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Abstract

Microarrays are becoming a ubiquitous tool of research in life sciences. However, the working principles of microarray-based methodologies
are often misunderstood or apparently ignored by the researchers who actually perform and interpret experiments. This in turn seems to lead
to a common over-expectation regarding the explanatory and/or knowledge-generating power of microarray analyses.

In this note we intend to explain basic principles of five (5) major groups of analytical techniques used in studies of microarray data and
their interpretation: the principal component analysis (PCA), the independent component analysis (IG#sthine analysis of variance
(ANOVA), and self organizing maps (SOM). We discuss answers to selected practical questions related to the analysis of microarray data. We
also take a closer look at the experimental setup and the rules, which have to be observed in order to exploit microarrays efficiently. Finally,
we discuss in detail the scope and limitations of microarray-based methods. We emphasize the fact that no amount of statistical analysis
can compensate for (or replace) a well thought through experimental setup. We conclude that microarrays are indeed useful tools in life
sciences but by no means should they be expected to generate complete answers to complex biological questions. We argue that even wel
posed questions, formulated within a microarray-specific terminology, cannot be completely answered with the use of microarray analyses
alone.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction This commentary wants to give the fundaments, which
will allow the biologist to get out a maximum from microar-
Microarrays have become one of the fundamental tools rays, by understanding their nature and the principles of the
for biologists and great hopes are placed in their ability to statistical methods proposed to him.
answer all the questions asked by the researchers. For this we first give a brief introduction to the subject of
The amount of data created in an experiment is large andmicroarrays, their origins, the different types and their appli-
the nature of the data quantitative, two features a biologist is cation. We then examine the fundamental groups of methods
not necessarily used to or trained for. For the analysis of the used in the analysis of microarrays. Throughout we provide
data, the biologist has to choose from a rapidly increasing the reader with a list of papers allowing him to pursue the
number of methods proposed in the literature, again, without point further.
necessarily having the knowledge and competence to do so. The FAQ section, which follows, contains the answers
He therefore risks overestimating the power and capacity of to questions related to the analysis of microarray data,
the method (to provide him with the answers he is looking often asked during the course taught by this laboratory
for). (http://www.infobiogen.f). This is another way to approach
the subject and again, a list of publications for the interested
reader is provided.
The last section leads us to consider which are the impor-
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2. Fundamentals and basic terminology with the prepared microarray and allowed to hybridize with
the probe. Finally, the resulting signal intensity, which corre-
2.1. General introduction to microarrays lates with the amount of captured probe, is measured, stored

in a computer and then analyzed.

A microarray consist of a solid support on which a series  Recently, efforts have been made to extend the microarray
of DNA segments is arranged and fixed in a regular pattern. technology to the field of proteins. The interested reader
These segments are incubated with a labelled nucleic acidmay refer to the review written bffemplin et al. (2002)
sample. When a nucleic acid sequence in the sample is comfor a comprehensive introduction to this field. For further
plementary to a DNA segment present on the support, it will information on microarray technology, the reader may
bind and hybridize to this, specific segment. This hybridiza- refer to recent review articlesBéarrett and Kawasaki,

tion is recorded and analyzed. 2003; Vrana et al., 2003 he may also refer to a related
NCBI web page [ittp://www.ncbi.nlm.nih.gov/About/
2.1.1. The historical background primer/microarrays.html

As Jordan (2002)points out, DNA arrays were already
being used in the seventies, in the form of dot blots and 2.2. Applications
slot blots. Ekins and co-workers developed microspot fluo-
rescent immunoassays in the late eighties and early nineties, Microarrays can be used for a variety of purposes, includ-
proving that the sensitivity of these miniaturized assays wasing the detection of mutations, DNA sequencing and the
comparable to that of “macroscopic” ones and introducing analysis of gene expression. Microarrays allow measuring the
the concept of microarrayekins, 1989; Ekins et al., 1990; expression levels of thousands of genes at the same time and
Ekins and Chu, 1991 The concept of miniaturization was this opens the possibility to identify differentially expressed
also applied to DNA arrays, using two different approaches. genesCallow et al., 200Pand to cluster those genes sharing
One was to deposit the DNA (or complementary DNA) on similar expression patterngi€yer et al., 1999 They have
glass plates, leading to the first publication of a gene expres-become a widespread tool for analyzing the relative transcrip-
sion microarray article in 19955¢hena et al., 1995The tion levels of genes.
second approach was that of the oligonucleotide array, where The fields microarrays are being used in are numerous and
the DNA is directly synthesized onto the suppdtodor et constantly growing, some examples being:

al,, 1991; Southem et al., 1992 a. clinical medicine (sedoos et al. (2003for a review on

this subject);

2.1.2. Today’s microarrays b. the study of the cell-cycle (see for exammeCune and

In the following, “probe” denotes the immobilized DNA Donaldson (2003)

on the support and “target” the mobile DNA, CDNA or c. the study of the circadian rhythm in animals (see for exam-

mRNA. Some authors, however, use the terms the other way ple Stanewsky (2003)and plants (see for examplavis
round. The supports used for microarrays today are glass and Millar (2001):

(microscope) slides (nylon) membranes or silicon chips. . .
The material fixed on the support (“probe”) can be: d. ;Te(;é%% of plant metabolism (see for examigieai et

a. DNA, representing coding sequences or, more generally,

bieces of genomic DNA. coding sequences, for example, the role of some promoter
b. Complementary DNA, obtained from the mRNA of spe- ng sequ i pie, . ) pre
.regions, by integrating expression profiles with the infor-

cific genes or expressed sequence tags (ESTs); the latter is

usually used for organisms not vet completely sequenced mation on promoter sequence similariBussemaker et al.,
uatly . _9 yetcompletely seq "2000; Park et al., 20Q2Heterologous hybridization to cDNA
c. Oligonucleotides; in the case of oligonucleotide arrays

the oligos are synthesized directly onto a silicon chip; this ™ CrO&TaYS is gaining in popularity andis, for example, used

process has been pioneered by Affymetrix (seshutz et in order to elucidate the molecular basis of complex traits in

al. (1999)for a comprehensive review on oligonucleotide non-tra}d|t|onal model systemsR(enn etal., 2004 .
arrays). As different as these applications may seem, the aim of

the experiments is one of the following:

They are also being used to elucidate the role of non-

The mobile "target” can be: a. To find the genes which indicate a phenomenon (not nec-

a. DNA. essarily at the origin of the phenomenon, but an indicator
b. Complementary DNA (cDNA), obtained from mRNA by of it: expression change correlated with the phenomenon).
reverse transcriptase-PCR (RT-PCR). b. To find the genes which are at the origin of the phe-

¢. mMRNA,; this can be used although cDNA is generally pre-  nomenon under investigation.

ferred. In the first case, the researcher will need to find genes

A hybridization mixture is obtained by labelling the target whose expression levels change considerably, few in num-
fluorescently or radioactively. This mixture is then incubated bers and that can be preferably used in antibody assays (still
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cheaper and faster to set up than microarrai@gugsch,
2003; an analysis of the microarray data will generally be
sufficient in order to identify the genes.

The work done bySekowska et al. (2001gnd Oshima
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(corresponding to th&v experimental conditions), a cloud

in an N-dimensional space. As we are not good at coping
with drawings having more than two dimensions (three still
works well on a computer screen), we are obliged to take

et al. (2002)are examples for the second case and we will the columns 2 by 2 (i.e. one experimental condition versus
come back to them in the course of the commentary; here,another).
an analysis of the microarray data is not enough to find the  Note that when you draw a graph by hand, you will auto-
genes at the origin of a phenomenon (and only these): it is matically try to maximize the use of the paper: you look at
necessary to combine the results of the microarray analysisthe minimum and maximum values for both variables, and
with information from other sources, such as the genomic define the scale accordingly. The machine will do the same.
and the purely biological fieldslérvis et al., 2004; Hirai et  In both cases, the data are transformed through a change of
al., 2004; Riva et al., 2004 This is something importantto  variable: 1 cm on the graph correspondsxtanits of the
bear in mind and will be discussed at various points of the original variable (a linear transformation).
commentary.
3.2.1. Translation

This is an operation which in itself does not pose a prob-
lem, as one is interested in the relative position of the points
to each other: the aim is to find the points that are far away
relative to the main body of the cloud, which means that the
reference frame used to look at the cloud does not really have
much importance. However, the translation may create com-
plications when it consists in bringing a lot of the values close
to zero followed by taking the log of the data, something dis-
cussed in the next section.

3. Data representation and analysis
3.1. The raw data

The microarray data used in the following stem
from experiments on the sulphur metabolism Bf sub-
tilis (Sekowska et al., 20Q01and are freely available
at http://195.221.65.10:1234¢arpenti/. The experiments
were carried out using Panorama nylon filtBrsubtilis gene
arrays (Sigma-GenoSys Biotechnologies); each array con-3.2.2. Normalization
tains all ofB. subtilis’ genes and one gene is represented by ~ Note that drawing a graph or letting a spreadsheet (like
one spot. Each gene spot is represented twice on the array. MS-Excel) draw the graph, implicitly presumes that the sum

The aim of these experiments was to identify the genes of the signal does not change in function of the experimental
differentially expressed when the bacteria are grown with conditions; one allows the data to be normalized. By doing
methionine (“met”) or methyl-thioribose (“mtr”) as sulphur this, one has presumed that the total of the signal in each
source. The experiments followed a fully crossed factorial column is the same: total signal of column 1=total signal
design with four factors (sulphur source, day of experiment, of column 2. This is justified when three conditions are ful-
amount of RNA used and duplicate of each spot). The datafilled: firstly, more than 90% of the genes do not care about the
(raw levels of expression) were gathered in an array of 4107 experiment, i.e. do not change expression in function of the
rows (all B. subtilis genes) and 16 columns (experimental different experimental conditions; in that case one can indeed
conditions). The minimum value was 213, the maximum presume that the total quantity of cDNA (and therefore of the
value 13,455, with two thirds of the data having a value below mRNA) is the same. Secondly, the number of genes analyzed
800. Note that each factor has only two states: all factors arehas to be large: this is a way to make sure that the majority
binary (sedrig. 1). of the genes do not change expression in function of the dif-
ferent experimental conditions. Thirdly, the overall intensity
change of up- and down-regulated genes is similar. The three
conditions are fulfilled in our example, but they would not be
in, say, the temporal analysis of MRNA decay. The reader is
referred to the work obtoyanova et al. (20049r some inter-
esting considerations on this subject, as well as to the work

3.2. The data table and some preliminary considerations
and manipulations

It is natural to want to represent the data in a graph.
We obtain one (and only one!) graph, with dimensions

Sulphur Source
Day of experiment

Protocol

Duplicate

Fig. 1. Experimental design of the transcriptome analysiBati/lus subtilis (Sekowska et al., 2001The experimental setup follows a fully crossed factorial
design. In the case @ekowska et al. (2001he quantity of RNA used for the RT-PCR differed between the two protocols. Note that changing the protocol
(a different quantity of RNA or labelling with Cy3 rather than Cy5) or having duplicats for each gene on the array are all technical factors wisettliecrea
workload without adding any biologically pertinent information. It is preferable to increase the number of states for the biological fact@bpiretbase an
additional sulphur source or an additional experimental day.
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of Zhao et al. (2005)vho propose a normalization procedure 16007
for data not fulfilling the above conditions. 1400+
Instead of just looking at the minimal and maximal values 4,4
in order to best represent the graph, itis advisable to calculate &
the means and variance for each experimental condition: in §
the first case the estimates are based on two points only (min § .
and max) per experimental condition, in the second case the® %
estimate is made using all points. If these are numerous, the 400
result is more stable. 2001
002 00 02 04 06 08 10 G2 t4 46 18

3.3. Graphic exploration z-score

—s— raw data
—a—log
4+— fifth root

00

3.3.1. Preliminary considerations Fig. 2. Effect of different pre-processing methods on the data distribution.
As we said, we are forced to take the columns 2 by 2 The figure shows the effect different pre-processing methods have on the

. . .. . ' data distribution. Shown are the distributio®s)(of the raw data,ll ) after
which means that we will ook gtrojections of our single having taken the log ancd) after having taken the fifth root. As can be

cloud on the different planes. ) seen, either operation brings the distribution closer to a Gaussian one.
What are we looking for? Presuming that the three above-

mentioned conditions are fulfilled, at least 90% of the genes
analyzed will not change expression under the different
experimental conditions. This means that on the graph one
would see them all lying on one line, if it was not for the

As we mentioned in the section above, the reference frame
used to look at the cloud does not really matter and making
a simple translation does not in itself pose a problem. One
. S . . . does need to be careful, though: making a simple translation
noise: the noise is responsible for making those points look is indeed no problem, nor is taking the log. However, when

more like .a'cigar which is the widgr the more noise t.here s. executing both operations, one needs to be cautious: if the
The remaining 10% of the genes will change expression; theytranslation consists in bringing a lot of the values close to

have an atypical behaviour and will not lie on the line (the zero, taking the log afterwards will create a distortion in the

cigar) but be apart. These genes that. are _apgrt_from the n”!airlzloud of points: one has just created a whole package of data
body of the CI.OUd are the ones the t_)lologlst IS |nte.rest_ed N- ith values going towards minus infinity. This means that
Note that having the 90% of the point lying on a line is an in trying to take care of the problem of the points at the far

ideal case, the “cigar” being the reality; so one tries to find . ; ; ;
. T . ’ right (few points with very large values) by taking the log,
tha;llned(wmch ddesc_rtl)besh90%9(())f(;hefgﬁneds) sc’))rr:_'ehov(\j/. the result is worse than the starting point. Note that when
ow do we describe those o of the data? How do we executing the two operations in the inverse order (first log,

determine the line? Various options are available: then translation) the problem is not created.

(a) One can try to draw it by hand. ~ We come back to the graphs, which are just many projec-

(b) Calculate the linear regression. This is not such a goodions on different planes of ONE cloud. A brief look at the
idea as there are two lines of regressiorakis versus ~ 9eneral shape of each cloud projection is worthwhile. If a
y-axis and vice versa) and they are not identical except cloud resembles a fat cigar, a lot of genes have considerably
when all the points lie on the same line. changed expression. If, on the other hand, the cloud resem-

(c) Use methods that are more sophisticated. bles a line, the great majority has not changed expression

(seeFig. 3for two examples). The “cigar” may also be bent or
The methods all presume that the cloud follows a Gaussiantwisted. In this case the readings were taken outside the linear
distribution, or at least a unimodal and symmetrical one. They range of the machine, an issue discussed in Sedtibid We

also need some pre-processing of the data, for two reasons:can be faced with a problem: taking the columns 2 by 2, the

. number or graphs increases very rapidly when increasing the

(@) The factthatthe data often consist of a very large amount , , yyher of experimental conditions: in our example we have
of small values and a few, extreme points, something 15 ¢4 |ymns which means we need to look atd85/2 i.e. 120
which affects most data analysis techniques strongly oanhs. Evaluating them all in detail becomes a bit tedious.
(Chiappetta et al., 2004 o Thus, we need to find ways to reduce the number of graphs

(b) Some_effects being studied may have a multiplicative we have to examine. To do this, we need to decide, from
behaviour. which point of view we want to look at the cloud, which has

To solve the first of these problems, taking the log, the to be translated into a mathematical criterion. This implies
square (or cubic or fifth etc) root or the hyperbolic tangent that there will be a change (rotation) of the reference frame.

are all possible and generally accepted methodsKigee),

whilst for the second problem taking the log is preferable 3.3.2. By hand (with a spreadsheet)

(Chiappetta et al., 2004; Hoyle et al., 2002; Thygesen and  With “by hand”, we refer to the fact that the calculations
Zwinderman, 2004; Tusher et al., 2001 are extremely simple. As the calculations have to be repeated
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metAla versus mtrAia (raw data) metAla versus metA10a (raw data)
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Fig. 3. Projections of the data on different planes. In all four figures, each axis corresponds to an experimental condition: (a and c) metAla yb. mtrAla
and d) metAla vs. metAlOa (sEa. 1for the nomenclature). (a) and (b) show projections of the raw data, in (c) and (d) the data are log centre-reduced. Log
centre-reducing the data has brought the few points which are far away from the main body in (a) and (b) closer in (c) and (d). Note how the space is more
efficiently used in (c) and (d). The points in the two left-hand pictures form a narrower “cigar”, indicating that fewer genes have changed ekpression t

the right-hand side.

for each gene, though, the number of calculations is such asthe same weight and the criterion chosen to look at the cloud
to make handing the job over to a spreadsheet a practicalis “one factor per graph”.
alternative.
The only reasonable option to reduce the 120 little pictures 3.3.3. PCA
means concentrating on the expression changes caused by A more sophisticated approach is the principal component
each single factor being studied, in our case four. For this we analysis. Pearson first introduced it in 1901. The reader may
calculate the mean expression for each gene; this will be therefer to the work bystoyanova et al. (20049r a comprehen-
x-value. Then, for a given factor like sulphur, we calculate sive introduction to the subject and k@ndall et al. (1983)
the sum of all met values and subtract from it the sum of all for a technical presentation.
mtr values, which gives us thevalue. Here, the criterion chosen to look at the cloud is to max-
This is done for all four factors. Note that we have changed imize the variances along the axes of the reference frame.
the reference frame; this calculation, which is done instinc- There are numerous softwares that do this job and which sup-
tively by hand, can be formalized and done via a matrix, called ply us with the mixing matrix, which in PCA’s case is called
“mixing matrix”: it allows to change from the old reference eigenvector matrix, shown inTable 1 This matrix allows us
frame to the new one and is shownTiable 1 to change from the old reference frame to the new one; it gives
We obtain four graphs, one for each factor; we then look us for each of the new axes (in the table: the columns) the
for genes that are far away from the main body of the cloud. coefficient with which we have to multiply each gene’s value
Fig. 4 shows the graph obtained for the factor sulphur. Exe- in a given experimental condition (in the table: the lines) in
cuting this operation, each experimental condition is given order to obtain its new coordinates (see legendatfie J).



Table 1
The mixing matrix calculated by the spreadsheet (MS-Excel) anéiglagvector matrix calculated by PCA

Axis
Mean| Effectof | Effect of 'Z'LTSLS: Effect of
expression| protocol day source duplicate
metAla 0.250| 0250 -0.250 0.250| -0.250
metA1b 0.250| 0250 -0.250 0.250 0.250
metBla 0.250|  0.250 0.250 0.250| -0.250
metBib 0.250|  0.250 0.250 0.250 0.250
_E netA10a 0.250 0250 -0.250 0.250| -0.250
5 | metatop 0250| -0.250| -0.250 0.250 0.250
§ metB10a|  0250| -0.250| 0250 0250 -0.250
= | metB10b 0.250| -0.250 0.250 0.250 0.250
‘%’ mirAia 0.250 0.250| -0.250| -0.250| -0.250
£ mtrA1b 0.250| 0250, -0.250| -0.250 0.250
'z,_ mwBla|  0250| 0.250| 0250| -0.250| -0.250
X3 mtrB1b 0.250 0.250 0.250|  0.250 0.250
mtrA10a 0250| -0.250| -0.250| -0.250| -0.250
mtrA10b 0.250| -0.250| -0.250| -0.250 0.250
mtrB10a 0.250| -0.250 0.250| -0250| -0.250
mtrB10b 0.250| -0.250 0.250| -0.250 0.250
Axis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
eigenvalue,  94.64 2.26 1.01 0.56 0.36 0.29 0.26 0.18 0.16 0.05 0.05 0.05 0.04 0.04 0.03 0.02
metAla 0250  0.307| -0.164] -0.114 0.336| -0.004| -0.310 0.179|  0.349|  -0.146|  -0.130 0.406| -0.228| 0429  -0.020] -0.017
metAlb| 0249 0312 -0.168|  -0.131 0.366 0.075|  0.157 0.252 0.347 0.131 0.078|  -0.429 0.262| -0.413 0.001 0.026
metB1a) 0252 0.179 0.115 0.365 0.124 0.308) -0.301]  -0.280|  -0.158 0.172 0.629) -0.094  -0.019]  0.132 0.052 0.028
metBib|  0.251 0.181 0.107 0.369 0.153 0.425| 0211 -0246| -0.203 -0.170| -0.592 0.072 0.003| -0.140|  -0.038|  -0.027
_E metA10a]  0.249| -0.256 -0.326)  0.211 0.200] -0.429| -0.183]  -0.129| -0.186 0.372| -0.309] -0.254 0.193 0.264 0.082 0.028
5 | metato] o0249] 0255 0328 o192 0260/ -0.303| 0315 -0.027| -0.148] -0.388 0.325 0.261| -0.198| -0.276| -0.081| -0.031
§ metB10a] 0250  -0.254 0.263| -0.232 0.126 0.086| -0.322 0.311|  -0.322|  -0.041| -0070 -0.072] -0.146| -0.163 -0.330]  0.505
= | MeB10b 0250/ -0.253 0.259| -0.236 0.178 0.180]  0.170 0.358|  -0.283 0.064 0.067 0.092 0.171 0.180 0.335|  -0.508
E mirAla 0248  0.334| -0.083] -0.365 -0.224| -0.182| -0.173] -0.256| -0.270 0.108 0.003 0.432 0.363|  -0.310 0093 0018
£ mtrA1b 0.248/  0.331| -0087| -0.370| -0.189] -0.093|  0.321| -0.159| -0.277|  -0.089 0.029| -0.407] -0.399| 0305 -0.088 -0.028
g mtrBla)  0.251 0.156 0.220 0.311|  -0.360, -0.291|  -0.164 0.272 0.049)  -0.540 0.002|  -0.211 0.315 0.102 0.061|  -0.029
X3 mtrB1b 0.252 0.149 0.214 0.322| -0.290] -0.208|  0.256 0.332 0.099 0.540|  -0.012 0.236| -0.301| -0.101|  -0.086|  0.029
mtrA10a] 0249 -0.239)  -0.346| -0.031[ -0.376 0.270|  -0.285 0.035 0.151|  -0.042| -0089| -0.114| -0.350 -0.261 0475  -0.045
mtrA10b]  0.249|  -0.240]  -0.352| -0.030|  -0.342 0.369)  0.195 0.052 0.150 0.053 0.087 0.108 0.352 0262  -0.471 0.045
mirB10a  0.251|  -0.226 0.335| -0.131| -0.003  -0.151| -0.196| -0.375 0.341 0.014|  -0.054| -0.094| -0.118| -0.174| -0.385|  -0.484
mirB10b,  0.251|  -0.225 0.327|  -0.140 0.041| -0057| 0310, -0.322 0.358)  -0.037 0.036 0.067 0.101 0.164 0.376|  0.491

vee
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Fig. 4. The expression change in function of the factor sulphur as calculated by a spreadsheet (MS-Excel). The figure shows the genes’ expeession chang
function of the sulphur source against their mean expression. The potentially interesting genes are those away from the main body of the cldight€He hig
genes are the ones which proved to be of particular interest for the problem investig&ekdoyska et al. (20013he reader may refer to their work for a
detailed discussion. Note that not all of these genes would have been detected using the spreadsheet.
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Fig. 5. The data cloud projected on the plane formed by axis 1 against axis 5 (PCA). The figure shows the genes expression change in function of the sulphur
source (axis 5) against their mean expression (axis 1), as calculated by PCA. The potentially interesting genes are those away from the maiolbody of the

The highlighted genes are the ones which proved to be of particular interest for the problem investiggg&dveska et al. (2001)he reader may refer to

their work for a detailed discussion. Note that not all of these genes would have been detected using PCA.

Theeigenvector matrix gives us also another information:  coefficient (positive or negative). For some axes, this coin-
the variance oeigenvalue for each axis, expressed in per- cides with a separation of the two states of a factor. In our
centage. This provides an indication of the cloud’s dispersion case, axis two separates well the two protocolsd RNA:
along the axis (the bigger the value, the more the genes areall values are negative and g RNA: all values are pos-
dispersed along this axis). The fundamental idea is that if the itive); axis three separates the day (A and B), axis five the
dispersion is great, the image is easier to interpret than if all sulphur source (met and mtr) and axis seven the two spots (a
the points were packed together. If an experimental factor and b). Other axes, on the other hand correspond to combina-
influences the expression of some genes, the factor will con-tions of the experimental conditions, whose interpretation is
tribute to the dispersion of the cloud and may coincide with not evident: axis four is an example. It singles out the riboso-
one of the axes determined by PCA. mal proteins; a biologically speaking coherent result, which

The eigenvector matrix gives a wealth of information. is waiting for an interpretation. This is something frequently
Looking at our matrix, we see that for the first axis all the found when analyzing microarray data.

16 coefficients have basically the same value; this means The eigenvector matrix deserves a little more attention:
that for the first axis, all experimental conditions have the the values it contains can be looked at from a different point
same weight, in other words, the first axis gives us the total of view. If we take up our example, each line represents an
expression of each gene, just like with a spreadsheet. Thisexperimental condition and the values inthe 16 columns fora
observation is generally true (s€&oyanova et al., 2004 given line give us the position of that particular experimental

In each of the other columns (axes), the experimental con- condition in the 16-dimensional space. (To be precise, each
ditions can be grouped together according to the sign of their value has to be multiplied with the root of the variance of

Table 1 Continued)

The mixing matrix at the top was calculated by the spreadsheet, the mixing matesgdavecror matrix) at the bottom by PCA. The arrows indicate the
columns which separate well the effects of the same factors. The matrices allow us to change from the old to the new reference frame: they givefus for each
the new axes (the columns) the coefiicient with which we have to multiply each gene’s value in a given experimental condition (the lines) in oidehé obta
new coordinates. The first line in tlégenvecror matrix contains thevigenvalue for each axis (in %), providing an indication of the cloud’s dispersion along

that axis. Note that for the first axis all the sixteen coefficients have basically the same value; this means that for the first axis, all experdéitiensheve

the same weight, in other words, the first axis gives us the total expression of each gene, which is generally $toggseea et al., 2004An example

for the calculation of the new coordinates with #igenvector matrix: in the original (or “old”) reference frame, the gepe/K has the coordinates (5.431;

5.432; 5.092; 5.068; 4.893; 4.744; 3.763; 3.661; 5.333; 5.265; 5.329; 5.249; 4.607; 4.444; 3.806; 3.737). Tabsapoordinate on the new axis 1. the
calculations are as follows: (5.4310.250) + (5.432< 0.249) + - - +(3.737x 0.251) = 19.0. The other coordinates are obtained accordingly.
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that axis, in order to obtain the coordinate.) This means that o5
instead of looking at thegenvector matrix, we can look at the 04 —=—ICA
different projections of the experimental conditions in order _ 03 e
to figure out which axes separate well the different states of § %2

our factors. Once we have established which planes deserveg g'; N \
being examined in details, we come back to the projections §_0'1 22 88 g2 8 8\8 R
of the cloud on these planes and pinpoint those genes, which~ o,/ £ 2 & I & £ % % \’ _ e /8
are far away from the main body of the cloddg. 5shows 0,3 ¢ N .
the cloud projection on the plane formed by axis one versus -04 gl
axis five. -0,50 - —

Note: the normalization of the data is an integral part of expanimstal condition
PCA.

. . .. Fig. 7. The “weight” attributed to each experimental condition by a spread-
To resume, with PCA the eXper'memal conditions are not sheet (MS-Excel), PCA and ICA. The figure shows that a spreadsheet

given the same weight (contrary to a spreadsheet) and the cri{ms-Excel) attributes the same “weight”, or importance, to each experi-
terion chosento look at the cloud is to maximize the variances mental condition, whilst PCA and ICA do not.
along the axes.

in absolute terms: the algorithm gets stuck with a local maxi-
334 ICA mum Chiappetta etal., 2004_.aunching ICA alarge number

“ICA tries to find a linear representation of non-Gaussian ©f times, typically 100, circumvents this problem and only

data so that the components (o factors, or sources) are statistitn0S€ directions or solutions that have been most frequently

cally independent, or as independent as possiblgvarinen found are kept. As with PCA we have a mixing matrix that
and Oja, 200D allows us to change from the old reference frame to the new
This search for statistical independence is generally very one. Again, the different experimental conditions do not have

difficult and therefore an approximation is made: one looks theSame weight; the weightattributed, though, varies slightly

for the directions that maximize the criterion of non-Gaussian 10M PCA. Once we have determined the axes, the procedure

distribution. As “non-Gaussian” is a “non-property”, numer- 1S the same as with PCAkig. 6 shows the cloud projection
ous possibilities exist for defining such a distribution. One ©N the plane that separates well the sulphur sources.
criterion that seems to work quite well is to look for distri- The applications of ICA in microarray analysis include
butions with a positive kurtosis (distributions with “heavy the identification of groups of genes implicated in cancer, the
tails”). ICA can be seen as a close relative of PCA. Whilst study of the cell cyclel(iebermeister, 2002; Martoglio etal.,
PCA looks at which directions maximize the variance, ICA 2002 and th? identification of genes that are potentially co-
approaches the question of finding genes with an “atypical "egulated Chiappetta et al., 2094Chiappetta et al. (2004)

behaviour” more directly, by defining “atypical” as “follow- andCarpentier et al. (2_004)ave applied both PCA and ICA
ing a non-Gaussian distribution”. The new reference frame to the sulphur metabolism data and shown that the two meth-

will maximize the criterion of “non-Gaussianity”. With this  °dS perform similarly well, with ICA slightly outperforming
criterion, one increases the weight of points that had only PCA.
small deviations from the main body of the cloud and thus
allows them to be detected as potentially interesting. 3.3.5. A brief remark

A latent difficulty with ICA is that there is no analytical We have said that whilst a spreadsheet attributes to each
solution (contrary to PCA): we look for the numerical solu- experimental condition the same weight, PCA and ICA do
tions. There is the danger that the algorithm finds a direction not (Fig. 7 shows a comparison between the three methods
with a solution, but that this direction is not the best solution from this point of view).
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Fig. 6. The data cloud projected on the plane that separates well the sulphur source (ICA). The figure shows the genes’ expression change iméunction of t
sulphur source, as determined by ICA. The potentially interesting genes are those away from the main body of the cloud. The highlighted genes are the on
which proved to be of particular interest for the problem investigate8diowska et al. (2003he reader may refer to their work for a detailed discussion.

Note that not all of these genes would have been detected using ICA.
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The spreadsheet simply calculates the mean expressionwhen deciding to work on one of the genes from this group
This choice is not optimal when certain experimental con- (Benjamini and Hochberg, 19930ne generally chooses the
ditions contain more information than others. Ideally, the thresholdinorderto have lessthan 5% of false positives in the
weight attributed should be proportional to the information group. Take for example an experiment carried out on 4000
contained. PCA is a good choice when the signal follows a genes with 80 lying beyond the threshold of 0.1%. As there
Gaussian distribution, whilst ICA imposes itself when the are on average four false positives beyond the 0.1% threshold
distribution is non-Gaussian. (4000x 0.001), the percentage of false positives is 4/80, or

You might wonder what happens if you use, say, PCA on 5% of the selected genes.
data that follow a non-Gaussian distribution. The answer is  The literature sometimes refers to the Bonferroni cor-
thatyou are likely to miss out on potentially interesting genes; rection. This correction is not pertinent for the analysis of
you do not, however, risk finding “wrong” genes. Using more microarray data, as it is too restrictive.
than one tool amounts to examining the cloud from different  The numerical criterion used in the statistical tests is
angles; the results obtained with the different tools are com- always the ratio between the deviations observed for the fac-

plementary. tor of interest (the signal) and the deviations due to all the
causes one chooses to ignore (the noise). The statistical tests

3.4. Statistical tests differ from each other in the way they define the noise and
the probability function they use to estimate the probability

3.4.1. Preliminary considerations of false positives. In the past, the function used was the Gaus-

Our experience shows that some confusion reigns regard-sian. Nowadays one tends to employ the probability function,
ing the statistical tools in general and their application to estimated on the data using permutations (Besher et al.,
microarrays in particular. Hence this rather long introductory 2001).
section.

When approaching microarray data from a statistical point 3.4.2. ANOVA
of view, people seem to worry a lot about the fact thatthe data ANOVA is a tool that allows us to analyze simultaneously
are “relative” and whether they should or not take ratios. the effect of more than one factor on a variable, in our case

Microarrays give us “relative data”: the interesting infor- the genes’ expression levels. The method is based on the
mation regarding a gene is “relative” as one compares the calculation of the sum of squares, degrees of freedom, mean
expression of a gene under condition A with that of the square (short for mean square deviation from the mean) and
same gene under condition B. Microarray technology is quite F-statisticd (seeZar (1998)or details). As we use ANOVA
recent; however, dealing with relative data is not and taking in a somewhat reductive manner, the reader may refer to the
the ratio results in a reduction and a falsification of the infor- work of Zar (1998)for a full appreciation and pedagogic
mation offered Kerr and Churchill, 2001 It is Fisher who explanation of the possibilities offered.
first tackled and solved the problem at the very beginning of ~ Various quantities are used simultaneously in order to
the 20th century, resulting in ANOVA. For a more detailed decide whether the expression of a gene varies significantly
discussion of this issue, the reader is referred to the work for the factor of interest.
of Kerr and Churchill (2001)At about the same time, Gos-

set (“Student”) came up with thetest as a solution to the 1. V1, the variance for the total of the observations made on

roblem the gene;
P . . 2. V2, the variance for the observations made for the factor
Statistics help us to answer the question whether the of interest:

expression differences observed are real. The answer is give%
indirectly, as the statistical tools give us the probability of ™
having a false positive. A false positive is a gene whose
expression difference surpasses by chance a threshold value, The signal is equal to V2, the noise to V(V2 +V3).
which has been fixed in advance. “By chance” means that if The possibility to calculate the term V3 is a particularity of
the experiment were repeated, you would not find again suchANOVA and it allows a finer control of the noise’s com-
a large expression change. position. In our example, V3 corresponds to the expression
The statistical analysis is used to evaluate the probablechange caused by the day, the duplicate and the RNA con-
percentage of false positives beyond a given threshold value:centration. The noise encompasses all which causes the dif-
40 genes will surpass by chance the threshold value of 1% ifference between the actual expression level and the sum of
the experiment was carried out on 4000 genes. the expression levels of the four factors.
The estimation of the number of false positives is only the  In the case of the sulphur metabolism data, the equation
first step. Beyond the threshold value we not only find false used for each gene is the following:
positives, but also genes whose expression change is “real”
(we would find it again if the experiment were repeated). The
key information is the proportion of false positives on the
total, because it measures the risk of being on the wrong track ! Sometimes referred to @&test.

V3, the variance for the observations made for those fac-
tors whose influence one wishes to subtract.

Yij = o+ Si + Jj + Ci + Dy + €iju



328 A. Riva et al. / Computational Biology and Chemistry 29 (2005) 319-336

0 mitting us to isolate the contribution of our factor of interest.

The paired-test also allows this, but the approach is differ-

13 ent, and we can only use it for binary factors. The paired

.- t-test eliminates the influence of all the factors we are not

o - " g interested in by calculating the difference between pairs of
a values. The members of each pair differ from each other only

with respect to the factor of interest (state 1 versus state 2),

n all other experimental conditions being equal.

Forexample, we calculate the difference between the value

5 " obtained on met with the value obtained on mtr, both obtained

on day A, with g mRNA and spot a. Then we calculate

54 the difference of met versus mtr on day B, with.d mRNA

and spot a and so forth. This is done for each gene and we

thus obtain eight comparisons, or differences per gene. V1

is calculated on these eight comparisons, the term V3 has

disappeared.

Fig. 8. The graphical representation of the results obtained with ANOVAfor ~ HOWever, as the paireetest takes pairs of “similar condi-

the factor sulphur. The potentially interesting genes are those with a small tions”, systemic biases due to, e.g. “day” or “duplicate”, are

p-value and a large variance, genes which are therefore in the bottom right eliminated, therefore still allowing for a reasonable estima-
part of the image. They are away from the main body of the cloud. The tion of the error

highlighted genes are the ones which proved to be of particular interest for

the problem investigated iyekowska et al. (2001)he reader may refer to

their work for a detailed discussion. As can be seen, not all genes of interest3-4-4. t-Test

would have been identified by the sole use of ANOVA. Thet-test corresponds to an ANOVA with one factor and

is the least favourable option. Theest only considers the

whereY;;; is the total expression level measurgadhe mean expression difference due to one factor, ignoring that there
of the expression levels measured for the gépé;, Cx and are pairs of measurements which have more or less in com-
Dy, respectively, the effects of sulphur souicexperiment mon (like the day, protocol and spot), unlike ANOVA and the
dayj, RNA concentratiort and duplicaté on the expression  paireds-test. Thus, we cannot separate the contribution made
level; g is the residual error. by our factor of interest from the contribution made by the

Note that the residual errar,; encompasses all inter-  other factors and the interaction between them; the expres-
actions: between two factors (6), between three factors (4) sion difference due to our factor risks being drowned by the
and between four factors (1). The interactions are groupedrest.
together under “error” for the following reason: it is infor- Interms of V1, V2 and V3: V1is calculated on the total of
mation with which we cannot work, unless we have a very the 16 observations made (as with ANOVA), but as the term
precise idea of the nature of the interaction (linear, sinusoidal V3 has disappeared, the noise risks being much larger.
or other).

The F-test is calculated in the following manner: 3.4.5. In conclusion
F="mean square of the sulphur source”/“mean square of the  The biggest difficulty is to estimate the noise with accu-
residual error”. We are interested in genes that posses a highracy. The best solution is to repeat the experiment a large
F-value p-value) for the factor sulphur source. The calcula- number of times. As this is not always possible, statisticians
tions are done for all genes and the results can be representetty to improve the estimation of the noise by working on
in a graphical form. The variance of the factor of interest is groups of genes having more or less the same level of noise.
given on thex-axis, thep-value on the-axis. Thep-value is A considerable amount of literature is dedicated to this effort.
used to calculate how many false positives will lie below a Numerous are the solutions proposed, none is perfect. Gener-
chosen threshold value (sEgy. 8). ally, the grouping is done a posteriori, after a first estimation

Note that we are not interested, whether the expressionof the noise for all the genes separately. One speaks in this
levels of the thus identified genes also vary in function of case of a Bayesian approach. The reader is referred to the
the other factors. One does not preclude the other and has nevork of Neuhauser and Senske (200#) an introduction
impact on our analysis. into the subject and to the work #&futalik et al. (2004 )for

ANOVA has some advantages when the experimental fac- the comparison of some methods proposed.
tors are not binary; in that case, it basically becomes the only  Regarding the three approaches discussed afiabée 2

log (p-value)

0% 20% 40% 60% 80% 100%
% variance for factor studied

tool which is easy to use. shows the measurements obtainedyf@r/ and the results
obtained from ANOVA, the paired-test and the-test. It
3.4.3. Paired t-test shows that though ANOVA and the pairetiest both iden-

We have said that ANOVA quantifies the contribution tify the gene as interesting, thetest results inconclusive.
given by each factor to the total expression of a gene, per-The observation made on this particular example can be
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Table 2
Comparison between ANOVA, the pairetest and the-test, an example
met mtr met—mtr
(a) Measurements obtained fan/
Ala 1.170 1.520 —0.3494
Alb 1.176 1.580 —0.4048
Bla 0.950 1.566 —0.6158
Bilb 0.891 1.541 —0.6496
Al0a 1.939 2.049 —0.1096
A10b 1.565 2.048 —0.4827
B10a 0.893 1.523 —0.6296
B10b 1.007 1.485 —0.4772
(b) +-Test
Numerator —0.465
Denominator 0.313
d.f. 14
t-Test —2.971
—log(p-value) 1.99
(c) Paired-test
Numerator —0.465
Denominator 0.064
d.f. 7
Paired:-test —7.290
—log(p-value) 3.78
State 1 State 2 SS
(d) ANOVA
Sulphur 9.592 13.311 0.864
Day 13.048 9.855 0.637
RNA 10.394 12.508 0.279
Spot 11.610 11.293 0.006
Residual 0.448
Total 2.235
Factor SS d.f. Variance F —log(p-value)
Sulphur 0.864 1 0.864 21.21 3.12
Day 0.637 1 0.637 15.64 2.65
RNA 0.279 1 0.279 6.86 1.62
Spot 0.006 1 0.006 0.15 0.00
Residual 0.041
Total 0.149

In (a) the measurements obtained fornJ are shown. (b—d) The calculations and results obtained withtiest, the paired-test and ANOVA, respectively.
ANOVA and the paired-test both identify the gene as potentially interesting, whilst#est results inconclusive (see the relatieg(p-value)). d.f. = degrees
of freedom; SS =sum of squares. See Sed@idrior details.

generalized.Table 3shows a comparison of the number ysis (ttp://www.nslij-genetics.org/microarrgy/Conceptu-
of genes detected by the three methods. Although ANOVA ally, all these tools are based on one of the methods described
detects the highest number of genes, the paitest performs above or they fall into the category “cluster analysis”,

comparably well, whilst the-test lags far behind. described below.

Some methods will use the term “distance”, whilst others
3.5. Graphic exploration and statistical tests in may talk about “correlation”. In mathematical terms, it boils
comparison down to the same thing: second order statistics, yielding the

same type of information. As the methods all differ more or
We have chosen to talk about the typical representatives ofless from each other, it is normal that they do not come up
the two approaches. They are not the only ones proposed inwith exactly the same results.
the literature: the number of tools is continuously increasing ~ Which method is the bestarpentier et al. (2004)ave
and no one, definitive method has so far emerged, as is exemexamined this issue and developed a protocol that allows the
plified by the web-site maintained by Li, which has a steadily comparison of the different methods, in terms of their relia-
growing collection of articles on microarray data anal- bility. They conclude that each of the methods analyzed gave
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Table 3 clusteritbelongs and thus draw conclusions about its possible
Overall comparison between ANOVA, the pairetést and the-test role.
(a) Number of genes detected with a threshole-tafg(p-value) = 3 This approach poses problems from two points of views:
A?‘OYA OI”'V 625 a biological and a technical one.
gofhs ony 24 From a biological point of view: we have to define what
a functional class is and how many there are. These are not
ANOVA only 35 banal questions, as exemplified by the fact that even for such
Paireds-test only 30

Both 51 a well-studied organism likE. coli numerous classifications
are proposed (for example SwissProt, EcoCyc, Kegg). Sec-

;Zﬁsetdgrtgt only éi ondly, the functional classes found in the literature tend to be

Both 17 rather large, containing dozens or hundreds of genes, mak-

Total ANOVA 86 ing them too Iarge.to permit their exploitation in the wet lab.

Total paired-test 81 Thirdly, the clustering methods normally do not allow a gene

Total ~-test 29 to be part of more than one cluster, which goes against bio-
logical intuition and experience.

(b) Number of genes detected with a threshole-tig(p-value) = 4 From atechnical point of view: we have to choose amongst
ﬁ"FleOsYﬁnol;ly 160 amyriad of (family of) clustering techniques. As the biologi-
Both 9 cal question is not clearly defined, we do not have a criterion
ANOVA only 17 to sglect 'Fhe pertinent and coherent method fqr our néeds.
Paired-test only 12 At this point one has to make do with a data-driven attitude.

Both 8 This necessitates a thorough knowledge of the different fam-
ilies of clustering techniques in order to make the best choice

;Ziztd?@;t only ig in function of the data set to be analyzegborjai et al.,
Both 5 2003, as all the clustering techniques require many prior
Total ANOVA 25 decisions Chiappetta et al., 2004In addition, asSomorjai
Total paired-test 20 et al. (2003)point out: “the maxim ‘simpler is better’ has
Total r-test 9 mostly been ignored”.

The table shows a comparison of the number of genes detected by the three  AS clustering methods are well-liked tools (see for exam-

methods. In (a) the threshold for detection wasg(p-value) =3, in (b) it ple the popular software proposed Bisen et al. (1998)

was equal to 4. Although ANOVA detects in both cases the highest number various attempts have been made to circumvent the various

of genes, the pairedtest performs comparably well, whilst theest lags technical problems. The reader, who would like to have a

far behind. critical introduction to different families of clustering tech-
nigues, may refer to the works Blatta and Datta (2003Pe

) ] ] ] Smet et al. (2002dandSomorjai et al. (2003)
some information not provided by the others, suggesting once

more the advantage of analyzing one’s data with more than
one statistical tool.
ANOVA, one of the methods tested, did not excel on the

sulphur metabolism data. However, all factors were binary . I loitable. The i | ization is hidden b
and ANOVA has the great advantage of being easily appli- visually exp O,'t.a e. The internal organization Is hi en by
the superposition of thousands of genes on the same image.

cable in cases where the factors are non-binary. It also has _ o : . .
another important property: ANOVA is the only method that The analysis W_ould be easier if |twere_po_53|ble to give a faith-
forces the experimenter from the beginning to give the experi- flfl rzpre_sﬁnta;uc])cn OT the g\enes depsﬁy Iln gach region qf the
mental setup some thought, to plan it carefully. It is therefore clou ’.W't onlyk points. A rather N&ve o ut|_on conS|_sts n

a good practice to think of an experimental setup in terms choosing theskgenes atrandom. This is unlikely to give sat-

of ANOVA, even if the data are then exploited by another isfactory results, though. Calculating the optimal position of
method (sée Sectich?) thek points is a difficult problem. A number of programmes

exists proposing approximate solutions. An example is self
organizing maps (SOM), which chooses khgenes and pro-
3.6. And the clustering approach? vides a list of the genes close to thgenes. The interested
reader may refer to the work yaski et al. (2003¥or an

3.7. And SOM?

Generally speaking, only the outskirts of the cloud are

The principle is to group and/or to classify the genes in
function of the expression profile obtained under the various
experimental conditions. . - . .

The cloud is thus divided into a number of clusters. the Anexample|sthedeflnltlonofthedlstancebetwgenclustgrs.Thls !snota
. ; . ! banal problem. Take for example the problem of having to define the distance
idea being that a cluster corresponds to a functional class.petween two countries: do you take the two capitals? The two biggest cities?
Choosing a gene of unknown function, one can look to which The shortest distance (0 if the countries are adjoining)?
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introduction to SOM as well as a comparison of its merits As Lawrence et al. (2004)oint out, the human component
compared to some classic classification methods. plays an important role. The assumption that the background
Note that all the programmes proposed necessitate thelevel is consistent between the DNA spot and the surround-
adjustment of numerous parameters for which you do not ing space, frequently used for background quantification, is
necessarily have a rational basis to make your choice. Thisnot correct Konishi, 2004. Using “designated” household
carries the risk that you only believe those results which tell genes for the background determination is in itself a good
you something you already know: notthe bestway to discover idea, but finding out who the household genes are, is posing
new things. problems Gtoyanova et al., 2004
Regarding Affymetrix’s GeneChips, the common practice
of subtracting the mismatch (MM) probe intensities from the

4. Intricacies of microarray-based methods perfect match (PM) ones is “unjustifiable”, accordinésik
et al. (2002) as the target sequence hybridizes not only with
4.1. FAQ the PM but also with the MM probe.

We remind the reader at this point that a useful way to

Over the years of teaching the course on the analysis ofassess the utility of an anti-noise measure taken is to check on
microarray data, we have noticed that certain questions, morethe change of theigenvalue of the first axis in a PCA (should
orless closely related to the subject, turn up on aregular basisincrease) or thé&-value in an ANOVA (should increase).
Here are some of them, with the answers.

4.1.3. Dealing with data containing a large number of

4.1.1. Missing values very small or zero values

They have generally two possible origins: (i) the microar- You may find yourself in the situation of not having access
ray contains a defect resulting in the impossibility of taking to the “real data”: you are given a set of data, where all values
a reading or (ii) the machine eliminates the measurement asbelow a certain threshold were replaced with one or very
the value is very close to the noise level (in this case it would few arbitrary values. This means that the distribution is far
be advisable to change the setup of the machine). This pose$rom being Gaussian (or just unimodal), a fundamental pre-
a problem, as many data analysis methods require full sets ofrequisite for the analysis of the microarray data.
data. The most radical solution is to eliminate the genes with  The only solution to this dilemma is to try to “restore” the
missing entries, which is obviously far from ideal. A more Gaussian distribution by replacing the smallest values with
moderate solution is to fill in the gaps with estimate values. random values (se€hiappetta et al., 2004
The easiest is to use the row average; the two most common Having a large number of very small or zero values may
methods, however, are: simply be the result of a translation, usually the effect of
having subtracted the background noise. In this case, it is
sufficient to add to all values a constant (for example the
weakest signal measured in the experiment) before taking
the log of the data.

(a) looking withwhom the “missing gene” associates with in
the other experimental conditions, i.e. determining that
gene’s “neighbours”, then presuming that in the missing
experiment this gene still associates with them and filling
the gap with the median value (a method known under
“K-nearest neighbours”);

(b) variations around the PCA (examples here are the singu-
lar value decomposition and Bayesian principal compo-
nent analysis@ba et al., 2003.

4.1.4. Taking the ratio or not?

Microarrays give us “relative data”: the interesting infor-
mation regarding a gene is “relative” as one compares the
expression of a gene under condition A with that of the
same gene under condition B. Microarray technology is quite

The interested reader is referred to the work©®af/ang recent; however, dealing with relative data is not. The fol-
et al. (2004)Kim et al. (2004)andZhou et al. (2003jor the lowing text is taken fromKerr and Churchill (2001who
comparison of some currently used estimation methods. discuss the issue in a very clear and lucid manner:rela-

tive data is about as old as statistics itself. The “grandfather”
4.1.2. The correction of the background noise on the of statistics, R.A. Fisher, worked with agricultural field tri-
membranes, glass plates or silicon chips als. In controlled experiments with clear objectives, scientists

This problem tends to be given too much importance. sought to determine the productivity of different varieties of
ANOVA allows us to easily quantify the inter-array varia- a crop, for example different strains. They recognized that
tion and the result is that this variation is small compared to there is no such thing in absolute terms as the yield of a vari-
other sources (for example “day” in the case of the sulphur ety because productivity depends on soil fertility, sunlight,
metabolism data, se€hen et al. (2004jor a detailed dis- rainfall, and myriad other factors. They understood that the
cussion on this subject), strongly suggesting that the effort only meaningful direct comparisons are for strains grown on
spent correcting background noise is not justified. There is the same block of land. Consider a hypothetical experiment
also a second aspect to be considered, namely that finding do study three varieties. Suppose there are three blocks of land
reliable method to correcting background noise is not easy. available, but each block only has room for two varieties.
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It is easily accepted that the yield data contain information data, which is only justified if three conditions are fulfilled
about the varieties grown in the same block. However, there (see “The spread sheet and some preliminary considerations
is a corresponding fact relying on the same logic that can and manipulations” above): firstly, more than 90% of the
be overlooked. Namely, there is also information about the genes do not change expression in function of the different
blocks of land because they have varieties in common. Fisherexperimental conditions, secondly, the number of genes ana-
recognized this duality and realized one could simultaneously lyzed is large and thirdly the overall intensity change of up-
estimate the relative yield of varieties and the relative effects and down-regulated genes is similar (steyanova et al.,

of the blocks of land. The quantitative tool for doing thisisa 2004).

simple linear model:

4.1.7. What can I do if my signal is outside the linear

ij =m+ Bi+Vite; range (of my machine)f? e

wherey;; is the measured yield for varigtgrown on block; This results in a “cigar” which is twisted and bent. The
u the overall mean; the block effeBt is the effect of block first and obvious recommendation is to make sure that at
i; andV; is the effect of variety. The terme;; represents  the moment of taking the readings, the scanning settings are
random error. In a large experiment with many varieties and correct, which they are often noB{oyanova et al., 2004
blocks, unbiased yield comparisons can be made, even forThe second is to check that one is not just working at one
varieties not grown on the same block of land. Returning extreme of the linear range; if that is the case, a change of
to microarrays, consider the spots for a particular gene onconcentration in the hybridization solution is a good option.
different arrays (or reproduced within arrays). The spots vary If the entire linear range is taken up, two solutions can be
in size, shape, and concentration, analogous to the variationproposed: using two different voltage settings for the photo-
in fertility of blocks of land. Using the same principles as in multiplier or using different exposure times, when working
the agricultural experiment, we can simultaneously measurewith radioactively labelled samples. Algorithms for subse-
the relative transcription level of the corresponding gene and quently combining the different readings are readily available
the “fertility” of the spots. However, this is only possible if (see for examplQuerec et al., 2004; Lyng et al., 200&Fhe

we use all the information in the data and do not reduce to article byLyng et al. (2004hows the relationship between

ratios.” the type of incorrect setting and the resulting cloud shape.
This should answer the question adequately. Numerous authors propose “remedies” if the above sug-
gestions prove impossible to follow, but none will give you
4.1.5. The problem posed by the two fluorescent dyes the “perfect” data back you would have had if the experiments
used with glass plates had been executed correctly.

When working with glass plates, one is given the choice
between two different dyes to be used for the incorporationin 4.1.8. How does one tackle a temporal series?
order to obtain the hybridization mixture. In other words, one  Intime series expression experiments a number of samples
is given the choice between two experimental protocols. In is taken over a period of time. Biological and computational
the case of the sulphur metabolism experiment the choice wagproblems specific to this type of experiment have to be faced
between using 1 or 0g mRNA. When ordering the genes from the experimental setup to the data analysis and to the
as a function of the average intensity of the sigBalkowska interpretation of the data. The reader is referred to the work
et al. (2001pbserved that the order is highly sensitive to the by Bar-Joseph (2004 ho reviews these problems and the
protocol; on the other hand, if the same protocol is used, the solutions offered.
results are highly repeatable (see Tables 5 ands@kowska

et al., 200). This observation can be generalized. 4.1.9. How do we find genes for an accurate diagnosis
Does this have an impact for the analysis? The factor pro- of a disease?
tocol is an important source of variabilit¢bien et al., 2004; Typically, the data will come from one hospital and from

Sekowska et al., 200,1but as there is no interaction between a relatively small number of patients. These patients repre-
the other factors, the impact on the analysis is minimal with sent the learning set and the analysis of the data will always
all the techniques described here (PCA, ICA, ANOVA and come up with some candidate genes. To validate the results,
paireds-test). Having two protocols, doubles the number of however, we need a validation set. It is wise to have five to

measurements without being instructive on the biological six times more patients in this set than candidate genes. To
problem studied. If one has the means (economic or other) toavoid finding genes that are only specific to a particular socio-

increase the number of measurements, it is perhaps advisableultural-genetic background, the patients should be chosen
to introduce a biological repetition or a new biological factor from more than one hospital and more than one country (see

(Chen et al., 200¢ also Sectiort.2.]).
From a theoretical point of view, the use of microarrays for
4.1.6. How many genes should I put on my microarray? the diagnosis of a diseases poses two fundamental problems,

The answer is simple: as many as possible. The reason ighe first one being Bellman’s “curse of dimensionality” (too
the following: a number of analysis methods normalize the many features or dimensions, e.g. thousands of genes), the



A. Riva et al. / Computational Biology and Chemistry 29 (2005) 319-336 333

second one being the “curse of dataset sparsity” (too few ably between two experimental conditions. This number is
samples) $omorjai et al., 2003 this means that we end up  too large to be directly exploitable and we will have to extract
analyzing a space with a great number of dimensions which a short and pertinent list of genes to work with. This task is
is nearly empty: whatever method is applied to the analysis greatly facilitated by an adequate and well thought-through
of the data, the result is unlikely to be statistically sound, the experimental setup.
biological interpretation risks being inconclusive.

Somorjai et al. (20034iscuss this problem in detail. 4.2.1. The type of factors
Hwang et al. (2002)ropose a power analysis method in order An experiment is made up of three types of factors, each
to determine the minimum sample size for the — statistically providing specific information.

reliable — discrimination of distinct disease states. The first factor corresponds to the phenomenon studied.

The study concern two or more states (two culture conditions,
4.1.10. How do we determine the relative importance of for example, or a certain number of samples taken during
a factor? a time course experiment). The aim is to narrow down to

By using an ANOVA, as it explicitly estimates the mag- a maximum the target genes, in other words to have only
nitude of the sources of variation and therefore gives us thefew genes who change expression considerably between the
relative importance of each factor (see aldwn et al., 2004 different experimental states. For this, the experimental states

should be as close as possible, for example:
4.1.11. What does the p-value tell me? What about false
positives? (a) In the case of the sulphur metabolism experiments, the

Thep-value gives us the probability of finding by chance two sulphur sources were metabolically speaking closely
a deviation from the mean equal to or larger than the one we  related.
observe. (b) When trying to isolate genes typical of a certain cancer,

For example, if we decide to work on all those genes with one should study different subtypes, all closely related
a p-value smaller or equal to one per mille (0.1%) and we to the one of interest.
examine 4000 genes, we expect on average 4 genes to fulfil
this criterion by chance, without reflecting a biological reality. If this maxim is not observed, too many genes will change
These four genes fall into the category of false positives. With expression considerably and the identification of target genes
ap-value equal to 5%, we would expect 200 genes to fulfil will become near impossible.
the criterion by chance. The second type of factor serves to verify whether the

This means that thg-value helps us to judge and quantify  observations made hold true if the biological parameters are
the risk of looking at or working with a false positive, nothing changed. Do we find the same candidate genes if we work

more and nothing less. with a different bacterial strain? Or patients from a different
hospital? Or if the experiment is carried out on a different
4.1.12. Will I not miss out on a few genes? day? Note that even repeating the experiment on a different

Through the years of teaching, we have noticed that this date introduces a biological variability, as the experimental
is apparently a worry common to a lot of people working on conditions will never be exactly the same (&skowska et
microarrays. al., 200). This verification is extremely important as the most

Even provided that the experiments were planned and exe-interesting genes are those which come up whatever the bio-
cuted in a diligent manner, the problem will generally not be logical parameters. They are most likely the genes at the heart
that of having too little genes changing expression, but too of the phenomenon studied, as their behaviour is not bound
many. An example is given again by the sulphur metabolism to a particular context (genetic, socio-cultural or physiologi-
experiment where less than a dozen genes were of actuatal). The reader is referred to the worksTairk et al. (2004)
interest, truly involved in the phenomenon studied, but a lot andWhitehead and Crawford (2008)ho discuss this issue.
more changed expression. The reason for this “surplus” of  The third type of factor is a technical one: the type of
genes is that there will always be secondary effects. Biologi- protocol used to label the cDNA, having two spots for each
cal processes seldom come in a straight line; more often theygene on the array or using the dye swap. This type of factor
resemble an intricate net (think of the cell's metabolism), increases the workload without adding any biologically per-
which means it is near impossible to isolate a phenomenontinent information. The experimental protocols have become
completely (se&ontag et al., 20Q4To further narrow down  highly reproducible and it is advisable to stick to just one
the list of candidate genes, one will have to use any available protocol (with its systemic biases) and increase the number

(biological) knowledge from other sources. of states of the two other factors.
4.2. How to plan one’s experiment? 4.2.2. The ideal situation: a fully crossed factorial
design

It is quite usual to find that a rather large number of The best experimental setup is to follow a fully crossed
genes, typically around 10%, change expression consider-experimental design (exemplified by ANOVA) as it
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(a) allows a good exploitation of the information given; of variability and their magnitude; this allows making the

(b) allows a precise estimation of the error variance (see improvements to the setup at the right sources, which will
Fisher (1951)for the original discussion oMather generally be a modification of the experimental protocol and
(1943) Zar (1998)and Kerr et al. (2000)for a more an increase in the number of biological replicatiofén et
user-friendly approach). al., 2003.

Setting up a fully crossed factorial design means that each
level (state) of one factor is found in combination with each 5. The answer to all our questions?
level of the other factors, as showrHig. 1L Note that carrying
out twice the experiment on strain 1 on day A and twice the
experiment on strain 2 on day B would not be adequate as
it would be impossible to separate the effect of the day from
the effect of the strain.

Microarrays are sometimes seen as the miracle tool, which
will give all the answers to all the questions. Paying con-
siderable attention to the experimental setup is a necessary
condition, but not a sufficient one.

The preliminary phase should already take into consid-
4.2.3. The reality eration the different analysis options available to the experi-

Afully crossed factorial design may not be possible. This menter by pulling in statisticians. This should be an exchange,
istypically the case in clinical studies, as they strongly depend not a handing over the job to a statistician, as the biological
on the hospitals’ random recruitment of patients. These rep- question has to stay at the front. ¥sgron (2001)points out
resent a learning set. To confirm the results a validation in his editorial, bioinformaticians should “go back to school
set would be needed, and to avoid finding genes specificand learn more statistics. Not so much with the goal of master-
to a particular socio-cultural-genetic background only, the ing all of statistics but with the goal of sufficiently educating
recruitment should be made at more than one hospital andoyrselves on order to pull in statisticians.”
more than one country. A careful analysis of the data should follow (we suggest

This may prove to be unfeasible if not impOSSible. A dif- using more than one method, as they tend to give Comp|e_
ferent option is to give up on the fully crossed factorial design mentary information).
altogether and take a completely different approach: one can  The complex nature of biological phenomena means that it
eXplOit all the eXperimental data available in the literature is near impossib|e to isolate the candidate genes On|y through
(freely available on the web) by pooling them together. This 3 microarray experimenurtis and Brand, 2004; Somorjai
is not as bizarre an idea as it may seem; the aim can be toet al., 2003; Sontag et al., 2004neaning that the list of
increase the number of patientiahg et al., 2004o0r to candidate genes obtained will have to be further worked on.
get information about the co-expression and co-regulation This may be done by further theoretical work (integration of
of genes I(ee et al., 2004; Yeung et al., 2004&specially 3|l available biological knowledge) or additional experiments
for the two latter issues, this is the only approach: as a very in the wet-lab.
large amount of data is needed, which a single lab could not  sometimes the a priori biological knowledge about the
possibly come up with. phenomenon of interest may be very limited. In this case, it

Various authors propose statistical models to help extract- cgn happen that despite careful planning and execution, the
ing the maximum information from these pooled data (see genes identified as interesting are not actually the cause of the
for exampleShen et al. (2004and Statnikov et al. (2003) phenomenon. This was for example the case in the genome-
Note that when working with pooled date, their analysis ide analysis undertaken yshima et al. (2002)n these
will have to be carried out with methods which do not cases a new experimental setup may be solution. However,
need the definition of the factors a priori, like PCA or the conclusion may also be that a transcriptome analysis is

ICA. not the adequate tool for the study of the phenomeRiva(
et al., 2004.
4.2.4. The combination of factors It is therefore important to realize that a microarray anal-

If we want to obtain useful information from our microar-  ysis will generally not be THE answer to all your questions.
ray experiment, we are forced to formulate precise questions.It is a complement to other approaches.
This means that we cannot combine two factors in one ques-
tion, as thisis equivalentto measuring the interaction between
the factors, which is not separable from the error (unless we 6. Software and data used
know in detail the relationship between the two factors, for
example linear or sinusoidal). The sulphur metabolism data froilBekowska et al.
This is one more reason to follow a fully crossed factorial (2001) are freely accessible dtttp://195.221.65.10:1234/
experimental setup, as exemplified by ANOVA. It forces us ~carpenti/
to spell out in detail what we want to measure and what = PCA and ANOVA were performed using GeneANOVA,
will be part of the error or interaction component. It has the freely available on request for non-commercial use. Please
great advantage of permitting the identification of the sources contact Gilles Didier atlidier@iml.univ-mrs.fr
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