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Abstract

Microarrays are becoming a ubiquitous tool of research in life sciences. However, the working principles of microarray-based methodologies
are often misunderstood or apparently ignored by the researchers who actually perform and interpret experiments. This in turn seems to lead
to a common over-expectation regarding the explanatory and/or knowledge-generating power of microarray analyses.

In this note we intend to explain basic principles of five (5) major groups of analytical techniques used in studies of microarray data and
their interpretation: the principal component analysis (PCA), the independent component analysis (ICA), thet-test, the analysis of variance
(ANOVA), and self organizing maps (SOM). We discuss answers to selected practical questions related to the analysis of microarray data. We
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we discuss in detail the scope and limitations of microarray-based methods. We emphasize the fact that no amount of statisti
can compensate for (or replace) a well thought through experimental setup. We conclude that microarrays are indeed useful
sciences but by no means should they be expected to generate complete answers to complex biological questions. We argue t
posed questions, formulated within a microarray-specific terminology, cannot be completely answered with the use of microarra
alone.
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1. Introduction

Microarrays have become one of the fundamental tools
for biologists and great hopes are placed in their ability to
answer all the questions asked by the researchers.

The amount of data created in an experiment is large and
the nature of the data quantitative, two features a biologist is
not necessarily used to or trained for. For the analysis of the
data, the biologist has to choose from a rapidly increasing
number of methods proposed in the literature, again, without
necessarily having the knowledge and competence to do so.
He therefore risks overestimating the power and capacity of
the method (to provide him with the answers he is looking
for).

∗ Corresponding author. Tel.: +33 1 60 87 38 63; fax: +33 1 60 87 38 97.
E-mail address: gucki@genopole.cnrs.fr (A. Riva).

This commentary wants to give the fundaments, w
will allow the biologist to get out a maximum from micro
rays, by understanding their nature and the principles o
statistical methods proposed to him.

For this we first give a brief introduction to the subjec
microarrays, their origins, the different types and their ap
cation. We then examine the fundamental groups of me
used in the analysis of microarrays. Throughout we pro
the reader with a list of papers allowing him to pursue
point further.

The FAQ section, which follows, contains the answ
to questions related to the analysis of microarray d
often asked during the course taught by this labora
(http://www.infobiogen.fr). This is another way to approa
the subject and again, a list of publications for the intere
reader is provided.

The last section leads us to consider which are the im
tant aspects in the experimental setup, in function o
analysis methods discussed.
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2. Fundamentals and basic terminology

2.1. General introduction to microarrays

A microarray consist of a solid support on which a series
of DNA segments is arranged and fixed in a regular pattern.
These segments are incubated with a labelled nucleic acid
sample. When a nucleic acid sequence in the sample is com-
plementary to a DNA segment present on the support, it will
bind and hybridize to this, specific segment. This hybridiza-
tion is recorded and analyzed.

2.1.1. The historical background
As Jordan (2002)points out, DNA arrays were already

being used in the seventies, in the form of dot blots and
slot blots. Ekins and co-workers developed microspot fluo-
rescent immunoassays in the late eighties and early nineties,
proving that the sensitivity of these miniaturized assays was
comparable to that of “macroscopic” ones and introducing
the concept of microarray (Ekins, 1989; Ekins et al., 1990;
Ekins and Chu, 1991). The concept of miniaturization was
also applied to DNA arrays, using two different approaches.
One was to deposit the DNA (or complementary DNA) on
glass plates, leading to the first publication of a gene expres-
sion microarray article in 1995 (Schena et al., 1995). The
second approach was that of the oligonucleotide array, where
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with the prepared microarray and allowed to hybridize with
the probe. Finally, the resulting signal intensity, which corre-
lates with the amount of captured probe, is measured, stored
in a computer and then analyzed.

Recently, efforts have been made to extend the microarray
technology to the field of proteins. The interested reader
may refer to the review written byTemplin et al. (2002)
for a comprehensive introduction to this field. For further
information on microarray technology, the reader may
refer to recent review articles (Barrett and Kawasaki,
2003; Vrana et al., 2003); he may also refer to a related
NCBI web page (http://www.ncbi.nlm.nih.gov/About/
primer/microarrays.html).

2.2. Applications

Microarrays can be used for a variety of purposes, includ-
ing the detection of mutations, DNA sequencing and the
analysis of gene expression. Microarrays allow measuring the
expression levels of thousands of genes at the same time and
this opens the possibility to identify differentially expressed
genes (Callow et al., 2000) and to cluster those genes sharing
similar expression patterns (Heyer et al., 1999). They have
become a widespread tool for analyzing the relative transcrip-
tion levels of genes.

The fields microarrays are being used in are numerous and
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he DNA is directly synthesized onto the support (Fodor e
l., 1991; Southern et al., 1992).

.1.2. Today’s microarrays
In the following, “probe” denotes the immobilized DN

n the support and “target” the mobile DNA, cDNA
RNA. Some authors, however, use the terms the othe

ound. The supports used for microarrays today are
microscope) slides (nylon) membranes or silicon chips

The material fixed on the support (“probe”) can be:

. DNA, representing coding sequences or, more gene
pieces of genomic DNA.

. Complementary DNA, obtained from the mRNA of s
cific genes or expressed sequence tags (ESTs); the la
usually used for organisms not yet completely sequen

. Oligonucleotides; in the case of oligonucleotide ar
the oligos are synthesized directly onto a silicon chip;
process has been pioneered by Affymetrix (seeLipshutz e
al. (1999)for a comprehensive review on oligonucleot
arrays).

The mobile “target” can be:

. DNA.

. Complementary DNA (cDNA), obtained from mRNA
reverse transcriptase-PCR (RT-PCR).

. mRNA; this can be used although cDNA is generally
ferred.

A hybridization mixture is obtained by labelling the tar
uorescently or radioactively. This mixture is then incuba
onstantly growing, some examples being:

a. clinical medicine (seeJoos et al. (2003)for a review on
this subject);

b. the study of the cell-cycle (see for exampleMcCune and
Donaldson (2003));

c. the study of the circadian rhythm in animals (see for ex
pleStanewsky (2003)) and plants (see for exampleDavis
and Millar (2001));

. the study of plant metabolism (see for exampleHirai et
al. (2004)).

They are also being used to elucidate the role of
oding sequences, for example, the role of some prom
egions, by integrating expression profiles with the in
ation on promoter sequence similarity (Bussemaker et a
000; Park et al., 2002). Heterologous hybridization to cDN
icroarrays is gaining in popularity and is, for example, u

n order to elucidate the molecular basis of complex trai
non-traditional model systems” (Renn et al., 2004).

As different as these applications may seem, the ai
he experiments is one of the following:

. To find the genes which indicate a phenomenon (not
essarily at the origin of the phenomenon, but an indic
of it: expression change correlated with the phenomen

. To find the genes which are at the origin of the p
nomenon under investigation.

In the first case, the researcher will need to find g
hose expression levels change considerably, few in
ers and that can be preferably used in antibody assays

http://www.ncbi.nlm.nih.gov/about/primer/microarrays.html
http://www.ncbi.nlm.nih.gov/about/primer/microarrays.html
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cheaper and faster to set up than microarrays) (Deutsch,
2003); an analysis of the microarray data will generally be
sufficient in order to identify the genes.

The work done bySekowska et al. (2001)and Oshima
et al. (2002)are examples for the second case and we will
come back to them in the course of the commentary; here,
an analysis of the microarray data is not enough to find the
genes at the origin of a phenomenon (and only these): it is
necessary to combine the results of the microarray analysis
with information from other sources, such as the genomic
and the purely biological fields (Jarvis et al., 2004; Hirai et
al., 2004; Riva et al., 2004). This is something important to
bear in mind and will be discussed at various points of the
commentary.

3. Data representation and analysis

3.1. The raw data

The microarray data used in the following stem
from experiments on the sulphur metabolism ofB. sub-
tilis (Sekowska et al., 2001) and are freely available
at http://195.221.65.10:1234/∼carpenti/. The experiments
were carried out using Panorama nylon filtersB. subtilis gene
arrays (Sigma-GenoSys Biotechnologies); each array con-
t d by
o rray.
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(corresponding to theN experimental conditions), a cloud
in an N-dimensional space. As we are not good at coping
with drawings having more than two dimensions (three still
works well on a computer screen), we are obliged to take
the columns 2 by 2 (i.e. one experimental condition versus
another).

Note that when you draw a graph by hand, you will auto-
matically try to maximize the use of the paper: you look at
the minimum and maximum values for both variables, and
define the scale accordingly. The machine will do the same.
In both cases, the data are transformed through a change of
variable: 1 cm on the graph corresponds toX units of the
original variable (a linear transformation).

3.2.1. Translation
This is an operation which in itself does not pose a prob-

lem, as one is interested in the relative position of the points
to each other: the aim is to find the points that are far away
relative to the main body of the cloud, which means that the
reference frame used to look at the cloud does not really have
much importance. However, the translation may create com-
plications when it consists in bringing a lot of the values close
to zero followed by taking the log of the data, something dis-
cussed in the next section.

3.2.2. Normalization
(like
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ains all ofB. subtilis’ genes and one gene is represente
ne spot. Each gene spot is represented twice on the a

The aim of these experiments was to identify the ge
ifferentially expressed when the bacteria are grown
ethionine (“met”) or methyl-thioribose (“mtr”) as sulph

ource. The experiments followed a fully crossed fact
esign with four factors (sulphur source, day of experim
mount of RNA used and duplicate of each spot). The
raw levels of expression) were gathered in an array of 4
ows (all B. subtilis genes) and 16 columns (experimen
onditions). The minimum value was 213, the maxim
alue 13,455, with two thirds of the data having a value be
00. Note that each factor has only two states: all factor
inary (seeFig. 1).

.2. The data table and some preliminary considerations
nd manipulations

It is natural to want to represent the data in a gr
e obtain one (and only one!) graph, withN dimensions

ig. 1. Experimental design of the transcriptome analysis onBacillus subtil
esign. In the case ofSekowska et al. (2001)the quantity of RNA used f
a different quantity of RNA or labelling with Cy3 rather than Cy5) or h
orkload without adding any biologically pertinent information. It is pr
dditional sulphur source or an additional experimental day.
Note that drawing a graph or letting a spreadsheet
S-Excel) draw the graph, implicitly presumes that the
f the signal does not change in function of the experime
onditions; one allows the data to be normalized. By d
his, one has presumed that the total of the signal in
olumn is the same: total signal of column 1 = total sig
f column 2. This is justified when three conditions are
lled: firstly, more than 90% of the genes do not care abou
xperiment, i.e. do not change expression in function o
ifferent experimental conditions; in that case one can in
resume that the total quantity of cDNA (and therefore o
RNA) is the same. Secondly, the number of genes ana
as to be large: this is a way to make sure that the ma
f the genes do not change expression in function of the

erent experimental conditions. Thirdly, the overall inten
hange of up- and down-regulated genes is similar. The
onditions are fulfilled in our example, but they would no
n, say, the temporal analysis of mRNA decay. The read
eferred to the work ofStoyanova et al. (2004)for some inter
sting considerations on this subject, as well as to the

owska et al., 2001). The experimental setup follows a fully crossed facto
T-PCR differed between the two protocols. Note that changing the p

duplicats for each gene on the array are all technical factors which inse the
e to increase the number of states for the biological factors, in theabove case a



322 A. Riva et al. / Computational Biology and Chemistry 29 (2005) 319–336

of Zhao et al. (2005)who propose a normalization procedure
for data not fulfilling the above conditions.

Instead of just looking at the minimal and maximal values
in order to best represent the graph, it is advisable to calculate
the means and variance for each experimental condition: in
the first case the estimates are based on two points only (min
and max) per experimental condition, in the second case the
estimate is made using all points. If these are numerous, the
result is more stable.

3.3. Graphic exploration

3.3.1. Preliminary considerations
As we said, we are forced to take the columns 2 by 2,

which means that we will look atprojections of our single
cloud on the different planes.

What are we looking for? Presuming that the three above-
mentioned conditions are fulfilled, at least 90% of the genes
analyzed will not change expression under the different
experimental conditions. This means that on the graph one
would see them all lying on one line, if it was not for the
noise: the noise is responsible for making those points look
more like a cigar which is the wider the more noise there is.
The remaining 10% of the genes will change expression; they
have an atypical behaviour and will not lie on the line (the
c main
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Fig. 2. Effect of different pre-processing methods on the data distribution.
The figure shows the effect different pre-processing methods have on the
data distribution. Shown are the distributions () of the raw data, ( ) after
having taken the log and ( ) after having taken the fifth root. As can be
seen, either operation brings the distribution closer to a Gaussian one.

As we mentioned in the section above, the reference frame
used to look at the cloud does not really matter and making
a simple translation does not in itself pose a problem. One
does need to be careful, though: making a simple translation
is indeed no problem, nor is taking the log. However, when
executing both operations, one needs to be cautious: if the
translation consists in bringing a lot of the values close to
zero, taking the log afterwards will create a distortion in the
cloud of points: one has just created a whole package of data
with values going towards minus infinity. This means that
in trying to take care of the problem of the points at the far
right (few points with very large values) by taking the log,
the result is worse than the starting point. Note that when
executing the two operations in the inverse order (first log,
then translation) the problem is not created.

We come back to the graphs, which are just many projec-
tions on different planes of ONE cloud. A brief look at the
general shape of each cloud projection is worthwhile. If a
cloud resembles a fat cigar, a lot of genes have considerably
changed expression. If, on the other hand, the cloud resem-
bles a line, the great majority has not changed expression
(seeFig. 3for two examples). The “cigar” may also be bent or
twisted. In this case the readings were taken outside the linear
range of the machine, an issue discussed in Section4.1.7. We
can be faced with a problem: taking the columns 2 by 2, the
number or graphs increases very rapidly when increasing the
n ave
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igar) but be apart. These genes that are apart from the
ody of the cloud are the ones the biologist is intereste
ote that having the 90% of the point lying on a line is

deal case, the “cigar” being the reality; so one tries to
hat line (which describes 90% of the genes) somehow.

How do we describe those 90% of the data? How do
etermine the line? Various options are available:

a) One can try to draw it by hand.
b) Calculate the linear regression. This is not such a

idea as there are two lines of regression (x-axis versu
y-axis and vice versa) and they are not identical ex
when all the points lie on the same line.

c) Use methods that are more sophisticated.

The methods all presume that the cloud follows a Gau
istribution, or at least a unimodal and symmetrical one. T
lso need some pre-processing of the data, for two reas

(a) The fact that the data often consist of a very large am
of small values and a few, extreme points, somet
which affects most data analysis techniques stro
(Chiappetta et al., 2004).

b) Some effects being studied may have a multiplica
behaviour.

To solve the first of these problems, taking the log,
quare (or cubic or fifth etc) root or the hyperbolic tang
re all possible and generally accepted methods (seeFig. 2),
hilst for the second problem taking the log is prefera

Chiappetta et al., 2004; Hoyle et al., 2002; Thygesen
winderman, 2004; Tusher et al., 2001).
umber of experimental conditions: in our example we h
6 columns which means we need to look at 16× 15/2 i.e. 120
raphs. Evaluating them all in detail becomes a bit tedio

Thus, we need to find ways to reduce the number of gr
e have to examine. To do this, we need to decide,
hich point of view we want to look at the cloud, which h

o be translated into a mathematical criterion. This imp
hat there will be a change (rotation) of the reference fra

.3.2. By hand (with a spreadsheet)
With “by hand”, we refer to the fact that the calculatio

re extremely simple. As the calculations have to be rep
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Fig. 3. Projections of the data on different planes. In all four figures, each axis corresponds to an experimental condition: (a and c) metA1a vs. mtrA1a; (b
and d) metA1a vs. metA10a (seeFig. 1for the nomenclature). (a) and (b) show projections of the raw data, in (c) and (d) the data are log centre-reduced. Log
centre-reducing the data has brought the few points which are far away from the main body in (a) and (b) closer in (c) and (d). Note how the space is more
efficiently used in (c) and (d). The points in the two left-hand pictures form a narrower “cigar”, indicating that fewer genes have changed expression than on
the right-hand side.

for each gene, though, the number of calculations is such as
to make handing the job over to a spreadsheet a practical
alternative.

The only reasonable option to reduce the 120 little pictures
means concentrating on the expression changes caused by
each single factor being studied, in our case four. For this we
calculate the mean expression for each gene; this will be the
x-value. Then, for a given factor like sulphur, we calculate
the sum of all met values and subtract from it the sum of all
mtr values, which gives us they-value.

This is done for all four factors. Note that we have changed
the reference frame; this calculation, which is done instinc-
tively by hand, can be formalized and done via a matrix, called
“mixing matrix”: it allows to change from the old reference
frame to the new one and is shown inTable 1.

We obtain four graphs, one for each factor; we then look
for genes that are far away from the main body of the cloud.
Fig. 4shows the graph obtained for the factor sulphur. Exe-
cuting this operation, each experimental condition is given

the same weight and the criterion chosen to look at the cloud
is “one factor per graph”.

3.3.3. PCA
A more sophisticated approach is the principal component

analysis. Pearson first introduced it in 1901. The reader may
refer to the work byStoyanova et al. (2004)for a comprehen-
sive introduction to the subject and toKendall et al. (1983)
for a technical presentation.

Here, the criterion chosen to look at the cloud is to max-
imize the variances along the axes of the reference frame.
There are numerous softwares that do this job and which sup-
ply us with the mixing matrix, which in PCA’s case is called
eigenvector matrix, shown inTable 1. This matrix allows us
to change from the old reference frame to the new one; it gives
us for each of the new axes (in the table: the columns) the
coefficient with which we have to multiply each gene’s value
in a given experimental condition (in the table: the lines) in
order to obtain its new coordinates (see legend ofTable 1).
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Table 1
The mixing matrix calculated by the spreadsheet (MS-Excel) and theeigenvector matrix calculated by PCA
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Fig. 4. The expression change in function of the factor sulphur as calculated by a spreadsheet (MS-Excel). The figure shows the genes’ expression change in
function of the sulphur source against their mean expression. The potentially interesting genes are those away from the main body of the cloud. The highlighted
genes are the ones which proved to be of particular interest for the problem investigated bySekowska et al. (2001); the reader may refer to their work for a
detailed discussion. Note that not all of these genes would have been detected using the spreadsheet.

Fig. 5. The data cloud projected on the plane formed by axis 1 against axis 5 (PCA). The figure shows the genes expression change in function of the sulphur
source (axis 5) against their mean expression (axis 1), as calculated by PCA. The potentially interesting genes are those away from the main body of thecloud.
The highlighted genes are the ones which proved to be of particular interest for the problem investigated bySekowska et al. (2001); the reader may refer to
their work for a detailed discussion. Note that not all of these genes would have been detected using PCA.

Theeigenvector matrix gives us also another information:
the variance oreigenvalue for each axis, expressed in per-
centage. This provides an indication of the cloud’s dispersion
along the axis (the bigger the value, the more the genes are
dispersed along this axis). The fundamental idea is that if the
dispersion is great, the image is easier to interpret than if all
the points were packed together. If an experimental factor
influences the expression of some genes, the factor will con-
tribute to the dispersion of the cloud and may coincide with
one of the axes determined by PCA.

The eigenvector matrix gives a wealth of information.
Looking at our matrix, we see that for the first axis all the
16 coefficients have basically the same value; this means
that for the first axis, all experimental conditions have the
same weight, in other words, the first axis gives us the total
expression of each gene, just like with a spreadsheet. This
observation is generally true (seeStoyanova et al., 2004).

In each of the other columns (axes), the experimental con-
ditions can be grouped together according to the sign of their

coefficient (positive or negative). For some axes, this coin-
cides with a separation of the two states of a factor. In our
case, axis two separates well the two protocols (1�g RNA:
all values are negative and 10�g RNA: all values are pos-
itive); axis three separates the day (A and B), axis five the
sulphur source (met and mtr) and axis seven the two spots (a
and b). Other axes, on the other hand correspond to combina-
tions of the experimental conditions, whose interpretation is
not evident: axis four is an example. It singles out the riboso-
mal proteins; a biologically speaking coherent result, which
is waiting for an interpretation. This is something frequently
found when analyzing microarray data.

The eigenvector matrix deserves a little more attention:
the values it contains can be looked at from a different point
of view. If we take up our example, each line represents an
experimental condition and the values in the 16 columns for a
given line give us the position of that particular experimental
condition in the 16-dimensional space. (To be precise, each
value has to be multiplied with the root of the variance of

Table 1 (Continued )
The mixing matrix at the top was calculated by the spreadsheet, the mixing matrix (oreigenvector matrix) at the bottom by PCA. The arrows indicate the
columns which separate well the effects of the same factors. The matrices allow us to change from the old to the new reference frame: they give us for eachof
the new axes (the columns) the coefiicient with which we have to multiply each gene’s value in a given experimental condition (the lines) in order to obtain the
new coordinates. The first line in theeigenvector matrix contains theeigenvalue for each axis (in %), providing an indication of the cloud’s dispersion along
that axis. Note that for the first axis all the sixteen coefficients have basically the same value; this means that for the first axis, all experimental conditions have
t ression
f he orig 1;
5 ; 5.249 he
c × 0.25
he same weight, in other words, the first axis gives us the total exp
or the calculation of the new coordinates with theeigenvector matrix: in t
.432; 5.092; 5.068; 4.893; 4.744; 3.763; 3.661; 5.333; 5.265; 5.329
alculations are as follows: (5.431× 0.250) + (5.432× 0.249) +· · · + (3.737
of each gene, which is generally true (seeStoyanova et al., 2004). An example
inal (or “old”) reference frame, the genegalK has the coordinates (5.43
; 4.607; 4.444; 3.806; 3.737). To obtaingalK’s coordinate on the new axis 1. t
1) = 19.0. The other coordinates are obtained accordingly.
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that axis, in order to obtain the coordinate.) This means that
instead of looking at theeigenvector matrix, we can look at the
different projections of the experimental conditions in order
to figure out which axes separate well the different states of
our factors. Once we have established which planes deserve
being examined in details, we come back to the projections
of the cloud on these planes and pinpoint those genes, which
are far away from the main body of the cloud.Fig. 5 shows
the cloud projection on the plane formed by axis one versus
axis five.

Note: the normalization of the data is an integral part of
PCA.

To resume, with PCA the experimental conditions are not
given the same weight (contrary to a spreadsheet) and the cri-
terion chosen to look at the cloud is to maximize the variances
along the axes.

3.3.4. ICA
“ICA tries to find a linear representation of non-Gaussian

data so that the components (or factors, or sources) are statisti-
cally independent, or as independent as possible” (Hyvärinen
and Oja, 2000).

This search for statistical independence is generally very
difficult and therefore an approximation is made: one looks
for the directions that maximize the criterion of non-Gaussian
d er-
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Fig. 7. The “weight” attributed to each experimental condition by a spread-
sheet (MS-Excel), PCA and ICA. The figure shows that a spreadsheet
(MS-Excel) attributes the same “weight”, or importance, to each experi-
mental condition, whilst PCA and ICA do not.

in absolute terms: the algorithm gets stuck with a local maxi-
mum (Chiappetta et al., 2004). Launching ICA a large number
of times, typically 100, circumvents this problem and only
those directions or solutions that have been most frequently
found are kept. As with PCA we have a mixing matrix that
allows us to change from the old reference frame to the new
one. Again, the different experimental conditions do not have
the same weight; the weight attributed, though, varies slightly
from PCA. Once we have determined the axes, the procedure
is the same as with PCA.Fig. 6 shows the cloud projection
on the plane that separates well the sulphur sources.

The applications of ICA in microarray analysis include
the identification of groups of genes implicated in cancer, the
study of the cell cycle (Liebermeister, 2002; Martoglio et al.,
2002) and the identification of genes that are potentially co-
regulated (Chiappetta et al., 2004). Chiappetta et al. (2004)
andCarpentier et al. (2004)have applied both PCA and ICA
to the sulphur metabolism data and shown that the two meth-
ods perform similarly well, with ICA slightly outperforming
PCA.

3.3.5. A brief remark
We have said that whilst a spreadsheet attributes to each

experimental condition the same weight, PCA and ICA do
not (Fig. 7 shows a comparison between the three methods
f

F sulphu nction of t
s es are are the on
w bykowsk ion.
N .
istribution. As “non-Gaussian” is a “non-property”, num
us possibilities exist for defining such a distribution. O
riterion that seems to work quite well is to look for dis
utions with a positive kurtosis (distributions with “hea
ails”). ICA can be seen as a close relative of PCA. Wh
CA looks at which directions maximize the variance, I
pproaches the question of finding genes with an “aty
ehaviour” more directly, by defining “atypical” as “follow

ng a non-Gaussian distribution”. The new reference fr
ill maximize the criterion of “non-Gaussianity”. With th
riterion, one increases the weight of points that had
mall deviations from the main body of the cloud and t
llows them to be detected as potentially interesting.

A latent difficulty with ICA is that there is no analytic
olution (contrary to PCA): we look for the numerical so
ions. There is the danger that the algorithm finds a dire
ith a solution, but that this direction is not the best solu

ig. 6. The data cloud projected on the plane that separates well the
ulphur source, as determined by ICA. The potentially interesting gen
hich proved to be of particular interest for the problem investigatedSe
ote that not all of these genes would have been detected using ICA
rom this point of view).

r source (ICA). The figure shows the genes’ expression change in fuhe
those away from the main body of the cloud. The highlighted geneses

a et al. (2001); the reader may refer to their work for a detailed discuss
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The spreadsheet simply calculates the mean expression.
This choice is not optimal when certain experimental con-
ditions contain more information than others. Ideally, the
weight attributed should be proportional to the information
contained. PCA is a good choice when the signal follows a
Gaussian distribution, whilst ICA imposes itself when the
distribution is non-Gaussian.

You might wonder what happens if you use, say, PCA on
data that follow a non-Gaussian distribution. The answer is
that you are likely to miss out on potentially interesting genes;
you do not, however, risk finding “wrong” genes. Using more
than one tool amounts to examining the cloud from different
angles; the results obtained with the different tools are com-
plementary.

3.4. Statistical tests

3.4.1. Preliminary considerations
Our experience shows that some confusion reigns regard-

ing the statistical tools in general and their application to
microarrays in particular. Hence this rather long introductory
section.

When approaching microarray data from a statistical point
of view, people seem to worry a lot about the fact that the data
are “relative” and whether they should or not take ratios.

Microarrays give us “relative data”: the interesting infor-
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when deciding to work on one of the genes from this group
(Benjamini and Hochberg, 1995). One generally chooses the
threshold in order to have less than 5% of false positives in the
group. Take for example an experiment carried out on 4000
genes with 80 lying beyond the threshold of 0.1%. As there
are on average four false positives beyond the 0.1% threshold
(4000× 0.001), the percentage of false positives is 4/80, or
5% of the selected genes.

The literature sometimes refers to the Bonferroni cor-
rection. This correction is not pertinent for the analysis of
microarray data, as it is too restrictive.

The numerical criterion used in the statistical tests is
always the ratio between the deviations observed for the fac-
tor of interest (the signal) and the deviations due to all the
causes one chooses to ignore (the noise). The statistical tests
differ from each other in the way they define the noise and
the probability function they use to estimate the probability
of false positives. In the past, the function used was the Gaus-
sian. Nowadays one tends to employ the probability function,
estimated on the data using permutations (seeTusher et al.,
2001).

3.4.2. ANOVA
ANOVA is a tool that allows us to analyze simultaneously

the effect of more than one factor on a variable, in our case
the genes’ expression levels. The method is based on the
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ation regarding a gene is “relative” as one compare
xpression of a gene under condition A with that of
ame gene under condition B. Microarray technology is q
ecent; however, dealing with relative data is not and ta
he ratio results in a reduction and a falsification of the in
ation offered (Kerr and Churchill, 2001). It is Fisher who

rst tackled and solved the problem at the very beginnin
he 20th century, resulting in ANOVA. For a more deta
iscussion of this issue, the reader is referred to the
f Kerr and Churchill (2001). At about the same time, Go
et (“Student”) came up with thet-test as a solution to th
roblem.

Statistics help us to answer the question whether
xpression differences observed are real. The answer is

ndirectly, as the statistical tools give us the probability
aving a false positive. A false positive is a gene wh
xpression difference surpasses by chance a threshold
hich has been fixed in advance. “By chance” means th

he experiment were repeated, you would not find again
large expression change.
The statistical analysis is used to evaluate the prob

ercentage of false positives beyond a given threshold v
0 genes will surpass by chance the threshold value of

he experiment was carried out on 4000 genes.
The estimation of the number of false positives is only

rst step. Beyond the threshold value we not only find f
ositives, but also genes whose expression change is
we would find it again if the experiment were repeated).
ey information is the proportion of false positives on
otal, because it measures the risk of being on the wrong
,

alculation of the sum of squares, degrees of freedom,
quare (short for mean square deviation from the mean
-statistics1 (seeZar (1998)for details). As we use ANOVA

n a somewhat reductive manner, the reader may refer t
ork of Zar (1998)for a full appreciation and pedagog
xplanation of the possibilities offered.

Various quantities are used simultaneously in orde
ecide whether the expression of a gene varies signific

or the factor of interest.

. V1, the variance for the total of the observations mad
the gene;

. V2, the variance for the observations made for the fa
of interest;

. V3, the variance for the observations made for those
tors whose influence one wishes to subtract.

The signal is equal to V2, the noise to V1− (V2 + V3).
he possibility to calculate the term V3 is a particularity
NOVA and it allows a finer control of the noise’s co
osition. In our example, V3 corresponds to the expres
hange caused by the day, the duplicate and the RNA
entration. The noise encompasses all which causes th
erence between the actual expression level and the s
he expression levels of the four factors.

In the case of the sulphur metabolism data, the equ
sed for each gene is the following:

ijkl = µ + Si + Jj + Ck + Dl + εijkl

1 Sometimes referred to asF-test.
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Fig. 8. The graphical representation of the results obtained with ANOVA for
the factor sulphur. The potentially interesting genes are those with a small
p-value and a large variance, genes which are therefore in the bottom right
part of the image. They are away from the main body of the cloud. The
highlighted genes are the ones which proved to be of particular interest for
the problem investigated bySekowska et al. (2001); the reader may refer to
their work for a detailed discussion. As can be seen, not all genes of interest
would have been identified by the sole use of ANOVA.

whereYijkl is the total expression level measured;µ the mean
of the expression levels measured for the gene;Si, Jj, Ck and
Dl, respectively, the effects of sulphur sourcei, experiment
dayj, RNA concentrationk and duplicatel on the expression
level; εijkl is the residual error.

Note that the residual errorεijkl encompasses all inter-
actions: between two factors (6), between three factors (4)
and between four factors (1). The interactions are grouped
together under “error” for the following reason: it is infor-
mation with which we cannot work, unless we have a very
precise idea of the nature of the interaction (linear, sinusoidal
or other).

The F-test is calculated in the following manner:
F = “mean square of the sulphur source”/“mean square of the
residual error”. We are interested in genes that posses a high
F-value (p-value) for the factor sulphur source. The calcula-
tions are done for all genes and the results can be represented
in a graphical form. The variance of the factor of interest is
given on thex-axis, thep-value on they-axis. Thep-value is
used to calculate how many false positives will lie below a
chosen threshold value (seeFig. 8).

Note that we are not interested, whether the expression
levels of the thus identified genes also vary in function of
the other factors. One does not preclude the other and has no
impact on our analysis.
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mitting us to isolate the contribution of our factor of interest.
The pairedt-test also allows this, but the approach is differ-
ent, and we can only use it for binary factors. The paired
t-test eliminates the influence of all the factors we are not
interested in by calculating the difference between pairs of
values. The members of each pair differ from each other only
with respect to the factor of interest (state 1 versus state 2),
all other experimental conditions being equal.

For example, we calculate the difference between the value
obtained on met with the value obtained on mtr, both obtained
on day A, with 1�g mRNA and spot a. Then we calculate
the difference of met versus mtr on day B, with 1�g mRNA
and spot a and so forth. This is done for each gene and we
thus obtain eight comparisons, or differences per gene. V1
is calculated on these eight comparisons, the term V3 has
disappeared.

However, as the pairedt-test takes pairs of “similar condi-
tions”, systemic biases due to, e.g. “day” or “duplicate”, are
eliminated, therefore still allowing for a reasonable estima-
tion of the error.

3.4.4. t-Test
The t-test corresponds to an ANOVA with one factor and

is the least favourable option. Thet-test only considers the
expression difference due to one factor, ignoring that there
are pairs of measurements which have more or less in com-
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ANOVA has some advantages when the experimenta
ors are not binary; in that case, it basically becomes the
ool which is easy to use.

.4.3. Paired t-test
We have said that ANOVA quantifies the contribut

iven by each factor to the total expression of a gene,
on (like the day, protocol and spot), unlike ANOVA and
airedt-test. Thus, we cannot separate the contribution m
y our factor of interest from the contribution made by
ther factors and the interaction between them; the ex
ion difference due to our factor risks being drowned by
est.

In terms of V1, V2 and V3: V1 is calculated on the tota
he 16 observations made (as with ANOVA), but as the
3 has disappeared, the noise risks being much larger.

.4.5. In conclusion
The biggest difficulty is to estimate the noise with ac

acy. The best solution is to repeat the experiment a
umber of times. As this is not always possible, statistic

ry to improve the estimation of the noise by working
roups of genes having more or less the same level of n
considerable amount of literature is dedicated to this e
umerous are the solutions proposed, none is perfect. G
lly, the grouping is done a posteriori, after a first estima
f the noise for all the genes separately. One speaks i
ase of a Bayesian approach. The reader is referred
ork of Neuḧauser and Senske (2004)for an introduction

nto the subject and to the work ofKutalik et al. (2004)for
he comparison of some methods proposed.

Regarding the three approaches discussed above:Table 2
hows the measurements obtained forytmJ and the result
btained from ANOVA, the pairedt-test and thet-test. It
hows that though ANOVA and the pairedt-test both iden
ify the gene as interesting, thet-test results inconclusiv
he observation made on this particular example ca
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Table 2
Comparison between ANOVA, the pairedt-test and thet-test, an example

met mtr met–mtr

(a) Measurements obtained forytmJ
A1a 1.170 1.520 −0.3494
A1b 1.176 1.580 −0.4048
B1a 0.950 1.566 −0.6158
B1b 0.891 1.541 −0.6496
A10a 1.939 2.049 −0.1096
A10b 1.565 2.048 −0.4827
B10a 0.893 1.523 −0.6296
B10b 1.007 1.485 −0.4772

(b) t-Test
Numerator −0.465
Denominator 0.313
d.f. 14
t-Test −2.971
−log(p-value) 1.99

(c) Pairedt-test
Numerator −0.465
Denominator 0.064
d.f. 7
Pairedt-test −7.290
−log(p-value) 3.78

State 1 State 2 SS

(d) ANOVA
Sulphur 9.592 13.311 0.864
Day 13.048 9.855 0.637
RNA 10.394 12.508 0.279
Spot 11.610 11.293 0.006
Residual 0.448

Total 2.235

Factor SS d.f. Variance F −log(p-value)

Sulphur 0.864 1 0.864 21.21 3.12
Day 0.637 1 0.637 15.64 2.65
RNA 0.279 1 0.279 6.86 1.62
Spot 0.006 1 0.006 0.15 0.00
Residual 0.041

Total 0.149

In (a) the measurements obtained forytmJ are shown. (b–d) The calculations and results obtained with thet-test, the pairedt-test and ANOVA, respectively.
ANOVA and the pairedt-test both identify the gene as potentially interesting, whilst thet-test results inconclusive (see the relative−log(p-value)). d.f. = degrees
of freedom; SS = sum of squares. See Section3.4for details.

generalized.Table 3 shows a comparison of the number
of genes detected by the three methods. Although ANOVA
detects the highest number of genes, the pairedt-test performs
comparably well, whilst thet-test lags far behind.

3.5. Graphic exploration and statistical tests in
comparison

We have chosen to talk about the typical representatives of
the two approaches. They are not the only ones proposed in
the literature: the number of tools is continuously increasing
and no one, definitive method has so far emerged, as is exem-
plified by the web-site maintained by Li, which has a steadily
growing collection of articles on microarray data anal-

ysis (http://www.nslij-genetics.org/microarray/). Conceptu-
ally, all these tools are based on one of the methods described
above or they fall into the category “cluster analysis”,
described below.

Some methods will use the term “distance”, whilst others
may talk about “correlation”. In mathematical terms, it boils
down to the same thing: second order statistics, yielding the
same type of information. As the methods all differ more or
less from each other, it is normal that they do not come up
with exactly the same results.

Which method is the best?Carpentier et al. (2004)have
examined this issue and developed a protocol that allows the
comparison of the different methods, in terms of their relia-
bility. They conclude that each of the methods analyzed gave

http://www.nslij-genetics.org/microarray/
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Table 3
Overall comparison between ANOVA, the pairedt-test and thet-test

(a) Number of genes detected with a threshold of−log(p-value) = 3
ANOVA only 62
t-Test only 5
Both 24

ANOVA only 35
Pairedt-test only 30
Both 51

t-Test only 12
Pairedt-test only 64
Both 17

Total ANOVA 86
Total pairedt-test 81
Total t-test 29

(b) Number of genes detected with a threshold of−log(p-value) = 4
ANOVA only 16
t-Test only 0
Both 9

ANOVA only 17
Pairedt-test only 12
Both 8

t-Test only 14
Pairedt-test only 15
Both 5

Total ANOVA 25
Total pairedt-test 20
Total t-test 9

The table shows a comparison of the number of genes detected by the three
methods. In (a) the threshold for detection was−log(p-value) = 3, in (b) it
was equal to 4. Although ANOVA detects in both cases the highest number
of genes, the pairedt-test performs comparably well, whilst thet-test lags
far behind.

some information not provided by the others, suggesting once
more the advantage of analyzing one’s data with more than
one statistical tool.

ANOVA, one of the methods tested, did not excel on the
sulphur metabolism data. However, all factors were binary
and ANOVA has the great advantage of being easily appli-
cable in cases where the factors are non-binary. It also has
another important property: ANOVA is the only method that
forces the experimenter from the beginning to give the experi-
mental setup some thought, to plan it carefully. It is therefore
a good practice to think of an experimental setup in terms
of ANOVA, even if the data are then exploited by another
method (see Section4.2).

3.6. And the clustering approach?

The principle is to group and/or to classify the genes in
function of the expression profile obtained under the various
experimental conditions.

The cloud is thus divided into a number of clusters, the
idea being that a cluster corresponds to a functional class.
Choosing a gene of unknown function, one can look to which

cluster it belongs and thus draw conclusions about its possible
role.

This approach poses problems from two points of views:
a biological and a technical one.

From a biological point of view: we have to define what
a functional class is and how many there are. These are not
banal questions, as exemplified by the fact that even for such
a well-studied organism likeE. coli numerous classifications
are proposed (for example SwissProt, EcoCyc, Kegg). Sec-
ondly, the functional classes found in the literature tend to be
rather large, containing dozens or hundreds of genes, mak-
ing them too large to permit their exploitation in the wet lab.
Thirdly, the clustering methods normally do not allow a gene
to be part of more than one cluster, which goes against bio-
logical intuition and experience.

From a technical point of view: we have to choose amongst
a myriad of (family of) clustering techniques. As the biologi-
cal question is not clearly defined, we do not have a criterion
to select the pertinent and coherent method for our needs.2

At this point one has to make do with a data-driven attitude.
This necessitates a thorough knowledge of the different fam-
ilies of clustering techniques in order to make the best choice
in function of the data set to be analyzed (Somorjai et al.,
2003), as all the clustering techniques require many prior
decisions (Chiappetta et al., 2004). In addition, asSomorjai
et al. (2003)point out: “the maxim ‘simpler is better’ has
m
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As clustering methods are well-liked tools (see for ex

le the popular software proposed byEisen et al. (1998)),
arious attempts have been made to circumvent the va
echnical problems. The reader, who would like to ha
ritical introduction to different families of clustering tec
iques, may refer to the works ofDatta and Datta (2003), De
met et al. (2002)andSomorjai et al. (2003).

.7. And SOM?

Generally speaking, only the outskirts of the cloud
isually exploitable. The internal organization is hidden
he superposition of thousands of genes on the same im
he analysis would be easier if it were possible to give a f

ul representation of the genes’ density in each region o
loud, with onlyk points. A rather näıve solution consists i
hoosing thesek genes at random. This is unlikely to give s
sfactory results, though. Calculating the optimal positio
hek points is a difficult problem. A number of programm
xists proposing approximate solutions. An example is
rganizing maps (SOM), which chooses thek genes and pro
ides a list of the genes close to thek genes. The interest
eader may refer to the work byKaski et al. (2003)for an

2 An example is the definition of the distance between clusters. This is
anal problem. Take for example the problem of having to define the dis
etween two countries: do you take the two capitals? The two biggest
he shortest distance (0 if the countries are adjoining)?
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introduction to SOM as well as a comparison of its merits
compared to some classic classification methods.

Note that all the programmes proposed necessitate the
adjustment of numerous parameters for which you do not
necessarily have a rational basis to make your choice. This
carries the risk that you only believe those results which tell
you something you already know: not the best way to discover
new things.

4. Intricacies of microarray-based methods

4.1. FAQ

Over the years of teaching the course on the analysis of
microarray data, we have noticed that certain questions, more
or less closely related to the subject, turn up on a regular basis.
Here are some of them, with the answers.

4.1.1. Missing values
They have generally two possible origins: (i) the microar-

ray contains a defect resulting in the impossibility of taking
a reading or (ii) the machine eliminates the measurement as
the value is very close to the noise level (in this case it would
be advisable to change the setup of the machine). This poses
a problem, as many data analysis methods require full sets of
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As Lawrence et al. (2004)point out, the human component
plays an important role. The assumption that the background
level is consistent between the DNA spot and the surround-
ing space, frequently used for background quantification, is
not correct (Konishi, 2004). Using “designated” household
genes for the background determination is in itself a good
idea, but finding out who the household genes are, is posing
problems (Stoyanova et al., 2004).

Regarding Affymetrix’s GeneChips, the common practice
of subtracting the mismatch (MM) probe intensities from the
perfect match (PM) ones is “unjustifiable”, according toSasik
et al. (2002), as the target sequence hybridizes not only with
the PM but also with the MM probe.

We remind the reader at this point that a useful way to
assess the utility of an anti-noise measure taken is to check on
the change of theeigenvalue of the first axis in a PCA (should
increase) or theF-value in an ANOVA (should increase).

4.1.3. Dealing with data containing a large number of
very small or zero values

You may find yourself in the situation of not having access
to the “real data”: you are given a set of data, where all values
below a certain threshold were replaced with one or very
few arbitrary values. This means that the distribution is far
from being Gaussian (or just unimodal), a fundamental pre-
requisite for the analysis of the microarray data.
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ata. The most radical solution is to eliminate the genes
issing entries, which is obviously far from ideal. A m
oderate solution is to fill in the gaps with estimate val
he easiest is to use the row average; the two most com
ethods, however, are:

(a) looking with whom the “missing gene” associates wit
the other experimental conditions, i.e. determining
gene’s “neighbours”, then presuming that in the mis
experiment this gene still associates with them and fi
the gap with the median value (a method known un
“K-nearest neighbours”);

b) variations around the PCA (examples here are the s
lar value decomposition and Bayesian principal com
nent analysis (Oba et al., 2003)).

The interested reader is referred to the works ofOuyang
t al. (2004), Kim et al. (2004)andZhou et al. (2003)for the
omparison of some currently used estimation methods

.1.2. The correction of the background noise on the
embranes, glass plates or silicon chips
This problem tends to be given too much importa

NOVA allows us to easily quantify the inter-array var
ion and the result is that this variation is small compare
ther sources (for example “day” in the case of the sul
etabolism data, seeChen et al. (2004)for a detailed dis

ussion on this subject), strongly suggesting that the e
pent correcting background noise is not justified. The
lso a second aspect to be considered, namely that find
eliable method to correcting background noise is not e
The only solution to this dilemma is to try to “restore” t
aussian distribution by replacing the smallest values

andom values (seeChiappetta et al., 2004).
Having a large number of very small or zero values m

imply be the result of a translation, usually the effec
aving subtracted the background noise. In this case
ufficient to add to all values a constant (for example
eakest signal measured in the experiment) before ta

he log of the data.

.1.4. Taking the ratio or not?
Microarrays give us “relative data”: the interesting inf

ation regarding a gene is “relative” as one compare
xpression of a gene under condition A with that of
ame gene under condition B. Microarray technology is q
ecent; however, dealing with relative data is not. The
owing text is taken fromKerr and Churchill (2001)who
iscuss the issue in a very clear and lucid manner: “. . . rela-

ive data is about as old as statistics itself. The “grandfa
f statistics, R.A. Fisher, worked with agricultural field
ls. In controlled experiments with clear objectives, scien
ought to determine the productivity of different varietie
crop, for example different strains. They recognized

here is no such thing in absolute terms as the yield of a
ty because productivity depends on soil fertility, sunli
ainfall, and myriad other factors. They understood tha
nly meaningful direct comparisons are for strains grow

he same block of land. Consider a hypothetical experim
o study three varieties. Suppose there are three blocks o
vailable, but each block only has room for two varieties.. . ..
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It is easily accepted that the yield data contain information
about the varieties grown in the same block. However, there
is a corresponding fact relying on the same logic that can
be overlooked. Namely, there is also information about the
blocks of land because they have varieties in common. Fisher
recognized this duality and realized one could simultaneously
estimate the relative yield of varieties and the relative effects
of the blocks of land. The quantitative tool for doing this is a
simple linear model:

yij = µ + Bi + Vj + εj

whereyij is the measured yield for varietyj grown on blocki;
µ the overall mean; the block effectBi is the effect of block
i; and Vj is the effect of varietyj. The termεij represents
random error. In a large experiment with many varieties and
blocks, unbiased yield comparisons can be made, even for
varieties not grown on the same block of land. Returning
to microarrays, consider the spots for a particular gene on
different arrays (or reproduced within arrays). The spots vary
in size, shape, and concentration, analogous to the variation
in fertility of blocks of land. Using the same principles as in
the agricultural experiment, we can simultaneously measure
the relative transcription level of the corresponding gene and
the “fertility” of the spots. However, this is only possible if
we use all the information in the data and do not reduce to
ratios.”
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data, which is only justified if three conditions are fulfilled
(see “The spread sheet and some preliminary considerations
and manipulations” above): firstly, more than 90% of the
genes do not change expression in function of the different
experimental conditions, secondly, the number of genes ana-
lyzed is large and thirdly the overall intensity change of up-
and down-regulated genes is similar (seeStoyanova et al.,
2004).

4.1.7. What can I do if my signal is outside the linear
range (of my machine)?

This results in a “cigar” which is twisted and bent. The
first and obvious recommendation is to make sure that at
the moment of taking the readings, the scanning settings are
correct, which they are often not (Stoyanova et al., 2004).
The second is to check that one is not just working at one
extreme of the linear range; if that is the case, a change of
concentration in the hybridization solution is a good option.
If the entire linear range is taken up, two solutions can be
proposed: using two different voltage settings for the photo-
multiplier or using different exposure times, when working
with radioactively labelled samples. Algorithms for subse-
quently combining the different readings are readily available
(see for exampleQuerec et al., 2004; Lyng et al., 2004). The
article byLyng et al. (2004)shows the relationship between
the type of incorrect setting and the resulting cloud shape.
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This should answer the question adequately.

.1.5. The problem posed by the two fluorescent dyes
sed with glass plates

When working with glass plates, one is given the ch
etween two different dyes to be used for the incorporatio
rder to obtain the hybridization mixture. In other words,

s given the choice between two experimental protocol
he case of the sulphur metabolism experiment the choic
etween using 1 or 10�g mRNA. When ordering the gen
s a function of the average intensity of the signal,Sekowska
t al. (2001)observed that the order is highly sensitive to
rotocol; on the other hand, if the same protocol is used
esults are highly repeatable (see Tables 5 and 6 inSekowska
t al., 2001). This observation can be generalized.

Does this have an impact for the analysis? The factor
ocol is an important source of variability (Chen et al., 2004
ekowska et al., 2001), but as there is no interaction betwe

he other factors, the impact on the analysis is minimal
ll the techniques described here (PCA, ICA, ANOVA
airedt-test). Having two protocols, doubles the numbe
easurements without being instructive on the biolog
roblem studied. If one has the means (economic or oth

ncrease the number of measurements, it is perhaps adv
o introduce a biological repetition or a new biological fac
Chen et al., 2004).

.1.6. How many genes should I put on my microarray?
The answer is simple: as many as possible. The reas

he following: a number of analysis methods normalize
Numerous authors propose “remedies” if the above
estions prove impossible to follow, but none will give y

he “perfect” data back you would have had if the experim
ad been executed correctly.

.1.8. How does one tackle a temporal series?
In time series expression experiments a number of sam

s taken over a period of time. Biological and computatio
roblems specific to this type of experiment have to be f

rom the experimental setup to the data analysis and t
nterpretation of the data. The reader is referred to the
y Bar-Joseph (2004)who reviews these problems and
olutions offered.

.1.9. How do we find genes for an accurate diagnosis
f a disease?

Typically, the data will come from one hospital and fr
relatively small number of patients. These patients re

ent the learning set and the analysis of the data will al
ome up with some candidate genes. To validate the re
owever, we need a validation set. It is wise to have fiv
ix times more patients in this set than candidate gene
void finding genes that are only specific to a particular so
ultural-genetic background, the patients should be ch
rom more than one hospital and more than one country
lso Section4.2.1).

From a theoretical point of view, the use of microarrays
he diagnosis of a diseases poses two fundamental prob
he first one being Bellman’s “curse of dimensionality” (
any features or dimensions, e.g. thousands of genes



A. Riva et al. / Computational Biology and Chemistry 29 (2005) 319–336 333

second one being the “curse of dataset sparsity” (too few
samples) (Somorjai et al., 2003); this means that we end up
analyzing a space with a great number of dimensions which
is nearly empty: whatever method is applied to the analysis
of the data, the result is unlikely to be statistically sound, the
biological interpretation risks being inconclusive.

Somorjai et al. (2003)discuss this problem in detail.
Hwang et al. (2002)propose a power analysis method in order
to determine the minimum sample size for the – statistically
reliable – discrimination of distinct disease states.

4.1.10. How do we determine the relative importance of
a factor?

By using an ANOVA, as it explicitly estimates the mag-
nitude of the sources of variation and therefore gives us the
relative importance of each factor (see alsoChen et al., 2004).

4.1.11. What does the p-value tell me? What about false
positives?

Thep-value gives us the probability of finding by chance
a deviation from the mean equal to or larger than the one we
observe.

For example, if we decide to work on all those genes with
a p-value smaller or equal to one per mille (0.1%) and we
examine 4000 genes, we expect on average 4 genes to fulfil
this criterion by chance, without reflecting a biological reality.
T With
a ulfil
t
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w enon
c n
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(

4

r of
g ider-

ably between two experimental conditions. This number is
too large to be directly exploitable and we will have to extract
a short and pertinent list of genes to work with. This task is
greatly facilitated by an adequate and well thought-through
experimental setup.

4.2.1. The type of factors
An experiment is made up of three types of factors, each

providing specific information.
The first factor corresponds to the phenomenon studied.

The study concern two or more states (two culture conditions,
for example, or a certain number of samples taken during
a time course experiment). The aim is to narrow down to
a maximum the target genes, in other words to have only
few genes who change expression considerably between the
different experimental states. For this, the experimental states
should be as close as possible, for example:

(a) In the case of the sulphur metabolism experiments, the
two sulphur sources were metabolically speaking closely
related.

(b) When trying to isolate genes typical of a certain cancer,
one should study different subtypes, all closely related
to the one of interest.

If this maxim is not observed, too many genes will change
e enes
w

the
o s are
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w ent
h rent
d erent
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o ound
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of
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t ome
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4
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e

hese four genes fall into the category of false positives.
p-value equal to 5%, we would expect 200 genes to f

he criterion by chance.
This means that thep-value helps us to judge and quan

he risk of looking at or working with a false positive, noth
ore and nothing less.

.1.12. Will I not miss out on a few genes?
Through the years of teaching, we have noticed tha

s apparently a worry common to a lot of people working
icroarrays.
Even provided that the experiments were planned and

uted in a diligent manner, the problem will generally no
hat of having too little genes changing expression, bu
any. An example is given again by the sulphur metabo

xperiment where less than a dozen genes were of a
nterest, truly involved in the phenomenon studied, but

ore changed expression. The reason for this “surplu
enes is that there will always be secondary effects. Bio
al processes seldom come in a straight line; more often
esemble an intricate net (think of the cell’s metabolis
hich means it is near impossible to isolate a phenom
ompletely (seeSontag et al., 2004). To further narrow dow
he list of candidate genes, one will have to use any avai
biological) knowledge from other sources.

.2. How to plan one’s experiment?

It is quite usual to find that a rather large numbe
enes, typically around 10%, change expression cons
xpression considerably and the identification of target g
ill become near impossible.
The second type of factor serves to verify whether

bservations made hold true if the biological parameter
hanged. Do we find the same candidate genes if we
ith a different bacterial strain? Or patients from a differ
ospital? Or if the experiment is carried out on a diffe
ay? Note that even repeating the experiment on a diff
ate introduces a biological variability, as the experime
onditions will never be exactly the same (seeSekowska e
l., 2001). This verification is extremely important as the m

nteresting genes are those which come up whatever th
ogical parameters. They are most likely the genes at the
f the phenomenon studied, as their behaviour is not b

o a particular context (genetic, socio-cultural or physiol
al). The reader is referred to the works ofTurk et al. (2004
ndWhitehead and Crawford (2005)who discuss this issu

The third type of factor is a technical one: the type
rotocol used to label the cDNA, having two spots for e
ene on the array or using the dye swap. This type of fa

ncreases the workload without adding any biologically
inent information. The experimental protocols have bec
ighly reproducible and it is advisable to stick to just
rotocol (with its systemic biases) and increase the nu
f states of the two other factors.

.2.2. The ideal situation: a fully crossed factorial
esign

The best experimental setup is to follow a fully cros
xperimental design (exemplified by ANOVA) as it
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(a) allows a good exploitation of the information given;
(b) allows a precise estimation of the error variance (see

Fisher (1951)for the original discussion orMather
(1943), Zar (1998)and Kerr et al. (2000)for a more
user-friendly approach).

Setting up a fully crossed factorial design means that each
level (state) of one factor is found in combination with each
level of the other factors, as shown inFig. 1. Note that carrying
out twice the experiment on strain 1 on day A and twice the
experiment on strain 2 on day B would not be adequate as
it would be impossible to separate the effect of the day from
the effect of the strain.

4.2.3. The reality
A fully crossed factorial design may not be possible. This

is typically the case in clinical studies, as they strongly depend
on the hospitals’ random recruitment of patients. These rep-
resent a learning set. To confirm the results a validation
set would be needed, and to avoid finding genes specific
to a particular socio-cultural-genetic background only, the
recruitment should be made at more than one hospital and
more than one country.

This may prove to be unfeasible if not impossible. A dif-
ferent option is to give up on the fully crossed factorial design
altogether and take a completely different approach: one can
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of variability and their magnitude; this allows making the
improvements to the setup at the right sources, which will
generally be a modification of the experimental protocol and
an increase in the number of biological replications (Chen et
al., 2004).

5. The answer to all our questions?

Microarrays are sometimes seen as the miracle tool, which
will give all the answers to all the questions. Paying con-
siderable attention to the experimental setup is a necessary
condition, but not a sufficient one.

The preliminary phase should already take into consid-
eration the different analysis options available to the experi-
menter by pulling in statisticians. This should be an exchange,
not a handing over the job to a statistician, as the biological
question has to stay at the front. AsVingron (2001)points out
in his editorial, bioinformaticians should “go back to school
and learn more statistics. Not so much with the goal of master-
ing all of statistics but with the goal of sufficiently educating
ourselves on order to pull in statisticians.”

A careful analysis of the data should follow (we suggest
using more than one method, as they tend to give comple-
mentary information).

The complex nature of biological phenomena means that it
i ough
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f ease
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xploit all the experimental data available in the litera
freely available on the web) by pooling them together. T
s not as bizarre an idea as it may seem; the aim can
ncrease the number of patients (Jiang et al., 2004) or to
et information about the co-expression and co-regul
f genes (Lee et al., 2004; Yeung et al., 2004). Especially

or the two latter issues, this is the only approach: as a
arge amount of data is needed, which a single lab coul
ossibly come up with.

Various authors propose statistical models to help ext
ng the maximum information from these pooled data
or exampleShen et al. (2004)andStatnikov et al. (2005)).
ote that when working with pooled date, their anal
ill have to be carried out with methods which do
eed the definition of the factors a priori, like PCA

CA.

.2.4. The combination of factors
If we want to obtain useful information from our micro

ay experiment, we are forced to formulate precise ques
his means that we cannot combine two factors in one q

ion, as this is equivalent to measuring the interaction betw
he factors, which is not separable from the error (unles
now in detail the relationship between the two factors
xample linear or sinusoidal).

This is one more reason to follow a fully crossed facto
xperimental setup, as exemplified by ANOVA. It forces
o spell out in detail what we want to measure and w
ill be part of the error or interaction component. It has
reat advantage of permitting the identification of the sou
s near impossible to isolate the candidate genes only thr
microarray experiment (Curtis and Brand, 2004; Somor
t al., 2003; Sontag et al., 2004), meaning that the list o
andidate genes obtained will have to be further worked
his may be done by further theoretical work (integratio
ll available biological knowledge) or additional experime

n the wet-lab.
Sometimes the a priori biological knowledge about

henomenon of interest may be very limited. In this cas
an happen that despite careful planning and executio
enes identified as interesting are not actually the cause
henomenon. This was for example the case in the gen
ide analysis undertaken byOshima et al. (2002). In these
ases a new experimental setup may be solution. How
he conclusion may also be that a transcriptome analy
ot the adequate tool for the study of the phenomenonRiva
t al., 2004).

It is therefore important to realize that a microarray a
sis will generally not be THE answer to all your questio
t is a complement to other approaches.

. Software and data used

The sulphur metabolism data fromSekowska et a
2001) are freely accessible athttp://195.221.65.10:123
carpenti/.
PCA and ANOVA were performed using GeneANOV

reely available on request for non-commercial use. Pl
ontact Gilles Didier atdidier@iml.univ-mrs.fr.

http://195.221.65.10:1234/~carpenti/
http://195.221.65.10:1234/~carpenti/
mailto:didier@iml.univ-mrs.fr
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ICA was adapted to gene expression analysis by Bruno
Torrésani, Pierre Chiappetta and Marie-Christine Roubaud
(seehttp://www.cmi.univ-mrs.fr/∼torresan/publi.html).
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