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ABSTRACT

Motivation: Microarray experiments measure complex
changes in the abundance of many mRNAs under differ-
ent conditions. Current analysis methods cannot distinguish
between direct and indirect effects on expression, or calculate
the relative importance of mMRNAs in effecting responses.
Results: Application of modular regulation analysis to micro-
array data reveals and quantifies which mRNA changes are
important for cellular responses. The mRNAs are clustered,
and then we calculate how perturbations alter each cluster
and how strongly those clusters affect an output response.
The product of these values quantifies how an input changes
a response through each cluster.

Two published datasets are analysed. Two mRNA clusters
transmit most of the response of yeast doubling time to
galactose; one contains mainly galactose metabolic genes,
and the other a regulatory gene. Analysis of the response
of yeast relative fitness to 2-deoxy-bD-glucose reveals that
control is distributed between several mRNA clusters, but
experimental error limits statistical significance.

Contact: rkc24@cam.ac.uk

INTRODUCTION

within a disease signature that correlate best with the pheno-
type (Alter et al., 2000; Raychaudhust al., 2000), but it
does not quantify the importance of those few genes for a
response. Gene expression patterns can be used to predict
the functions of unknown genes, because genes with similar
functions may be coexpressed and, therefore, cluster together
(Eisenet al., 1998). However, these analyses do not reveal
which of the unknown genes are most important, to allow their
targetting for early investigation. Finally, microarray data may
be used to infer the structure of regulatory networks, predict-
ing the regulatory interactions between genes (Reing .,
2002; Schlitt and Brazma, 2002). This method can predict
the direct and indirect interactions between genes, but is not
guantitative. Induction kinetics can indicate which are the dir-
ect (rapid) responses and which are indirect (slow), but this
method requires targeted genetic mutants and a time course
(Devauxet al., 2001; Le Cronet al., 2002).

Despite abundant microarray publications, there is no
means of analysing microarray data to find and quantify
the important gene expression changes. If a gene of interest
changes expression between two conditions, such as healthy
and diseased, it is unclear whether that gene is important and
involved in causing the disease response. The changed expres-

Experiments using microarrays can measure the relativeion could be crucialin causing the symptoms, butitcould also

concentrations of all MRNA transcripts in a preparation, ande coincidental, part of a downstream reaction to the disease,
iluminate many aspects of biology, including differentiation or a minor component of the response. It is also not neces-
(Le Naouret al., 2001), cell cycle (Cheat al., 1998), envir-  sarily the genes with the greatest expression changes that are
onmental stress (Gaseh al., 2000) and cancer (van't Veer mostimportantin causing the response; it will depend on how
et al., 2002). Changes in gene expression are complex, somstrongly the response depends on the expression of the gene.
times thousands of MRNAs change expression between statdganscripts with weak effects may be more strongly upregu-
There are many different ways of analysing microarray datalated to achieve the same response as transcripts with strong
depending upon the purpose of the experiments. effects. Finally, while some mRNA changes may be direct,
Microarray data can be used to classify samples, e.qg. to dighany may be indirect. None of the existing analytical tech-
criminate between cancer types (Alizadslal., 2000). This  niques can discriminate between direct and indirect mRNA
uses supervised clustering, requiring prior knowledge abouthanges, and quantify the importance of those changes for a
the training set used to classify the remaining samples. Prinresponse. Many analysis methods require prior knowledge of
cipal components analysis can identify the individual genesghe system under investigation: knockouts targeted to the path-
way of interest or a classified subset of samples as a training
*To whom correspondence should be addressed. set. We show here that control analysis (Fell, 1997; Kacser
"Present address: Department of Clinical Biochemistry, University of@nd Burns, 1973) can identify important mRNAs, quantify
Cambridge, Addenbrooke’s Hospital, Box 232, Hills Road, Cambridge,NOW much of the response they mediate and identify whether
CB2 2QR, UK. they are regulated directly or by the expression of other genes.
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Analysing microarray data using modular regulation analysis

Metabolic control analysis is a mathematical framework [ - o X il
for quantifying regulation of biological systems (Fell, 1997; baiad

Heinrich and Rapoport, 1974, Kacser and Burns, 1973). It
has mainly been applied to complex metabolic systems such
input

output

as mitochondrial bioenergetics (Br.anld, 1996, .199.7)._ The
modular approach to control analysis involves simplifying a -
complex system by grouping reactions into biologically mean- cluster D

ingful modules, allowing the regulation of large, complex

systems to be experimentally solved (Ainscow and Brandrig 1. Modular regulation analysis of the effect of an input on an
1999b). Regulation analysis is a subset of control analysis thajutput, showing the structure of the system. An input changes the
allows the response to an effector to be partitioned (Brandexpression of each of the four mRNA clusters as described by integ-
1997). For example, the response to adrenaline of glucosated response coefficient® The mRNA clusters then change the
release from hepatocytes has been partitioned, to quantifgutput of interest, as described by elasticity coefficieats;The

how much of the response is transmitted through each of thiategrated response and elasticity coefficients for each cluster can
system’s reaction blocks (Ainscow and Brand, 1999a). Mod-be multiplieq to give partial response coefficien_ts, which_q_uantify
ular regulation analysis also determines whether the respongée relative importance of each mRNA cluster in transmitting the

. . . . . _response of the output to the input.

involves direct action of adrenaline on the glucose-producing
and glucose-releasing reactions, or is indirect and mediated

through other reaction blocks. _ _ signalling intermediate, protein, MRNA molecule or mRNA
Here, we apply modular regulation analysis to microarrayg;yster; or a physiological marker, such as growth rate, cell
using a worked example and then analyse two published datgg|yme, performance or mortality. Fourth, to allow statist-

sets. We first simplify expression data by clustering MRNAScq| analysis of significance, repeat microarrays and output
with similar expression patterns, then quantify how much of,easurement are needed.

the response of some output (e.g. growth rate) to an external

change is mediated by each cluster of MRNAs. Clusters thdelustering of transcripts

mediate a large proportion of the response contain genefo simplify the microarray data and make the analysis experi-
that are potential targets for manipulating the response. Wenentally feasible, transcripts are first grouped into a relatively
also show how the analysis can quantify how each cluster a§mall number of clusters according to how they respond to
mRNAs is regulated, and whether regulation by the externaéxperimental manipulations, as described later.

change is direct (e.g. via direct activation of transcription o ]

factors) or is mediated by direct changes in other mRNAAPPlication of control analysis

clusters (e.g. via altered expression of transcription factohe system is conceptually organized as shown in Figure 1.
mRNASs). Control analysis uses relative changes in vari-The input affects the expression of the mRNA clusters. This is
ables rather than absolute values and so is ideally suited wescribed using integrated response coefficidiRs (vhich
microarray data, which are often represented as ratios of gemepresent the relative change in expression of each cluster in

expression between conditions. response to the input stimulus (Fig. 1, left). Positive integ-
rated response coefficients indicate that expression increases;
METHODS negfsmve coefﬁ_ments mean it decreases. At this s_tag.e we are
) not interested in whether responses are direct or indirect, but
Dataset requirements simply in quantification.

An appropriate set of experiments is required before modular How each mRNA cluster affects the output response is
control analysis can be applied. First, full microarray data arelescribed using elasticity coefficientg (Fig. 1, right). Pos-
required for the reference system (such as wild-type cells)tive elasticity coefficients mean that increased expression of
compared with the same system under the input stimulus dd cluster increases the output response; negative coefficients
interest. The input might be a change in growth medium, andicate it decreases this response.

genetic modification, the addition of an effector (e.g. hor- Finally, partial response coefficient®) are obtained by
mone or drug) or the change to a new state (e.g. disease)ultiplying each integrated response coefficient (how much
or physiological condition. Second, an extensive series othe cluster changes) by the relevant elasticity coefficient
genetic modulations of the reference cells is required, wit{how much the cluster affects the response). Partial response
full expression data for these modulations compared with theoefficients describe how much of the change in the output
reference. Third, an output of interest must be measured iresponse is transmitted by each mRNA cluster. Positive par-
each of these reference, input and modulation experimentsial response coefficients mean that the signal transmitted by
This can be any quantifiable response, including the rate dd cluster increases the output response, e.g. the upregulation
an enzyme or pathway; the concentration of a metabolitepf genes that enable or downregulation of genes that oppose
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the response. Negative coefficients characterize clusters th@gig. 2.1). Hierarchical clustering also simplifies merging and
transmit decreases in the output. splitting of clusters compared with other techniques such as
In this way, the analysis partitions the response of the outpuk -means (Tavazoiet al., 1999). We need to calculate the
to the input, and quantifies how much of that response eacimean expression of the mRNAs in a cluster, so Euclidean
MRNA cluster is responsible for: how much of the responsehierarchical clustering (which groups using absolute values)
would be absent ifthe expression of that cluster did not changés more appropriate than correlation-based clustering (which
Clusters with high partial response coefficients contain one ogroups by expression trends). For example, correlational
more mMRNAs that are important for the response. clustering groups mRNAs with the same trends of increas-
The amount of response transmitted by non-mRNA routesng or decreasing in particular experiments, but if one has
not requiring changes in gene expression, e.g. by allosterimuch larger expression changes than the others, the mean
alteration of enzymes, is obtained by subtracting the sum oéxpression level will not quantitatively represent the whole
the partial response coefficients (the response transmitted mjuster. There are several clustering packages available, such
the various mMRNA routes) from the observed overall responses Eisen’s cluster and treeview (Eisetral., 1998). We use
Any contribution of MRNASs not represented in the microarraythe European Bioinformatics Institute’s online Expression
because it is incomplete will appear as part of this non-mRNAProfiler (www.ebi.ac.uk/microarray/).

route. Microarray data often contain missing values. If a gene has
only occasional missing values, it should be assigned the mean
Theanalysis step by step expression value for its cluster at those missing values. If the

To illustrate the analysis, we simulated a dataset that fulfilled@XPression of a particular gene is missing in all experiments,
the requirements discussed above (using modified rando@Y response ittransmits will appear as part of the non-mRNA
numbers). It consists of hypothetical MRNA expression datdoute. _ _

and quantified output data for the reference and test (‘input’) Changing the clustering can affect the calculated partial
conditions and for 11 different genetic manipulations. Afesponses, showing the importance of determining the statist-

worked example using this simulated dataset is shown ifcal significance of the coefficients. Itis notimportant whether
Figures 2 and 3 and described below. the genes in a cluster share biological function (although it

is likely that they will have related functions, since cluster-

Clustering The first step is to group mRNAs into clusters, ing reflects the underlying biological design). It is important,
based on their expression across all genetic manipulatiohowever, that the genes in a cluster have similar expression
experiments. Clustering reduces the number of independacross the series of experiments performed. There is a trade-
ent experiments required in the second step for calculationff between the number of clusters used and the accuracy
of elasticity coefficients: the number of MRNA clusters can-of the microarray data. Decreasing the number of clusters
not exceed the number of genetic modulations. The simulateishvolves forcing mRNAs together into clusters where they
dataset contains 11 genetic modulation experiments, so thao not necessarily fit, making the clustering less meaning-
MRNAs are grouped into 11 clusters using Euclidean hierful. The minimum number of clusters is two, requiring two
archical clustering (Fig. 2.1). The average expression of eacgenetic modulation experiments, but at this very low resolu-
ofthe 11 clusters for the reference and input conditions and fation the analysis is unlikely to be informative. As the number
each of the 11 simulated genetic manipulations is calculatedyf clusters increases, resolution improves, but experimental
to give a data matrix (Fig. 2.2). accuracy mustalso improve for statistically significant results.

Even for yeast, with its genome of about 6000 genes, 600Conversely, microarrays are expensive, limiting the number
independent experiments would be required if the mRNA©f experiments and therefore the number of clusters.
were not clustered. de la Fuerteal. (2002) and de la Fuente
and Mendes (2002) used a related method to reverse-enginggal culation of coefficients Integrated response coefficients
gene networks from microarray data, but without clustering;(Ainscow and Brand, 1999a; Fell, 1997; Kacser and Burns,
this method is conceptually different as it could be used tal979; Kholodenko, 1988) describe how each mRNA cluster
investigate a subsystem of 50 individual genes. Our analysigesponds to the input stimulus. They are system responses that
looks at all the genes in a system, simplified into 50 clustersincorporate all the interactions of the clusters with each other
lowering resolution but simplifying a complicated problem. and with other system components, such as metabolites. All

Before clustering, it may be helpful to reduce a microarraythe routes by which the change is effected are included so
dataset by excluding mRNAs that do not change significantlythat knowledge of the individual routes is irrelevant. ‘Integ-
in any experiments, assigning them integrated and partiaiated’ shows that they apply to large step changes in the input,
response coefficients of zero. to distinguish them from true response coefficients that refer

There are various types of clustering algorithm. Hierarch+o infinitesimal changes. These coefficients are simply the
ical clustering is preferred because the number of clustersormalized change in the average expression of each cluster
is dictated by cutting the dendrogram at different pointsbetween the reference sampt@dnd the cells given the input
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< experiments =2

< mRNAs =

2 A data matrix is

1 The microarray data are
clustered into as many clusters
as there are experiments. Using
hierarchical clustering, it is easy
to cut the dendrogram to give
the required number of clusters.

exptl expld exptd exptd expts expth expt? expti eaptd exptll  expiil
0.840 0270 <0661  -0.550 0490 0930 0170 0800 0.214 0875 -0.343

. & " ; g; “0.340  -0.760 1017 0.630 0.190 0.537 0,185 1130 0.445 0.572 “0.883
obtained by calculating Dok | oh am B ooyl Im  am o o
. o 1 0.964 -1.165  -0.275 -0.603 -0.628 0.729 -0.39%  -1.193  -0.537 -0.713 0.194 -0.028
the mean expression of | | 05 | 06 ous ois o6 o oss om6 03 s ose ook
each cluster in each || 167 | 550 B ome Sem om0 are s o .ew i a0
1 1.300 “0.290 1.560 0.241 1.185 0.017 0473 -0.073 0.876 -0.843 1.084 “0.007
., e 1 1 0.984 0.350 -0.120 1.823 0.963 0.590 -0.033 -0.217 0.960 0.746 1.080 0.712
condition. e 4
Loutput | 1 g 0500 0156 | -0.362 0.060 0.079 0421 <0382 | -0.475 | -0.240 0288 0297 0.533 I
3 4 Elasticity coefficients are
are calculated using the microarray calculated from the microarray and
data for the control and stimulated output response data for the genetic
cells (equation 1). modulation experiments (equation 2).
-1 Cluster | Elasticiy
-0.340 -0.735 -1.165 -1.186 -0.060 2610 -0.340 -0.290 0.350 <0.156 1 B.B64
Tuster " -0.760  0.274 -0.275 -D.436 0180 -1789 -0.240 1560  -0.120 -0.362 z -2.972
T 0.195 1.017 -1.005 -0.603 -0.580 0.121 -0.323 0.594 0.241 1.823 0.060 3 4.772
2 1.026 0.630 -0.567 -0.628 -0.671 0.906 0.260 -0.630 1.185 0.963 0.079 4 -8.520
3 0,496 0.190 0.367 0.729 0.791 0.770 1.430 0.830 0.017 0.590 * 0421 p— 5 -29.769
i 0311 0,537  0.634 -0,395 -0.435 -0.754 -0.148 -0.736 -0.473 -0.033 0382 | — sa6 | 35.858
5 -U.U]G 0.185 -0,937 -1.193 -1.073 0.200 -0.350 -0.580 -0.073 -0.217 -0.475 7 1.665
S&6 0. '1 23 =1,130 -0.241 0,537 -0.513 0.757 -0.910 0.785 0.876 0.960 -0.240 B =1.466
"7 '0. 061 0.445 -0.648 “0.713 “0.642 «0.495 0.257 -0.694 <0.843 0.746 0.268 9 -1.544
B 0'13} 0.572 -0.425 0.194 0.147 0.610 -0.580 1.270 1.084 1.080 0.297 10 4.525
a 0:667 -0.883 1.244 -0.028 -0.019 0.944 0.159 0.370 -0.007 0.712 0.533 11 2.051
10 0,300
11 -0.016
5 Partial response coefficients [oumer L]
. 2 1.026
for each cluster are calculated by 3| a0
4 -0.311
multiplying the corresponding sis IR 4
N P 7 -0.061
integrated response and elasticity e | 0w
L 9 0.667
~yofFieot1e (& ati 10 0.300
coefficients (equation 3). »

Fig. 2. Worked example showing calculation of partial response coefficients from a synthetic dataset of one input, 11 experimental modulations

and a quantified output under each condition. The picture of microarray data is for illustration and is unrelated to the data used. (2.1) First, the
mMRNAs are clustered into 11 clusters. (2.2) The mean expression of each cluster in each experiment is calculated. (2.3) Integrated respons
coefficients describing how each cluster responds to the input are calculated using Equation (1). (2.4) Elasticity coefficients describing how

the mRNA clusters affect the output are calculated using Equation (2). (2.5) Partial response coefficients describing how much of the response
is transmitted by each mRNA cluster are calculated using Equation (3).

stimulus () [Equation (1)]. For each of the 11 clusters in the An elasticity coefficient (Fell, 1997; Kacser and Burns, 1979)
worked example, an integrated response is calculated usirdgscribes how a small change in the expression of one mRNA

Equation (1) (Fig. 2.3).

I RmRNA cluster __

nput ratio(r:r)

ratio(i:r) — ratio(r:r)

@)

cluster affects the output response. Because the elasticities
are calculated by solving a set of simultaneous equations,
several independent modulations)(of the system, differ-

ent from the input experiment, are needed (Ainscow and
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< experiments =

< mRNAs =

2 A leave one out method is used to
test for experiments that may bias the
calculation of elasticity coefficients.
Leaving each experiment out in turn,
elasticity coefficients are calculated.

1 The mRNAs are clustered into one less
cluster than there are experiments. The
mean expression of each of the 10 clusters
in each of the 11 experiments is calculated.

=
2
i
-
-
;
: e
% » =
i o
| S |
=] [ Tew
: T e
i o
: 1 |as
- o [EEe
r ¥ 10 Db
- ;e
¥ * 1883
i

3 This produces 11 sets of elasticity coefficients. These coefficients
change when different experiments are omitted, indicating that there
is at least one problematic experiment in the dataset.

cluster

R

skaticity of oetput ba chuster

4 The experiment that, when omitted, gives the largest w; value is excluded from the dataset,
leaving 10 experiments. Once expt3 has been omitted, the dataset is reclustered into 9 clusters.
Each of the remaining 10 experiments is omitted in turn, and this time the elasticity coefficients
are not affected by the omission of any experiment.

Fig. 3. Worked example illustrating the testing process that finds and excludes problematic experimental modulations. The dataset describec
in the text and Figure 2 is used. (3.1) The number of clusters is reduced by one: from 11 to 10. (3.2) Each of the 11 experiments is omitted in turn
and each time elasticity coefficients angvalues are calculated. If omitting any experiment makes no difference to the elasticity coefficients,
these 11 experiments are satisfactory. (3.3) Omitting an experiment does affect the elasticity coefficient values. (3.4) The experiment that, wher
omitted, gives the highest; value (experiment 3) is excluded permanently from the dataset. The microarray data are then reclustered into nine
clusters and this process repeated. At nine clusters and 10 modulations, leaving out any experiment does not change the elasticity coefficient
indicating that the remaining 10 modulations are satisfactory. (3.5) The remaining 10 experimental modulations (i.e. not experiment 3) are

used, with clustering into 10 clusters, to calculate a final set of coefficients.

Elasticity cosfficents when expenment omitted from dataset ::
cluster exptl o) o) 5 ex) expt? ox) exptl0  exptll
1 10,049 6.799 6.802 6.744 7.9%4 6.771 6.975 6,802 10.383 6412 i “
2 -2.344  -1.561 1.562 -1.548 -1.929 -1550 -1.591 1.563 2064 -1479 84
384 -4.326 -2.995 -2995 -2971  -3.670 -2.983 3068 -2.999 4454 -2.847 ; .
2 6,282 4.686 4.685 4.653 5.574 4.662 4.795 4,691 6.648 4.460 1|
7 4,288 3.146 3.147 3125 3.738 3.143 3229 3.147 4,689 2.954 3
] -2067  -LG44  -1646  -1631  -1.944 1639 -16B6  -1646  -2530  -1.548 E°
L] -0.500 -0.542 0.535 -0.538 -0.662 -0.536 0.552  -0.544  -0.400 0.519 i 2
10 0.215 -0.106 0111 -0.109 <0117 D113 0.106 0111 -0.012 0.100 -
11 4.056 2.957 2.956 2.937 3.408 2.940 3.017 2.964 4.273 2.812 ey | L. -
5 The remainine 10 cluster 1R__| Elastici ]
; g 1 0.195 Tnm%&
experiments (ie not expt3) are 2 1.026 | -2.027 | -2.080
. - . 3 -0.496 | -1.487 | |
used with the clustering into 10 4 -0311 | -1.995 | 0.620
clusters, to produce a final set of ol R
. 2 = r i —_ [ output
coefficients. The amount of 8| aiar | ke S it et
response transmitted by non- 10 | 0300 | -0.092 | -0.028
4} k 11 -0.016 | 2.921 | -0.047
mRNA routes is obtained by total MRNA route] 0.324
. other routes| 0.176
subtraction. o 0-550
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Brand, 1999b; Giersch, 1994; Kacser and Burns, 1979). Usen the response. This complex output module (the response)
of the multiple modulation method (Giersch, 1994; Kacserhas elasticities to the concentration of each mRNA cluster.
and Burns, 1979) means that it is not necessary to perturb Partial response coefficients (Ainscow and Brand, 1999a;
each gene individually. In each experiment, expression andholodenko, 1988) are the main result of the analysis because
the output response are measured and used to solve a settloéy describe how much of the change in the output response
simultaneous equations to obtain the unknowns: the elasticitis transmitted through each mRNA cluster. This does not
coefficients [Equation (3)]. The worked example illustratesnecessarily mean that every mRNA in an important cluster
the calculation of elasticity coefficients using matrix algebrais involved in transmitting the response, one or more of the
to solve the equations constructed from the 11 manipulatiomRNASs in the cluster may be important. These coefficients are
experiments (Fig. 2.4). calculated by multiplying the integrated response and elasti-
city coefficients corresponding to each cluster (Ainscow and

outpuf, — output Brand, 1999a; Kholodenko, 1988) [Equation (3), Fig. 2.5]. In

output the worked example, a partial response coefficient is obtained
_ ) [ o TaMIO(MIr) — ratio(r:r)] for each of the 11 clusters.
- MRNA cluster ~ : . .

all MRNA clusters rat|0(l".l") J (2) MRNA clusterRic;:t&ut = R:;:\IIA cluster E;Lg’yj\:i custer (3)

Validation Some of the genetic modulation experiments
The modulations could involve gene knockout or overexpresmay be inadequate, leading to invalid values for the coeffi-
sion, or other genetic manipulation of the reference cells, butients. An experiment may be inadequate because it is not
not an environmental change such as altered growth corindependent of other experiments, has unusually high experi-
ditions. This is because environmental changes could aghental error, or directly changes the nature of a cluster and
through the non-mRNA route, adding an extra and differentffects its coefficients. Figure 3 illustrates the validation of
unknown to each of the simultaneous equations, making theixperiments.
solution impossible. Points from a time course are probably A ‘leave one out’ method identifies problematic experi-
unsuitable because they may represent non-steady states andnts. The number of clusters is reduced by one, which is
the non-mRNA routes may be different at different times.easy using hierarchical clustering. In the worked example,
Genetic modulations are good, as they directly affect thelusters 5 and 6 are the most similar and are merged into a
MRNA clusters. Changes in genes for transcription factorsingle larger cluster, 5&86, leaving 10 clusters and 11 genetic
may be ideal, changing many transcripts in characteristienodulation experiments (Fig. 3.1). Each experiment is then
patterns. The modulations must be independent, each indemitted in turn, leaving 10 clusters and 10 experiments, and
cing a different pattern of mRNA changes. Exactly what thethe elasticity coefficients are recalculated each time (Fig. 3.2).
genetic manipulations are is notimportant, as long as they altdf the resulting 11 sets of elasticities are similar, then all the
gene expression in different ways. It is not even necessary tgenetic modulation experiments are satisfactory: leaving out
identify which gene has been overexpressed or knocked out iany experiment makes little difference to the calculation, and
a modulation. However, if there is information about the sys-the 11 cluster-11 experiment solution can be used.
tem, it can be used to increase the chances of a manipulationlf, as in the worked example (Fig. 3.3), omitting an experi-
being useful, e.g. by deliberately modifying the expressiorment does make a difference to the calculated elasticities, then
of transcription factors. If two manipulations result in very the dataset contains at least one genetic modulation experi-
similar expression patterns, then only one of the pair shouldnent that disagrees with the rest. This could be one with
be used. particularly large experimental error, but more probably two
Why are elasticity coefficients used to describe how theexperiments are similar, not independent. There is insuffi-
MRNA clusters affect the output, rather than control coeffi-cient information to solve the simultaneous equations if both
cients? Typically, modular regulation analysis of a metabolicare included, and the calculation is biased by the small dif-
system would group enzymes into reaction modules, havinferences between them. When using matrix algebra to solve
concentration control coefficients over connecting metabolitesimultaneous equations, a matrix containing two identical
intermediates and elasticities to these intermediates. Becausgquations (identical genetic modulation experiments) is singu-
mMRNAs are also grouped into blocks or clusters, they mightar: its determinantis zero and the matrix cannot be inverted. A
appear equivalent to these reaction modules. However, thmatrix containing two almost identical experiments is closer
mRNAs are instead equivalent to metabolite intermediateso being singular than one that does not. The lastvalue
whose concentrations are controlled by the input. All routedrom a singular value decomposition of the matrix indicates
by which they affect the output are downstream of their con-how close to singular the matrix is: values near zero indicate a
centration. The output is treated as a large module containingnatrix almost singular. The absolute value of the determinant
all these downstream mechanisms, such as translation of tted the matrix could also be used for this purpose. We want to
mMRNA into protein, and that protein’s direct or indirect action find the least independent experiment, i.e. when excluded it
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makes the matrix the least singular. In the worked example of ¢
10 clusters and 11 experiments, for each of the 11 matrices

produced by leaving out each experiment in turn, the last 5** *

w; value is calculated. Experiment 3 gives the highegt f

when omitted, so it is rejected, leaving a dataset of 10 clusters Z ** .

and 10 experiments. The testing process is repeated, redu g . . .

cing the number of clusters by one, omitting each experiment £ °°

in turn, until leaving out any experiment makes little differ-

ence to the calculated elasticities (Fig. 3.4). At this point, the

remaining experiments are used to calculate the final elasti-

city coefficients. The worked example gives a final solution

of 10 clusters and 10 experiments (Fig. 3.5).

Partial response coefficients measure the relative import- 2 = 3 S T

ance of the different routes through the system, and are number of clusters

indicated by the weights of the arrows in Figure 3.5. In the

worked example, when the input rises the mRNAs in cluster g 4. Tolerable error and number of clusters. Matrices of differ-

(and clusters 3, 4 and 5&6) are importantin tending to increasent sizes, containing data randomly selected from a real microarray

the output, and those in cluster 2 are important in tending t@ataset (Hughest al., 2000), were simulated. For each, we cal-

decrease the output; other clusters are less important. culated the maximum coefficient of variation it could tolerate and
still produce at least one statistically significant elasticity coefficient

MonteCarloanalysis Microarray data are error-prone. Each (pseudo? < 0.05). Any greater experimental error would result

step in the experiment, mRNA extraction, PCR amplific-i” no_s?gnificant gla}sticity coefficient_s. Closed diamonds, max?mum

ation, hybridization and fluorescence scanning, imroducegoeffluentc_>f_var|at|on tple_rated b¥5|mulated ma_ltrlces; opgn_cwcles,

experimental error, perhaps from preferential labelling, ofmean coefficient of variation for S|mqlated matrices containing that

dust on the microarray slide. This results in WeII-documented]umber of clusters (connected by a fine).

problems with reproducibility and accuracy of the expres-

sion data (Yuenet al., 2002). The final step is 10 US€ \yo ysed Monte Carlo analysis to estimate the relationship
Monte Carlo methods for statistical analysis of the Coemc'ent%etween the number of clusters and the amount of error in a

(Ainscow and Brand, 1998). Information about eXpe”mem"’“dataset that the analysis can tolerate and still result in stat-

error ob;amed from the repeated mlgroar;ays |shuged. ThRstically significant coefficients. Simulations used matrices
repeated experiments give a mean and SD for each data poifgf gigterent sizes, containing data randomly selected from a

l.e. the exp_ression el gene e}nd the output_ response riQaI microarray dataset (Hughetsal., 2000). We calculated
each experiment. Each data pointin the dataset is simulate,e yimum coefficient of variation that the analysis could
based on a normgl d'SmbUt'o.n ofits mean and SD Integratey e ate and stil produce at least one statistically significant
response, elastlcny_ and partial response coeff|C|en_ts are th BseudoP < 0.05) elasticity coefficient (Fig. 4). The results
calcula_ted for t_h_e S|mul_ate_d dgtaset. This process is repea_t icate that, with the best reproducibility of current micro-
many times, giving a distribution for each calculated coeffi-p o\ e chnology, regulation analysis should use no more than
cient, based on the experimental error in the original datasef.s_>q c|usters. If the analysis demands many more clusters
If 95% of the values for a particular coefficient share afeatureman this. the maximum coefficient of variation has to be below

i 0, i . . . .
such as being greater th_an zero, we hgve_ 95% conflfjence 811. This calculation underestimates the maximum tolerable
that feature, and assign it a statistical significance of pSGUdgrror: only taking into account variation in the microarray

P = 0.05’ (Ainscow and Brand, 1998). data used to calculate elasticities, not in the measurement

Datasets with more error will give values for the coefficients ;¢ ya o ytout response or calculation of integrated response
that are less statistically significant. Elasticity Coeﬁ'c'entscoefficients

are obtained by solving simultaneous equations, so for two

sets of calculations from a single dataset, the set with leskterpretation of results An mRNA cluster with a high abso-
equations (less experiments and clusters) should produdete partial response coefficient contains one or more mRNAs
coefficients that are more statistically significant. There ismportant for the mRNA-mediated response. Because par-
a relationship between number of clusters, amount of errotial response coefficients are the product of the integrated
in the microarray data and the statistical significance of theesponse (how much the cluster responds to the input) and
resulting coefficients. This relationship is data-dependentelasticity coefficients (how much that cluster affects the out-
Currently, the most accurate microarray experiments quotput response), a high partial response could be because of a
a coefficient of variation (SD/mean) of about 0.2 (Pigteal ., large elasticity, a large integrated response or both. So it is
2002). not necessarily the mRNA cluster that changes the most that

maximum coel
e
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is the most important for the response: a cluster with a smalflifferent expression, some accuracy of this summed cluster

integrated response to the input may affect the output stronglglasticity will be lost. Extra experiments could be performedto

and result in a large partial response coefficient. obtain higher resolution and accuracy by dividing clusters and
Information about the mechanisms of the response canbtaining elasticity coefficients for smaller mRNA clusters.

be obtained from the signs of the integrated response and Control analysis is strictly valid only for infinitesimal

elasticity coefficients. A cluster with positi&® ande rep-  changes, but this is not experimentally practical. Results using

resents the upregulation of a system that acts to increadarge changes will be acceptable if assumptions of linearity are

the response. If both coefficients are negative, a system thatasonable. We propose the use of gene knockouts as modu-

opposes the response is downregulated, and overall this wilhtions, but these large changes may overstep the range where

increase the response. A positiiRand a negative describes  responses are linearly related to inputs. The assumption of

the upregulation of mechanisms that oppose the responsknearity is testable by carrying out the analysis following

and so on. smaller experimental changes in gene expression around the
Clusters containing mRNAs for regulatory pathways arecondition of interest. This could involve small genetic manip-

unlikely to have large partial response coefficients ovemlations such as 25% overexpression. If the results are similar,

physiological outputs. Because they will be upstream of theitinearity is adequate.

target MRNAs that do have direct effects on the output, their

effects willappear as part of the integrated response coefficiey e gy TS

of the target MRNA to the input. To establish how strongly the L . i

‘regulatory’ mRNAs control the target mRNAs, the data canAppI_'Cat'on f)f modular regulation analysisto

be reanalysed with the cluster containing the target mRNA®UDIlished microarray datasets

as the output. Each cluster in turn can be used as output, ®ecause microarray datasets are large and complex, we used a

determine which mRNA clusters are involved in its regulation.program written in Python (www.python.org) to automate the

In this way, the integrated response of a cluster to the input cacalculations. We applied modular regulation analysis to two

be partitioned into the direct effects that are not transmittegublished datasets that had many (but not all) of the features

by other clusters (e.g. via activation of pre-existing transcriprequired for a modular regulation analysis. The published

tion factors) and each of the indirect effects through the otheexperiments had other aims, so were not designed for our

clusters (e.g. via changed expression of mRNAs coding foanalysis and therefore were not ideal. However, some useful

transcription factors). information could be extracted.

Expanding the analysis Important clusters can be dissec- Effect of galactose on yeast doubling time
ted using bioinformatic approaches such as searching thielekeret al. (2001) measured all 6200 transcripts in the yeast
Saccharomyces Genome Database (Ba#t al., 2000) to  Saccharomyces cerevisiae growing in the absence and pres-
identify their mRNAs. They can also be subdivided to seeence of galactose, to investigate regulation of the galactose
which sub-clusters are most important, by adding additionadtilization pathway. They investigated wild-type and nine
experiments to the dataset and repeating the analysis. Once timeitant strains with different genes of the galactose utilization
set of elasticities is established, many different input experipathway disabled. Hybridizations were repeated four times,
ments can be analysed to obtain the integrated response of edmlit experimental errors were not provided. Doubling times
cluster to the new input. The existing elasticities can then béor each yeast strain were given. We performed a modular
used with these new integrated responses to calculate partiggulation analysis to determine which mRNA changes were
response coefficients describing how the new input affects thisnportant for the doubling time response to the addition of
mRNA-mediated response. Important transcripts (and thosgalactose.
unexpectedly found to be much more or less important than First, the dataset was reduced from 6200 mRNAs to the 997
anticipated) should be directly modulated, to confirm the resthat changed significantly in one or more condition (Ideker
ult. If many transcripts that were expected to be importangt al., 2001). The nine different knockout strains (in the pres-
have low partial response coefficients, the problem will haveence of galactose) were used as modulation experiments.
been greatly simplified even if it has not been solved. ConTherefore, the maximum number of clusters was nine. To
versely, previously uncharacterized genes may be recognizeatheck the dataset for any problematic experiments that con-
as important, flagging them for further investigation. tained high error or were too similar to others, we followed
The output has an elasticity to each mRNA cluster. If thethe validation process described above and in Curtis and
individual mMRNAs in the cluster have identical expression,Brand (2002). The microarray data were grouped into one less
the elasticity to the cluster is the sum of the elasticities tocluster than there were experiments, i.e. eight clusters. Each
each of the individual mRNAs. If not, the summed elasti- experimental modulation was omitted in turn, and each time
city is weighted by how much component mRNAs deviatea set of elasticity coefficients was calculated. This process
from the cluster mean. As the genes in a cluster have slightlwas repeated until a stable solution was reached, using five
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the knockout experiments, not the galactose-addition experi-

ment. This allows the clustering and calculation of elasticity

coefficients to be independent of the input stimulus.

To investigate the regulation of cluster F, the system was
reanalysed with cluster F as the output (data not shown).
One cluster was responsible for the regulation of cluster F.
) A total of 9 of the 13 genes in this cluster encoded proteins
clusterC cluster D involved in amino acid biosynthesis, e.g. ARG4. This sug-

' gests that increased amino acid biosynthesis is required for

the large upregulation of the GAL1, 7 and 10 proteins, allow-

ing galactose metabolism, and leading to faster growth. The
important cluster did not contain transcription factors, sug-
gesting that the proteins regulating gene expression in this
system are not themselves transcriptionally regulated, instead
they are allosterically activated. This analysis shows how
modular regulation analysis of microarray data can discrimin-

\ =% 7 ate between direct and indirect effects. Cluster F was found to

\ \\ / be directly involved in the doubling time response to galactose.

V5 v When the dataset was reanalysed, one cluster was found to be

P : the most important for the regulation of cluster F. Therefore,
the mRNAs in this cluster transmitted an indirect doubling
time response to galactose.

Fig. 5. Euclidean hierarchical clustering of the dataset of ldeker The sum of the partial response coefficients predicts that the

etal. (20'02 into )S'deusfr? ust'”gthe S'Xt‘r’]a"dat?d e’;pe”m‘?ms':heoverall response transmitted by the mRNAs is a decrease in

expressioniog OT each cluster across tne series or experiments | . : H .

shown: each Iillge is a different mRNA. For clarity, onlypZOO of theSdOUbIIng time. Thls_Was obse_r_ved by Ideleeal. (2001). the_

640 MRNASs in cluster D are shown. yeast grow faster with an addltlona}l carbon source. T_h_e differ-
ence between the sum of the partial response coefficients and
the observed response (Table 1) is theoretically equal to the

clusters and six experiments. A final solution of six clustersresponse transmitted by the non-mRNA routes. This would

and six experiments was obtained. The three experimentgquire the non-mRNA route to transmit an opposing large
that were omittedGAL2, GAL6 andGAL10 knockouts) were increase in doubling time, which is unrealistic. More likely,
too similar to other experiments in the dataset. Grouping théhere are problems with linearity of the integrated response or

997 mRNAs into only six clusters gave reasonably coherentlasticity coefficients: addition of galactose (or deletion of a

clusters (Fig. 5). Table 1 gives the composition of the clustergene) is a large step-change, rather than the small change that

and the results of the modular regulation analysis. Figure @ontrol analysis requires. Use of an intermediate concentra-
shows the results graphically. tion of galactose as an input could confirm the precise values

Modular regulation analysis shows that two mRNA clustersof the integrated responses.

(E and F) mediate the change in doubling time in response The dataset provided no experimental errors, precluding

to galactose. Cluster E transmitteeb0% of the mRNA-  use of Monte Carlo analysis to test for statistical significance.

mediated response and contained 23 genes, including thessuming significant results, our analysis revealed that sev-
galactose metabolismregulatory g€ _80. Cluster Fmedi- eral GAL genes were important for the response to galactose,
ated about 40% of the response and contained four genewithout requiring any prior knowledge of the functions of

the metabolic geneGAL1, GAL7 andGAL10, and the reg- genes. The analysis did not require the genetic modulations
ulatory geneGAL3. This result was obtained without prior to be in theGAL genes; as long as the modulations were inde-
knowledge of the mRNA cluster contents. The two importantpendent and resulted in different patterns of expression, the
clusters had large partial response coefficients because théynction of the knockouts was not important. All the knock-

had large integrated response and large elasticity coefficientsuts in the dataset were of genes in the galactose utilization

It is not necessarily the clusters that change the most that apathway, because this was the pathway under investigation by

most important, but here they were. The integrated responddekeret al. (2001).

of cluster F to galactose was heavily biased by the presence of

GAL3. Without GALS3, this cluster would have an integrated ) )

response of around 300, making cluster F the single modeffect of 2-deoxy-D-glucose on yeast relative fitness

important cluster for the respongeAL3 is clustered with the Hugheset al. (2000) published a large dataset of 300

other three mRNAs in cluster F on the basis of its expression imicroarray experiments, measuring the full transcriptome of

cluster A 3 cluster B

log expression

cluster E : cluster F

experiment {GAL gene deleted)
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Table 1. Coefficient values and cluster contents for the six-cluster solution of the dataset ofétlak¢P001)

Cluster IR cester ghoubing time MRNA clusteREOLOIN9 I Percentage of GAL genes Size
partial response

A —-0.90 0.21 -0.19 0.2 21
B —-0.74 —7.76 5.70 —6.9 229
c —0.63 0.68 -0.43 0.5 5 80
D 0.16 7.81 1.23 -15 2,4,6 640
E 4.53 -11.71 —53.05 64.3 80 23
F 6.09 —-5.87 —35.73 43.3 1,3,7,10 4

Total —82.46

Observed —0.20

Non-mRNA 82.26

‘Percentage of partial response’ describes how much of the mRNA-mediated response is transmitted through each cluster. It is the partiabrekmtesdivided by the sum of
the partial response coefficients, displayed as a percentage. The response transmitted by the non-mRNA routes is calculated by subtractitig tharsahnexfponse coefficients
from the observed response to galactose (Idekalr, 2001).

A for each mRNA measurement in each experiment was given.
IRT‘”' o - The experiments were designed to prgdigt the function of
i unknown genes, because genes with similar functions tend
e to be coexpressed and cluster together.
One of the chemical addition experiments was chosen
arbitrarily to be the system input: 2-deoryglucose. This
galactose doubling non-met)e/lbolizable gIL):cose anF;Iogue inh]?z?cs glycolysis and
4.—;— ume causes depletion of inorganic phosphate and osmotic and cell
. wall problems_ (Kratk;etgl y 19_75). Ofthe 2?6 kn_ockouts, 120
> e had both replicate hybridizations and relative fithess measure-
—_— ments, so could be used as experimental modulations. Relative
fithess was used as the output response. We performed a mod-
B ular regulation analysis to determine which mRNA changes
WANA Ciser . goutins tine were important for the effect of 2-deoxy-glucose on relative
fitness.
Following calculation and testing as described above, a

solution was found at 78 clusters. Coefficients for the most

important MRNA clusters are shown in Table 2 and Figure 7.

palactose doubling Control of the response was distributed between several
) time clusters, reflecting the systemic effects of 2-deoxglucose.
' : Cluster 37 was the most strongly upregulated by 2-demxy-

glucose, while cluster 44 had the strongest effect on relative
fitness (Fig. 7A). However, cluster 44 was only weakly upreg-
' ulated by 2-deoxy-glucose, and the overall response to
_ ) _ 2-deoxyp-glucose was mediated mostly by clusters 37 and
Fig. 6. The six-cluster solution of the system of ldekeral. 43 534 py the sum of many small positive and negative
(2001). ) Integrated response and elasticity coefficierB3.Rar- gfa ot through other clusters. The relatively strong expression
tial response coefficients. The weight of the line indicates the relative - . L
value of the coefficient. Grey: negative coefficient; black: positiveChanges in the ot_her clusters illustrated "? Figure 7A had only
coefficient. The values of the coefficients are shown in Table 1. §mal| effepts on fitness. Cluster 37 contains 9”9 gene, encod-
ing a sodium—phosphate symporter, suggesting an attempt to
correct the phosphate shortage caused by 2-deegiycose.
Scerevisiae. A total of 13 experiments were chemical addi- Cluster 43 contains five genes, one involved in cellular fusion,
tions to wild-type yeast, and 276 were different knockout yeasthe other four of unknown function. The amount of response
strains. The ‘relative fitness’ of the knockouts was measuretfansmitted by non-mRNA routes could not be calculated as
in a quantitative parallel growth assay. Microarray hybridiza-the observed relative fitness response to 2-depgjucose
tions were repeated, and using an error modeP-@alue  was not available.
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Table 2. Coefficient values for the most important clusters in the 78-cluster A

solution of Hughest al. (2000) mRNA cluster relative fimess
[R 2-deoxy-D-glucose S"'"N-\' \ cluster
Cluster  IRIEAMSE,, epllicfese cwseRzaneine:  Size '
37 9.62 0.16 1.53 1 ———— | cluster 30 | ———
60 0.46 0.76 0.17 1 ;
30 1.72 0.17 0.30 1 2—dc0.\)— -|||||||||||||||I|| ||||||||||Il||n||n fafva
58 1.04 0.26 0.27 1 D-glucose Fitricss
12 0.90 0.30 0.27 1 s | gther - [LCCCCCLUPTT [ ERRER:
38 1.16 0.15 0.17 39 N vy
41 2.56 0.06 0.16 1 .
67 0.15 0.83 0.12 13 C:
49 0.23 0.46 0.10 3 J
Other 0.73 60
positive
Other —0.65 46 B
negative mRNA cluster olative fine:
71 -0.95 021  —0.20 1 .
4 3.66 —0.07 —0.27 2 b
cluster 37
44 0.07 —4.89 —~0.34 6141
53 0.22 ~1.62 —-0.35 3
43 211 ~034  -073 5 ——{slustend0 ———
Total 1.13
2-deoxy- - calatie
D-glucose fitness
Most of the more important clusters had positive integrated
responses to the input, suggesting that various systems thai [cluster 53]
both facilitate and oppose the overall response were upreg- J
ulated in response to 2-deoxyglucose. The sum of the

partial response coefficients was positive, suggesting that the

relative fitness of the yeastimproved in response to 2-deexy- Fig. 7. Coefficients from the 78-cluster solution of the dataset of
glucose. At high concentrations, 2-deomglucose is toxic, Hugheset al. (2000). The three clusters with the most positive and
SO a negative sum of partial responses might have been Imost negative partial responses are shown, as well as the sum of
expected. The partial response coefficients in Table 2 anthe remaining positive (‘othet’) and negative (‘other-") partial
Figure 7 show the potential value of the regulation analysigesponse coefficientsA] Integrated response and elasticity coef-

in allowing a deeper understanding of microarray resuilts, pulicients. B) Partial response coefficients. The weight of the line
were they statistically significant? indicates the relative value of the coefficient. Grey: negative coeffi-

To test for significance, we performed a Monte Carlocnent; black: positive coefficient. Integrated response and elasticity

. . . . .. coefficients are not summed for ‘othetand ‘other—’; they are rep-
analysis usmg the pUbl_IShEd e_xpenmental error, as desc”_beré)sented by unweighted dashed arrows. The values of the coefficients
above. This resulted in partial response coefficients With, .o shown in Table 2.
pseudoP-values between 0.4 and 0.6, showing that the noise
inthe microarray data was too great for the results to be statist-
ically significant (pseudd® < 0.05). We calculated that the information that many other methods cannot. While this type
data would need a coefficient of variation of 0.1 or better toOf analysis requires a series of experimental modulations,
produce at least one statistically significant elasticity coeffi-0ther techniques for finding mRNAs important for a response
cient. The average coefficient of variation for this microarray@lS0 require many experiments and are less general, quant-

data was about 0.6, so the reproducibility was insufficient foftative and inclusive. This method is general because it can
a solution using so many clusters. be applied to a range of problems and systems, from genetic

networks to drug targets. No prior knowledge is needed about

which genes are in which clusters, or what the genetic mod-
DISCUSSION ulations are, provided that they are different from each other.
Modular regulation analysis is a promising method that isModular regulation analysis does not require the important
highly relevant to expression profiling to find mRNAs that mRNAs to have been knocked out or overexpressed; as long
are important in mediating responses. Our analysis of pubas their expression changes in one or more of the experimental
lished datasets shows that it can be used to extract importantodulations, the information is accessible. The method is
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