.73 43.3 1, 3, 7, 10 4

Total −82.46
Observed −0.20
Non-mRNA 82.26

‘Percentage of partial response’ describes how much of the mRNA-mediated response is transmitted through each cluster. It is the partial response ofa cluster divided by the sum of
the partial response coefficients, displayed as a percentage. The response transmitted by the non-mRNA routes is calculated by subtracting the sum ofthe partial response coefficients
from the observed response to galactose (Idekeret al., 2001).

Fig. 6. The six-cluster solution of the system of Idekeret al.
(2001). (A) Integrated response and elasticity coefficients. (B) Par-
tial response coefficients. The weight of the line indicates the relative
value of the coefficient. Grey: negative coefficient; black: positive
coefficient. The values of the coefficients are shown in Table 1.

S.cerevisiae. A total of 13 experiments were chemical addi-
tions to wild-type yeast, and 276 were different knockout yeast
strains. The ‘relative fitness’ of the knockouts was measured
in a quantitative parallel growth assay. Microarray hybridiza-
tions were repeated, and using an error model, aP -value

for each mRNA measurement in each experiment was given.
The experiments were designed to predict the function of
unknown genes, because genes with similar functions tend
to be coexpressed and cluster together.

One of the chemical addition experiments was chosen
arbitrarily to be the system input: 2-deoxy-d-glucose. This
non-metabolizable glucose analogue inhibits glycolysis and
causes depletion of inorganic phosphate and osmotic and cell
wall problems (Kratkyet al., 1975). Of the 276 knockouts, 120
had both replicate hybridizations and relative fitness measure-
ments, so could be used as experimental modulations. Relative
fitness was used as the output response. We performed a mod-
ular regulation analysis to determine which mRNA changes
were important for the effect of 2-deoxy-d-glucose on relative
fitness.

Following calculation and testing as described above, a
solution was found at 78 clusters. Coefficients for the most
important mRNA clusters are shown in Table 2 and Figure 7.
Control of the response was distributed between several
clusters, reflecting the systemic effects of 2-deoxy-d-glucose.
Cluster 37 was the most strongly upregulated by 2-deoxy-d-
glucose, while cluster 44 had the strongest effect on relative
fitness (Fig. 7A). However, cluster 44 was only weakly upreg-
ulated by 2-deoxy-d-glucose, and the overall response to
2-deoxy-d-glucose was mediated mostly by clusters 37 and
43 and by the sum of many small positive and negative
effects through other clusters. The relatively strong expression
changes in the other clusters illustrated in Figure 7A had only
small effects on fitness. Cluster 37 contains one gene, encod-
ing a sodium–phosphate symporter, suggesting an attempt to
correct the phosphate shortage caused by 2-deoxy-d-glucose.
Cluster 43 contains five genes, one involved in cellular fusion,
the other four of unknown function. The amount of response
transmitted by non-mRNA routes could not be calculated as
the observed relative fitness response to 2-deoxy-d-glucose
was not available.
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Table 2. Coefficient values for the most important clusters in the 78-cluster
solution of Hugheset al. (2000)

Cluster IR mRNA cluster
2-deoxy-d-glucose εrelative fitness

mRNA cluster
clusterRrelative fitness

2-deoxy-d-glucose Size

37 9.62 0.16 1.53 1
60 0.46 0.76 0.17 1
30 1.72 0.17 0.30 1
58 1.04 0.26 0.27 1
12 0.90 0.30 0.27 1
38 1.16 0.15 0.17 39
41 2.56 0.06 0.16 1
67 0.15 0.83 0.12 13
49 0.23 0.46 0.10 3
Other
positive

0.73 60

Other
negative

−0.65 46

71 −0.95 0.21 −0.20 1
4 3.66 −0.07 −0.27 2

57 0.89 −0.35 −0.32 1
44 0.07 −4.89 −0.34 6141
53 0.22 −1.62 −0.35 3
43 2.11 −0.34 −0.73 5

Total 1.13

Most of the more important clusters had positive integrated
responses to the input, suggesting that various systems that
both facilitate and oppose the overall response were upreg-
ulated in response to 2-deoxy-d-glucose. The sum of the
partial response coefficients was positive, suggesting that the
relative fitness of the yeast improved in response to 2-deoxy-d-
glucose. At high concentrations, 2-deoxy-d-glucose is toxic,
so a negative sum of partial responses might have been be
expected. The partial response coefficients in Table 2 and
Figure 7 show the potential value of the regulation analysis
in allowing a deeper understanding of microarray results, but
were they statistically significant?

To test for significance, we performed a Monte Carlo
analysis using the published experimental error, as described
above. This resulted in partial response coefficients with
pseudo-P -values between 0.4 and 0.6, showing that the noise
in the microarray data was too great for the results to be statist-
ically significant (pseudo-P ≤ 0.05). We calculated that the
data would need a coefficient of variation of 0.1 or better to
produce at least one statistically significant elasticity coeffi-
cient. The average coefficient of variation for this microarray
data was about 0.6, so the reproducibility was insufficient for
a solution using so many clusters.

DISCUSSION
Modular regulation analysis is a promising method that is
highly relevant to expression profiling to find mRNAs that
are important in mediating responses. Our analysis of pub-
lished datasets shows that it can be used to extract important

Fig. 7. Coefficients from the 78-cluster solution of the dataset of
Hugheset al. (2000). The three clusters with the most positive and
most negative partial responses are shown, as well as the sum of
the remaining positive (‘other+’) and negative (‘other−’) partial
response coefficients. (A) Integrated response and elasticity coef-
ficients. (B) Partial response coefficients. The weight of the line
indicates the relative value of the coefficient. Grey: negative coeffi-
cient; black: positive coefficient. Integrated response and elasticity
coefficients are not summed for ‘other+’ and ‘other−’; they are rep-
resented by unweighted dashed arrows. The values of the coefficients
are shown in Table 2.

information that many other methods cannot. While this type
of analysis requires a series of experimental modulations,
other techniques for finding mRNAs important for a response
also require many experiments and are less general, quant-
itative and inclusive. This method is general because it can
be applied to a range of problems and systems, from genetic
networks to drug targets. No prior knowledge is needed about
which genes are in which clusters, or what the genetic mod-
ulations are, provided that they are different from each other.
Modular regulation analysis does not require the important
mRNAs to have been knocked out or overexpressed; as long
as their expression changes in one or more of the experimental
modulations, the information is accessible. The method is
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quantitative as responses are described using coefficients and
their statistical significance determined. A cluster could have
a large partial response if it has a large integrated response,
elasticity coefficient or both. It is not necessarily the cluster
that changes the most (has a high integrated response) that
is the most important for the response. Our analyses show
that clusters that do change the most are often important, but
there are clusters with small integrated response coefficients
and high elasticity coefficients that are also important. An
example is cluster 53 in the 2-deoxy-d-glucose analysis; this
cluster has the second most negative partial response coeffi-
cient, despite its small integrated response coefficient. These
mRNAs would not be picked up by analyses that assume only
large changes in expression are important. Finally, this method
is inclusive as it can realistically be applied to a whole gen-
ome, rather than a subset of genes (de la Fuente and Mendes,
2002; Idekeret al., 2001).

This analysis describes the application of control analysis
to a new field: gene expression. Control analysis of meta-
bolic systems generally reveals that control is distributed. It
is unclear whether the control of gene expression is normally
localized into a few clusters, or is more widely distributed. It
may be that this is context-dependent and some responses only
require expression changes in a few genes, while some may
require widespread alteration of expression. Application of
modular regulation analysis to several example systems will
reveal whether regulation of responses by gene expression is
generally localized or distributed.

mRNA concentrations do not always reflect the amount of
the corresponding protein in the cell. This is irrelevant to
our analysis, which investigates how much of the response
passes through each cluster of mRNA transcripts, regard-
less of the resulting expression of the corresponding proteins.
Modular regulation analysis could be used to quantify the
response passing through the concentrations of different pro-
teins, but this would require accurate measurements of the
concentrations of very many proteins, and proteomics has not
yet attained the appropriate experimental sophistication. Any
discrepancies between regulation analyses based on either
mRNA or protein concentrations would illuminate relevant
cases of important translational control.

A current drawback of this analysis is the high microarray
accuracy required. As the reliability of microarray technology
improves, modular regulation analysis of gene expression will
become more applicable in practice. In principle, modular
regulation analysis is also highly transferable to proteomic,
metabolomic or other profiling to determine the relative
importance of groups of proteins or metabolites in effecting
responses.
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