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ABSTRACT
Motivation: Microarray data has been shown recently to
be efficacious in distinguishing closely related cell types
that often appear in different forms of cancer, but is not
yet practical clinically. However, the data might be used to
construct a minimal set of marker genes that could then
be used clinically by making antibody assays to diagnose
a specific type of cancer. Here a replication algorithm is
used for this purpose. It evolves an ensemble of predictors,
all using different combinations of genes to generate a set
of optimal predictors.
Results: We apply this method to the leukemia data of
the Whitehead/MIT group that attempts to differentially
diagnose two kinds of leukemia, and also to data of
Khan et al. to distinguish four different kinds of childhood
cancers. In the latter case we were able to reduce the
number of genes needed from 96 to less than 15, while
at the same time being able to classify all of their test data
perfectly. We also apply this method to two other cases,
Diffuse large B-cell lymphoma data (Shipp et al., 2002),
and data of Ramaswamy et al. on multiclass diagnosis of
14 common tumor types.
Availability: http://stravinsky.ucsc.edu/josh/gesses/
Contact: josh@physics.ucsc.edu

INTRODUCTION
cDNA and oligonucleotide microarrays have been used
with great success to distinguish cell types from each
other, and hence has promising applications to cancer
diagnosis. While the histopathology of two cells may
appear very similar, their clinical behavior, such as their
response to drugs can be drastically different. The use
of microarrays has been shown in many cases to provide
clear differential diagnosis rivaling or surpassing other
methods and leads to a clustering of data into different
forms of a disease (DeRisi et al., 1996; Alon et al., 1999;
Perou et al., 1999; Zhu et al., 1998; Wang et al., 1999;
Schummer et al., 1999; Zhang et al., 1997; Alizadeh et
al., 2000; Golub et al., 1999; Khan et al., 2001).

Many approaches have been used to classify microarray
data. These include the use of artificial neural networks

(Khan et al., 2001; Furey et al., 2000), logistic regression
(Li and Yang, 2002), support vector machines (Brown et
al., 2000; Furey et al., 2000), coupled two-way clustering
(Getz et al., 2000), weighted votes—neighborhood anal-
ysis (Golub et al., 1999) and feature selection techniques
(Xing et al., 2001). For much of the data all these tech-
niques appear to give similar results and their performance
improves as the amount and quality of data increases.

To classify samples using microarray data, it is neces-
sary to decide which genes should be included in a pre-
dictor. Including too few genes will not discriminate in
a detailed enough manner to classify test data correctly.
Having too many genes is not optimal either, as many of
the genes are largely irrelevant to the diagnosis and mostly
have the effect of adding noise, decreasing the ‘informa-
tion criterion’ (Li and Yang, 2002; Akaike, 1974; Burn-
ham, 1998; Schwarz, 1976). This is particularly severe
with a noisy data set and few subjects. Therefore an ef-
fort is made to choose an optimal set of genes for which
to start the training of a predictor. This is done in a variety
of different ways, such as a kind of neighborhood analysis
(Golub et al., 1999), principle component analysis (Khan
et al., 2001), or gene shaving (Hastie et al., 2000). A pre-
dictor can then be developed from this carefully chosen
subset of genes.

Recent work (Li and Yang, 2002) addressed the problem
of gene selection for a leukemia data set (Golub et al.,
1999). They initially ranked genes as had been done in
the first analysis of Golub et al. and used the top ranked
genes. They varied the number they included and found
no clear indication of any optimum number aside from the
conclusion that the number should be much smaller than
the 50 that had been originally used.

Here we develop gene selection further by making it an
integral part of the prediction algorithm itself. Instead of
using all of the highest ranked genes, we find an effective
method to greatly reduce this number. This can be done
because gene expression tends to be highly correlated,
making many of the initially chosen genes redundant or
even deleterious because of the problem of added noise.

The method introduced here is named GESSES (genetic
evolution of sub-sets of expressed sequences). It makes
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use of a kind of evolutionary algorithm known as a
replication algorithm that has been extensively used in
quantum simulations (Ceperley and Kalos, 1979) and
protein folding (Garel and Orland, 1990). It finds a set of
highly relevant genes by considering a whole ensemble
of predictors, and evolving this population by addition
or deletion of genes until optimal performance has been
achieved.

In the case of small round blue cell tumors, GESSES
reduces the number of genes from 96 down to below 15
while still predicting the test data perfectly. Some of the
perfect predictors have only ten genes.

It is hoped that GESSES will have applications in
the clinical diagnosis of cancer (He and Friend, 2001).
At the moment, microarray experiments are too costly
and time consuming to be used clinically. However, if a
subset of marker genes could be found whose expression
levels could then be obtained using relatively inexpensive
antibody assays, this might become a practical method.
Therefore for this purpose it is important to use as few
genes as possible and still obtain an accurate diagnosis of
the disease.

With the same algorithms applied to leukemia data of
Golub et al., we find conclusions in accord with Li and
Yang (2002) that there is no clear indication of an optimum
number of genes to use in a predictor.

GESSES was applied to several additional data sets,
two data sets related to Diffuse large B-cell lymphoma
(DLBCL) (Shipp et al., 2002) and work (Ramaswamy
et al., 2001) on the diagnosis of 14 different classes of
tumors using microarrays. In these cases, GESSES was
able to reduce the number of genes needed to make a
prediction of a given error rate.

This paper is organized as follows. We discuss the
algorithm used by first providing an overview of its basic
features and then in detail by first defining the terminology
and concepts used. Then we discuss the predictor used,
the scoring function, the kind of evolutionary algorithms
used and the annealing schedules. We then apply this to
the SRBCT, leukemia data, two DLBCL data sets, and
multiclass tumor data. Finally, we make some concluding
remarks.

THE ALGORITHM
Overview
The algorithm can be divided up into several parts.
First we are interested in the evolution of an ensemble,
or population, of predictors. What distinguishes one
predictor from another is the subset of genes it utilizes in
making a prediction.

The most successful predictors will be the ones mak-
ing fewest mistakes on test data. To determine which pre-
dictors are most successful, we utilize a scoring function

which gives higher scores when more data points are cor-
rectly classified, that is the smallest classification error.
Because we can only use a fixed amount of training data
when evolving the predictors, we use leave-one-out cross
validation (LOOCV) to calculate the score for a certain
predictor. We obtain better predictors by adding an addi-
tional term to the scoring function to give higher marks to
predictors that do a good job of grouping the data into well
separated clusters, each cluster corresponding to the same
type of cancer.

We would like a method that searches through a large
number of different subsets of genes to come up with a
population of the highest scoring predictors. This is often
referred to as a wrapper method (Langley, 1994; Kohavi
and John, 1997).

Most genes have little or no predictive value. The
more of them that are included as possible choices,
the more noise is added to the predictions which leads
to a degradation in the performance of the prediction
ensemble. Therefore we apply a filter (Xing et al., 2001)
method to construct an initial gene pool containing the
most likely candidate genes. We use a simple method of
ranking genes similar to previous work (Ben-Dor et al.,
2000).

We employ several methods for evolving our population
of predictors. We produce offspring by random mutations
and deletions of genes, with the number of replications
of a particular predictor depending on how the mutations
effect the scoring function. The notion of temperature is
employed to control the degree to which less favorable
mutations are kept in future generations. The higher the
temperature, the more unfavorable predictors are kept. We
slowly cool the system so that eventually we weed out all
but the most fit predictors. This is a kind of simulated
annealing. In addition we employ deterministic methods
of evolution that try many combinations, only keeping the
ones that score highest.

Terminology
We have samples of microarray training data Dt ≡
{D1, D2, . . .} with each sample consisting of N genes.
The complete set of genes Gt is the collection of genes 1
through N and we will consider subsets of Gt , for example
the subset α1, α2, . . . , αm . (e.g. genes 2, 5 and 9), which
we denote Gα .

The set of possible types is denoted T . Each sample
D has a classification of type T , in this case the type of
cancer, which can take one of |T | values.

Predictor
We define a predictor P as a function that takes a data
sample D and outputs a type T , in this case the type of
cancer that is associated with that data. That is P(D) →
T .
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In this work we will use a k-nearest neighbor search
(Duda and Hart, 1973) to construct the predictor. In the
results reported below, we use k = 1, that is, the set
of samples that forms the training data Dt are compared
with the target sample D by finding the usual Euclidean
distance between D and each vector in the training set.
The sample in the training set closest to D gives the
classification T of D. The distance depends on what
subspace of genes G is used hence the predictor depends
both on the training data and G.

We will use variants of this basic predictor when
constructing a scoring function that we discuss below. For
this we will not only need the closest point, but the values
of the distances to all sample points.

Scoring function
The scoring function has two parts and is closely related
to LOOCV. We iteratively single out one data point and
consider this to be pseudo test data. If this point is
predicted correctly, we add 1 and also add a term that
maximizes the separation between different classes as
follows.

We consider the distances grouped by the classification
type of the target points. We consider the shortest distance
of each type which we call d1, d2, . . . , d|T |. Of these we
take the two shortest, di and d j and add C |d2

i − d2
j | where

C is a constant chosen so that the value of these added
terms is � 1.

After looping through the entire data set this way we
obtain the total score.

The scoring function depends on the predictor, which in
turn is determined by the training data and the subspace of
genes G. We will denote this latter dependence as SG

Initial Gene Pool
Often it is necessary to narrow down the genes that are
considered from the many thousand that are measured on
the microarray down to of order 102 that are most relevant.
There are many ways of doing this, one common method
being principle component analysis. For the purposes
here we choose instead a different method that is highly
effective and similar to one previously used (Ben-Dor et
al., 2000).

We consider how genes distinguish two types ti , t j from
each other. For each gene g we consider its expression
levels in the training samples. We rank all the training
samples in terms of the expression level of g. We are
looking for genes that for high levels give type ti and
for low levels give type t j (or vice-versa). When ranked
this way, they sometimes will perfectly separate, that is
the first part of the list is one type, and the last part is
the other. These genes are ranked the highest. Most of the
time however, a gene will not separate so clearly and there
will be overlapping regions. Those with more overlaps of

different types are ranked lower. In this way we have a
ranking of the genes that are best able to distinguish ti
from t j , and we pick the top M genes.

We then consider all distinct combinations of ti and t j
and pick the best M genes from each combination. Genes
may overlap, narrowing the initial pool. This is our initial
set of genes Gi that we will consider. A slight variant
in this algorithm is necessary if the data set contains too
few examples of a given class. In that case one compares
type ti with all other classes, instead of only t j . Otherwise
a large number of irrelevant genes can rank highly by
chance.

Evolution Algorithms
Starting off with an ensemble of different gene subspaces
we want to determine rules to evolve it to a new one
that gives a better set of predictors. To do this, we have
to have a measure of how well a predictor classifies
samples into separate types. We do this by means of
the scoring function described above. The evolutionary
methods described below show how to utilize the scores
to determine which predictors are kept and which are
eliminated.

Statistical Replication
In analogy with statistical mechanics, we can think of
the scoring function as (negative) energy and invent a
dynamics that evolves them towards the highest scoring
(lowest energy) states. We do this at finite temperature
to allow the system to accept predictors that occasionally
may be less fit than their predecessors to get rid of local
minima in predictor space and to allow for a diverse
population of predictors.

Suppose the system has evolved to an ensemble of n
gene subspaces E ≡ {G1, G2, . . . , Gn}, we will now
employ a variant of a replication algorithm used in other
contexts (Ceperley and Kalos, 1979) to replicate and
modify each of the Gi ’s.

1. For each G ∈ E we produce a new subspace as
follows.

(a) A set of genes G has genes {g1, g2, . . . , gm}.
We randomly mutate genes according to three
possibilities:

i. Add an extra gene: We choose a randomly
chosen gene gr from the initial set Gi ,
and add it to G, producing a new set G ′
of genes {g1, g2, . . . , gm, gr }. If gr ∈ G,
G ′ = G.

ii. Delete a gene: We randomly delete a gene
from G producing a new set with m − 1
total genes.

iii. Keep G the same.
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(b) We compute the difference in the scoring
functions δS = SG ′ − SG .

(c) We compute the weight for G ′, w = exp(βδS),
where β is the inverse ‘temperature’.

2. Let Z denote the sum of these weights. We normal-
ize the weights by multiplying them by n/Z .

3. We replicate all subspaces according to their
weights. With a weight w, the subspace is replicated
[w] and an additional time with probability w−[w].
Here [w] denotes the largest integer < w.

Mutations as described in 1(a)ii and 1(a)iii can be
optionally added, as the algorithm works well with just
1(a)i.

In summary, every subspace in the system is mutated
and replicated in accordance with how much fitter it was
than its predecessor. By carefully normalizing the system,
the number of subspaces in the ensemble stays close to n.
Note that we can also do more than one potential mutation
in step 1. We will generalize this to allow nm potential
mutations.

Annealing
As the system evolves, the scoring function gives similar
answers for all members of the ensemble. In order to
improve convergence, it is useful to make the temperature
a function of the spread in scores (or energy). A variety
of schedules for the temperature were tested. The one
that worked best lowered the temperature in accord with
the fluctuation in the score (or energy) from predictor
to predictor within the ensemble, σE . The temperature
scale was adaptively chosen to be proportional to σE . This
quickly changes energy scale when all training examples
are correctly classified, but cools down slowly enough so
as not to get trapped in local minima.

This schedule is also useful because it allows us to de-
fine a simple termination condition when all moves (addi-
tions and deletions) are allowed. In this case the condition
is that the ensemble is unchanged for ten consecutive iter-
ations. In practice the system terminates fairly rapidly be-
cause eventually the temperature decreases to essentially
zero, leaving only a small number of systems left in the
ensemble.

Deterministic Evolution
As an alternative to the statistical replication method
above, we also employed a method that is computa-
tionally more expensive but that often performs better.
The statistical method does not explore all possible
combinations of genes at each stage of growth. This
can miss optimal gene combinations. We get around
this by a deterministic exploration of the optimum gene
combinations at every step. A single step goes as follows:

1. Construct all distinct unions of the G’s in the
ensemble E with individual genes gi in the initial
gene pool Gi , i.e. g1, g2, . . . , gm, gi .

2. Sort all of these combinations by their score, keep-
ing the top ntop of them.

To save computer time we tried various values for ntop.
It was found that ntop = n, (the number of G’s in the
ensemble) performed quite well. Another variant was to
construct only half the unions and keep the top n, for
computational efficiency.

RESULTS
SRBCT Data
Small round blue cell tumors (SRBCT) of childhood are
hard to classify by current clinical techniques. They appear
similar under a light microscope and several techniques
are normally needed to obtain an accurate diagnosis. The
paper (Khan et al., 2001) used microarrays to study their
classification using a single layer neural network. This
work differed from previous studies in that they were
attempting to distinguish between four different cancer
types instead of the more usual two. They used 63 samples
for training and tested with 20. By using a clever method
combining principle component analysis and sensitivity of
their neural network to a gene, they were able to reduce the
number genes needed to 96 yet still classify all different
forms of cancer in test data perfectly.

Here we use the same data set to reduce the number of
genes needed and still classify the test data perfectly.

Starting with their data set of 2308 genes, we con-
structed the initial pool of genes by considering how
well a gene discriminates type i cancer from type j , as
described above. Since there are four possible types, we
have six combinations of i and j . For each of these we
take the top ten genes best able to discriminate for each
i, j pair. This gives a total of 50 genes, because it turns
out that ten of these overlap between groups.

We then evolve these gene subspaces according to the
statistical replication method with all mutational moves
referred to in the section on statistical replication, 1(a)ii
and 1(a)iii. We started with the same initial pool of
genes as above. The results are shown in Figure 1.
The average number of dimensions rises to a maximum
of about 16 after 32 iterations, while the number of
wrong classifications decreases from about nine down to
about 0.5. By iteration 26 all members of the ensemble
classify the training data perfectly. At this point, as
was expected, the temperature falls very rapidly, so
that the scoring function only probes its small second
piece. Now the temperature drops and most classifiers
are predicting perfectly. Eventually the systems predict
the test data perfectly and we continue to cool it until
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Fig. 1. The statistical algorithm using all mutational moves. The
average number of dimensions (solid line with + symbols), the
average number that the predictor got wrong (× symbols), and
the number of distinct systems in the ensemble (dashed lines) as
a function of the number of iterations. The number of genes used
here was 50 (nm = 20).

the termination condition is met described above (see the
section annealing). For the purposes of these figures, the
number of distinct systems is the number of parents that
the ensemble has in common.

We next use the deterministic evolution method de-
scribed above starting with an initial pool of 90 genes of
which 15 overlapped, giving a total of 75 initial genes.
Evolving these with ntop = 150 gives the results shown
in Figure 2. The + point in Figure 2 shows the average
number of genes in a predictor as a function of the number
of generations. Of the top 100 predictors, all predicted
the test data perfectly. The average number of genes in a
predictor was 12.7.

With this same initial pool of 75 we also ran the
statistical algorithm allowing for all mutational moves, as
was done for Figure 1. The features of this run are similar
to those for the run with 50 initial genes, Figure 1. After
iteration 28 the test data is predicted perfectly and the
temperature rapidly decreases. At iteration 65 all system
predict the test data perfectly. The temperature is further
decreased until a steady state solution is reached, in this
case where the number of distinct systems is three.

The implementation of GESSES is quite efficient and
the above results took of order a few minutes to complete
on a modest 450 Mhz Celeron machine, using of order 5
Mbytes RAM.

The genes found by these methods are mostly a subset
of those found previously (Khan et al., 2001). For example
with 75 initial genes as described above (Figure 2), the
union of all predictor genes found in the top 100 predictors
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Fig. 2. The average number of genes and average number of
mistakes made as a function of iteration in a predictor generated by
the deterministic algorithm for an initial pool of 75 genes SRBCT
data (Khan et al., 2001). The parameters are described in the text.

gave a total of 24 genes. These were a subset of the 96
Khan et al. genes. However with other runs this is not
always the case. For example with a run using statistical
replication with only addition of genes and the same initial
pool as Figure 1, we find that out of a total of 25 different
genes that comprise all the possible genes used by the 50
predictors, four are different than those found by Khan et
al. Of those four, one of them appears only one time, and
two of them occur quite frequently in the predictors. One
of these additional genes, neurofibromin 2 appears in all
predictors, and the other thioredoxin appears in 37 of the
50 predictors. The third, homeobox B7 appears six times.
Neurofibromin has been associated with tumorigenesis
(Reed and Gutmann, 2001). It is believed that thioredoxin
may play a role in cancer and Thioredoxin-1 is often
associated with aggressive tumor growth (Powis and
Montfort, 2001). In a study on multiple carcinigenesis of
mouse skin (Chang et al., 1998), Homeobox B7 appears to
be expressed at a much lower level than in normal mouse
skin. Because this gene only appears in 16% of predictors,
this may not be a significant correlation.

Leukemia Data
Microarray data (Golub et al., 1999) was obtained from
patients having two types of leukemia, acute lymphoblas-
tic leukemia (ALL), and acute myeloid leukemia (AML).
The data here was taken from bone marrow samples and
the samples were of different cell types, for example B
or T cells and different patient genders. Each sample was
analyzed using an Affymetrix microarrays containing ex-
pression levels of 7129 genes. The data was divided into
38 training data points and 34 test points.
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Fig. 3. The statistical algorithm using all mutational moves, which
includes deletions with an initial pool of 50 genes for the leukemia
data (Golub et al., 1999). The average number of dimensions (top
curve, solid line with + symbols), the average number that the
predictor got wrong (bottom curve, × symbols), as a function of
the number of iterations.

Various different replications algorithms were tried
with this data: statistical replication algorithm without
deletions, and with deletions, and deterministic evolution
with different initial pool sizes. The predictors vary in
accuracy; there are predictors that make no mistakes and
some that make several. There appears to be no way of
distinguishing between them short of using the test data.
The lack of convergence to near perfect predictors is in
agreement with other work on this data set (Furey et al.,
2000; Li and Yang, 2002; Golub et al., 1999).

Results from statistical replication with all mutational
moves is shown in Figure 3. It shows the results from
starting from an initial pool of 50 distinct genes. The
average number of dimensions in a predictor rises to more
than 14 by iteration 63 and then declines, by iteration
80, to a dimension of only 2. During this evolution,
the average number of mistakes made on the test data
remains fairly constant at 1. Unlike the SRBCT data,
there is no convergence to almost perfect prediction, and
the individual predictors have a wide range of different
dimensions all giving similar predictive ability. Note that
although this is the case for the test data, the method
predicts perfectly the training data, through LOOCV. For
example for a pool of 50 genes after iteration 20 the test
data prediction is perfect, with an average dimension of
about 9.

Varying parameters such as the initial number of genes,
ntop, and the method of scoring does not lead to a statis-
tically significant improvement in the average number of
mistakes made. Also, as the above cases illustrate, the op-

timum number of genes in a predictors varies between 3 to
25 depending on parameters. This is consistent with recent
work on this data where also no clear cutoff in the number
of genes needed for an optimal predictor was also found
(Li and Yang, 2002).

Diffuse large B-cell lymphoma
Recently microarrays in conjunction with supervised
learning algorithms were used to study the important
problem of Diffuse large B-cell lymphoma (DLBCL), the
most common lymphoid malignancy in adults (Shipp et
al., 2002). Using 6817 genes from tumor specimens, the
authors studied two problems. First, they studied whether
their microarray data could be used to distinguish DLBCL
from a related B-cell lymphoma, follicular lymphoma
(FL). Then they studied if the success or failure of
chemotherapy could be predicted from gene expression
data of patients.

DLBCL versus FL
Biopsies from patients before treatment were obtained
from 58 patients diagnosed with DLBCL and 19 with
FL. Shipp et al. used LOOCV to select their prediction
algorithm. They found that a 30 gene predictor could
correctly classify 71 of 77 tumors (91%).

GESSES was used to analyze the same data using
statistical replication with the extra two mutational moves.
With different random numbers and different numbers of
starting top genes, 77 and 130, GESSES always predicted
of 77 out of 77 (100%) of the data correctly. The final
predictors ranged in number of genes, from four to 12. The
four gene predictor shared three genes in common with
those found previously (Shipp et al., 2002).

It should be noted that LOOCV is expected to do better
than it would on independent test data (Xing et al., 2001).
However the original work (Shipp et al., 2002) did not
provide any extra test data, but with 77 subjects it appeared
plausible that an independent test could be carried out
by splitting the data into two groups, one for test and
one for training, to get a more conservative estimate of
the predictive value. The data was split into 65 training
and a 12 test samples. Half of the test data was DLBCL
and the other FL. The predictor converged to one with
two wrong and ten correctly classified. The number of
final dimensions in the predictor was six. This gives a
significance of P < 1.2 × 10−3 compared with random
prediction. These numbers are expected to improve with
larger data sets.

DLBCL outcome analysis
Shipp et al. went on further to analyze the outcome of
chemotherapy. The outcome of 58 patients was divided
into two sets, 32 who were ‘cured’ and 26 who were
‘fatal/refractory’. Using a similar analysis to the DLBCL
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versus FL work, they used LOOCV to select their best
predictor. The best predictor they found had 13 genes, and
on LOOCV they found that it could predict 44 out of 58
(76%) correctly.

The same data was analyzed using GESSES utilizing the
same parameters as were used above. Starting with the top
130 genes, it was able to find an ensemble of predictors
where all outcomes were correctly classified by LOOCV.
The number of genes for these 86 predictors ranged from
a minimum of 22 to a maximum of 31. Out of these
predictors, there were a total of 53 separate genes. Three
of these genes are identical to ones in the 13 gene predictor
of Shipp et al.

Multiclass diagnosis of Common Tumors
Recent work (Ramaswamy et al., 2001) used microarray
data to attempt to distinguish 14 different kinds of tumors.
They collected 214 tumor samples spanning these types
and analyzed them with an array of different learning
algorithms using the expression levels of 16 063 genes.
Six different variants of SVM and k nearest neighbor
algorithm were tried with different numbers of genes.
LOOCV on the 144 subjects used for training data had
their best predictor being able to distinguish the correct
class on 78% of the samples. When this was tried on the
54 test samples, they also found that it worked on 78%
of the test samples. This predictor was an SVM using
all 16,063 genes. A slight complication with the analysis
is that eight metastatic samples of different kinds were
included in the test data. They found that six out of eight
of these were identified correctly. The authors suggest that
this indicates that many cancers retain their tissue of origin
identity throughout their metastatic development.

A variety of separate runs were done on this data
using GESSES with statistical replication and the two
extra mutational moves. Excluding metastatic samples, the
results typically range from 63% correct to 83%. With,
metastatic genes included, the results range from 57%
(worst with an initial pool of 182) to 80% (best with an
initial pool of 273). For example, at the end of a run
(β = 681), while there are many separate predictors (154),
5 predictors classified 12 out of 46 samples incorrectly, 16
predictors made 11 errors, 132 made ten errors, and one
predictor made nine errors.

The number of genes used in these predictors ranged
from about 40 to 70. The results from LOOCV are
considerably higher, typically 92%. As mentioned above,
this lower error rate is expected with any method where
cross validation is used to select or optimize parameters
in a model (Xing et al., 2001). The degree of this bias
clearly depends on the details of the algorithm employed.
It is expected that this bias is higher with all mutational
moves present rather than just gene addition.

DISCUSSION
From the fact that a large number of different gene com-
binations perform similarly, and that the data is still quite
noisy, one cannot expect to find the unique combination of
genes that is optimum for cancer diagnosis. However from
a practical point of view, the lack of a unique solution does
not present a problem. Any one of the the predictors found
for the SRBCT data would be a good starting point for the
development of a clinical test based, for example, on anti-
body assays (He and Friend, 2001). In addition GESSES
does not attempt to find a comprehensive set of relevant
genes; there could very well be other relevant genes that
are not employed in the final predictors.

In the case of SRBCT data (Khan et al., 2001), this
method was able to find predictors using fewer than 15
genes that were able to reliably classify test data into one
of four groups. Some of the genes found were different
than the 96 used originally to do this classification and
may be of biological significant. The optimum number of
genes to use in a predictor is approximately 12 ± 2.

GESSES was also applied successfully to several addi-
tional data sets. Leukemia data (Golub et al., 1999), two
data sets on Diffuse large B-cell lymphoma (Shipp et al.,
2002) and one on the classification of 14 different classes
of tumors (Ramaswamy et al., 2001).

For the multiclass tumor data, both GESSES and
the initial work of Ramaswamy et al. fail to achieve
100% success even with the less conservative measure of
LOOCV. The original work gives several reasons for why
their experiment is particularly challenging. Among them
are the possibility of mis-labeling, the noise in the data,
and the small number of examples for each class coupled
with the intrinsic biological variation from specimen to
specimen. The same remarks are relevant to most of the
current microarray data currently available.

It is hoped that using GESSES could help lead to
practical uses of microarray data in cancer diagnosis, for
example using antibody assays (He and Friend, 2001)
from the handful of genes found in this work.
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