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Fold change
A metric for comparing a 
gene’s mRNA-expression level 
between two distinct 
experimental conditions. Its 
arithmetic definition differs 
between investigators.

Case
In a microarray experiment, a 
case is the biological unit 
under study; for example, one 
soybean, one mouse or 
one human.
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Abstract | In just a few years, microarrays have gone from obscurity to being almost 
ubiquitous in biological research. At the same time, the statistical methodology for 
microarray analysis has progressed from simple visual assessments of results to a weekly 
deluge of papers that describe purportedly novel algorithms for analysing changes in gene 
expression. Although the many procedures that are available might be bewildering to 
biologists who wish to apply them, statistical geneticists are recognizing commonalities 
among the different methods. Many are special cases of more general models, and points of 
consensus are emerging about the general approaches that warrant use and elaboration.

Gene-expression microarrays have become almost as 
widely used as measurement tools in biological research 
as western blots (BOX 1). A wide range of methods for 
microarray data analysis have evolved, ranging from  
simple fold-change (FC) approaches to testing for differ-
ential expression, to many complex and computation-
ally demanding techniques1. The result might seem like 
a statistical tower of Babel, but many methods are in 
fact special cases of general approaches. Recognizing 
this allows investigators to choose procedures more 
judiciously and methodologists to direct their efforts 
more efficiently.

Here we examine five key components of microarray 
analysis — design, preprocessing, inference, classifica-
tion and validation (BOX 1) — and address important 
areas where consensus has emerged or seems imminent, 
and key areas where questions remain. The methods we 
discuss are often supplemented with graphical represen-
tations, which serve as important interpretive aids (FIG. 1). 
We focus on aspects that are relevant to the widest range 
of microarray users, in typical small or moderately sized, 
single-laboratory studies. We also note that other issues 
might apply to larger, multi-site studies. Additionally, 
some currently rapidly expanding areas, such as graphi-
cal modelling for gene networks and pathways, are not 
discussed here.

Design
Experimental design affects the efficiency and internal 
validity of experiments1–7. Here we discuss points that 
are relevant to optimizing microarray experiments for 

most design strategies. The relative merits of specific 
designs are discussed elsewhere1,4–7.

Consensus point 1: Biological replication is essential. 
In microarray analysis, two types of replication can be 
carried out: technical replication, when mRNA from a 
single biological case is used on multiple microarrays, 
and biological replication, when measurements are taken 
from multiple cases. Although early microarray experi-
ments used few or no biological replicates, their neces-
sity is now undisputed1,6,7. Technical replicates allow only 
the effects of measurement variability to be estimated 
and reduced, whereas biological replicates allow this to 
be done for both measurement variability and biologi-
cal differences between cases. Consequently, although 
almost all experiments that use statistical inference 
(BOX 1) require biological replication, technical replicates 
are almost never required when the aim is to make infer-
ences about populations that are based on sample data, 
as is the case in most microarray studies.

However, there are some situations where technical 
replication is needed, such as quality-control studies. 
Additionally, if the number of cases available is finite 
or small, or if the cost of obtaining another case exceeds 
the cost of an array, then technical replication might be 
useful in addition to biological replicates8.

Consensus point 2: There is strength in numbers — 
power and sample size. How many biological replicates 
are needed? Traditional approaches to analysing statis-
tical power are ill-suited to microarray studies, which 
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Power
This is classically defined as the 
probability of rejecting a null 
hypothesis that is false. 
However, power has been 
defined in several ways for 
microarray studies.

False-discovery rate
(FDR). The expected 
proportion of rejected null 
hypotheses that are false 
positives. When no null 
hypotheses are rejected, FDR 
is taken to be zero.

Normalization
The process by which 
microarray spot intensities are 
adjusted to take into account 
the variability across different 
experiments and platforms.

test many hypotheses, use false-discovery-rate (FDR) 
estimates for inference, and often use classification 
techniques that have thousands of transcripts (BOX 1; 
and see later). Statisticians have therefore begun to 
provide tailor-made solutions to calculate power and 
sample-size requirements for microarrays.

For common designs, which we refer to as designs 
in which two groups of cases are evaluated for differ-
ential expression, evidence indicates that a minimum 
of 5 biological cases per group should be analysed9–11. 
We emphasize that this applies only when differen-
tial expression testing — not classification — is the 
primary goal, and that this is a minimum, not an 
optimum. Power analyses often indicate that larger 
sample sizes are warranted. Several methods have been 
put forward recently to address the optimal number 
of replicates12–16. Methods have also been developed 
for estimating sample sizes for classification stud-
ies17,18. Moreover, tools have been developed that allow 
investigators to estimate optimal sample sizes on the 
basis of public data sets (for example, the PowerAtlas 
software). Although there is no consensus about which 
sample-size determination procedures are best, there 
is consensus that power analyses should be done, that 

newer methods specifically for microarray research 
should be used, and that more replicates generally 
provide greater power.

Consensus point 3: Pooling biological samples can be 
useful. Variability among arrays can be reduced by pool-
ing mRNA from biological replicates. Many investigators 
favour this strategy because sample size can be increased 
without purchasing more microarrays. For example, 
15 cases divided into 5 pools of 3, with each pool run on 
a separate array, should have more power than 5 cases 
run on different arrays, although the power will be less 
than when 15 cases are run separately.

However, there are caveats that apply to mRNA 
pooling 1,6,19,20. First, pooling is not always beneficial 
— for example, in the context of classification, pool-
ing interferes with the ability to accurately assess 
inter-individual variation and covariation. Second, 
one cannot simply analyse one pool per group — ana-
lysing multiple pools is required to estimate variance 
for inference testing. A corollary to this observation 
corrects a common misapprehension that pooling 
RNA from n cases and creating n technical replicates 
is a better strategy than hybridizing n arrays to the n 
individual RNA samples. Third, we note the potential 
problem of the ‘poisoned pool’ — that is, one outlier 
can yield misleading results. Finally, measurements 
from pools do not necessarily correspond to math-
ematical averages of measurements from individuals 
comprising the pool20. Nevertheless, pooling can be 
beneficial when identifying differential expression is 
the sole goal, when biological variability is high relative 
to measurement error, and when biological samples 
are inexpensive relative to array cost20.

Consensus point 4: Avoiding confounding by extrane-
ous factors is crucial. Microarray measurements can 
be greatly influenced by extraneous factors. If such 
factors covary with the independent variable — for 
example, with different treatments that are applied to 
two sets of samples — this might confound the study 
and yield erroneous conclusions. Therefore it is crucial 
that such factors are minimized or, ideally, eliminated. 
For example, arrays should be used from a single batch 
and processed by one technician on the same day. 
However, this is difficult with large experiments and 
it is therefore important to orthogonalize extraneous 
factors (for example, by analysing equal numbers of 
samples from two groups under assessment on each 
day of analysis), or to randomize cases to levels of 
these factors1.

Preprocessing
Data preprocessing, including image analysis, normalization 
and data transformation, remains an active research area 
(BOX 1). In terms of image analysis, how to appropri-
ately quantify spots on microarrays is a topic of vigor-
ous inquiry. Many image-processing approaches have 
been developed21–25, among which the main differences 
relate to how spot segmentation — distinguishing 
foreground from background intensities — is carried 

Box 1 | Principles of microarray experiments and analysis

In microarrays, thousands of probes are fixed to a surface, and RNA samples (the 
targets) are labelled with fluorescent dyes for hybridization. After hybridization, 
laser light is used to excite the fluorescent dye; the hybridization intensity is 
represented by the amount of fluorescent emission, which gives an estimate of the 
relative amounts of the different transcripts that are represented. There are many 
microarray platforms that are different in array fabrication and dye selection.

In cDNA microarrays, both the probes and the targets are cDNAs. mRNA from 
biological samples is reverse transcribed and simultaneously labelled with Cy3 
and Cy5. After hybridization, Cy3 and Cy5 fluorescence is measured separately, and 
captured in two images. These are merged to produce a composite image, which 
goes though preprocessing (see below) before expression values are analysed. 
Long-oligonucleotide microarrays are similar to cDNA microarrays, but the probes 
are derived from genomic or EST sequences. High-density oligonucleotide microarrays 
involve probe pairs that each consist of 25-nt oligonucleotides. Each probe pair has a 
perfect-match (PM) probe and a mismatch (MM) probe. The MM probe has identical 
sequence to the PM probe, except at the central base and functions as an internal 
control. Unlike cDNA microarrays, the mRNA sample is converted to biotinylated 
cRNA and only one target is hybridized to each array — therefore, only a single 
colour of fluorescence is used.

Statistical components 
The statistical components of a microarray experiment involve the following 
steps:
• Design. The development of an experimental plan to maximize the quality and 

quantity of information obtained.

• Preprocessing. Processing of the microarray image and normalization of the 
data to remove systematic variation. Other potential preprocessing steps 
include transformation of data94, data filtering95 and, in the case of two-colour 
arrays, background subtraction (although there is some emerging consensus 
that background subtraction is not helpful29).

• Inference and/or classification. Inference entails testing statistical hypotheses 
(these are usually about which genes are differentially expressed). Classification 
refers to analytical approaches that attempt to divide data into classes with no 
prior information (unsupervised classification) or into predefined classes 
(supervised classification).

• Validation of findings. The process of confirming the veracity of the inferences 
and conclusions drawn in the study.
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Transformation
The application of a specific 
mathematical function so that 
data are changed into a 
different form. Often, the new 
form of the data satisfies 
assumptions of statistical tests. 
The most common 
transformation in microarray 
studies is log2.

Plasmode
A real (not computer 
simulated) data set for which 
the true structure is known and 
is used as a way of testing a 
proposed analytical method.

out. Another important preprocessing step is normali-
zation, which allows comparisons between microarray 
experiments and the control of extraneous variation 
among experiments. It also generally makes data 
more consistent with the assumptions that underlie 
many inferential procedures. Several normalization 
approaches have been introduced, and are discussed 
elsewhere26–29.

Remaining question 1: What is the best image-processing 
algorithm? Several image-processing methods have been 
developed for Affymetrix arrays30, which are the most 
commonly used oligonucleotide microarrays. These 
methods estimate the amount of RNA from fluorescent 

array images, while trying to minimize the extraneous 
variation that occurs owing to technical artefacts31,32. 
Plasmode data sets33 have been used to evaluate different 
image-processing normalization methods. One method, 
robust multi-array average (RMA), corrects arrays for 
background using a transformation, normalizes them 
using a formula that is based on a normal distribution, 
and uses a linear model to estimate expression values 
on a log scale. RMA and a modification of this method, 
GCRMA, often perform as well or better than competi-
tors, although there is some controversy about which 
method is best32,34,35. It is also unclear whether there is 
an ideal way of defining which method produces the 
best results.

Figure 1 | Visualization tools for microarray analysis. Many visualization tools are available that are of great 
assistance in interpreting the results of microarray experiments. The most commonly used of these are illustrated. 
a | Heatmaps consist of small cells, each consisting of a colour, which represent relative expression values. Heatmaps are 
often generated from hierarchical cluster analyses of both samples and genes. Often the rows represent genes of similar 
expression values, whereas the columns indicate different biological samples. Heatmaps offer a quick overview of 
clusters of genes that show similar expression values. b | Box plots present various statistics for a given data set. The plots 
consist of boxes with a central line and two tails. The central line represents the median of the data, whereas the tails 
represent the upper (seventy-fifth percentile) and lower quartile (twenty-fifth percentile). Such plots are often used in 
describing the range of log ratios that is associated with replicate spots. c | MA plots are used to detect artefacts in the 
array that are intensity dependent. They are often used as an aid when normalizing two-colour cDNA microarrays. The 
data consist of intensity measurements that correspond to both red (R) and green (G) dyes. A Cartesian plot is constructed 
with M on the ordinate and A on the abscissa, where M = log2(R/G) and A = log2(√(R × G)). The data are often fitted with a 
lowess curve, which is used to normalize the gene-expression measurements. d | Volcano plots are used to look at fold 
change and statistical significance simultaneously. Cartesian plots typically show – log10(p-values) or log odds on the 
ordinate and fold-change values on the abscissa for all genes in a data set. The name stems from the volcano shape of 
the plots. The upper corners of the plot represent genes that show both statistical significance and large fold changes. 
e | p-value histograms have abscissae that range from 0 to 1 and contain the p-values for a test of differential expression 
for each gene. They are common supplements to the formal mixture models that enable the popular calculation of 
false-discovery rates.
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Parameter
A quantity (for example, mean) 
that characterizes some aspect 
of a (usually theoretically 
infinite) population.

Type 1 error
A false positive, or the rejection 
of a true null hypothesis; for 
example, declaring a gene to 
be differentially expressed 
when it is not.

Type 2 error
A false negative, or failing to 
reject a false null hypothesis; 
for example, not declaring a 
gene to be differentially 
expressed when it is.

Long-range error rate
The expected error rate if 
experiments and analyses of 
the type under consideration 
were repeated an infinite 
number of times.

t-tests
Statistical tests that are used 
to determine a statistically 
significant difference between 
two groups by looking at 
differences between two 
independent means.

ANOVA
Analysis of variance. A 
statistical test for determining 
differences in mean values 
between two or more groups.

Logistic regression
A regression technique that is 
used in cases where the 
outcome variable is binary 
(dichotomous).

To allow developers to submit preprocessing meth-
ods for evaluation in a similar fashion, the web-based 
framework AffyComp has been established36, although 
the plasmodes that are available are limited. Most algo-
rithms have been developed and evaluated using one or 
two small data sets, with a single array type in a single 
species (human). There is concern that the methods are 
optimized for these data sets, but might not perform 
in the same way for others. Further publicly available 
plasmode data sets are needed to overcome this problem. 
Finally, for non-Affymetrix platforms, image-processing 
and normalization algorithms abound and vary substan-
tially in their approaches21–24,28; a clear ‘winner’ has not 
yet emerged.

Remaining question 2: How should data quality be 
evaluated? Many researchers recognize the need for 
microarray quality-control (QC) measures that quan-
tify the measurement quality for any particular array, 
and several have been proposed (for example, REF. 37). 
However, the usefulness of most QC measures is 
unsubstantiated and no specific QC method has been 
embraced by the community.

Inference
Inference involves making conclusions about the truth 
of hypotheses that involve unobserved parameters 
about whole populations, which are based on statistics 
obtained from samples. An example hypothesis is: ‘there 
is a difference in gene expression between mice that are 
exposed to conditions A and B in the theoretical popula-
tion of all mice that could have been exposed to condi-
tions A and B.’ Importantly, there is a clear distinction 
between inference and the simple ranking of findings 
for follow-up.

Methods are needed to minimize inferential errors 
— that is, type 1 error (false-positive error) and type 2 
error (false-negative error) – and that estimate the long-
range error rate. Here we do not discuss specific tests in 
detail, but focus on points that are applicable to most 

inferential analyses, including commonly used meth-
ods such as t-tests, ANOVA, logistic regression and survival 
analysis.

Consensus point 1: Using fold change alone as a 
differential expression test is not valid. FC was the 
first method used to evaluate whether genes are dif-
ferentially expressed, and is a reasonable measure 
of effect size. However, it is widely considered to be 
an inadequate test statistic38,39 because it does not 
incorporate variance and offers no associated level of 
‘confidence’38,40. Using FC alone with a fixed cut off, 
regardless of sample size or variance, results in type 1 
error rates that are either unknown or depend on sam-
ple size, and even tests for which power can decrease 
with increasing sample size.

The popularity of FC stems primarily from its 
simplicity. However, many researchers use it because it 
often seems to work reasonably well for ranking results 
(but not for true inference). This is presumably because 
all transcripts go through the same processing together, 
and therefore have similar variances. Thinking about FC 
is conceptually useful because FC essentially assumes a 
constant variance across transcripts and, therefore, occu-
pies one pole of a continuum of variance shrinkage an 
important concept that is discussed below. Nevertheless, 
FC alone is not valid as an inferential statistic because 
it does not produce known and controllable long-range 
error rates, which are essential for inference.

Consensus point 2: ‘Shrinkage’ is a good thing. 
Considering each gene separately when conducting 
statistical tests is inefficient. That is, it does not use all 
the information that is available to increase the power 
of tests. Usually, few data points are available for each 
gene and, therefore, gene-specific variance estimates 
are imprecise. By using all the data simultaneously, 
better estimates of variance can be obtained, resulting 
in more powerful testing. Capitalizing on the parallel 
nature of microarrays, information can be ‘borrowed’ 
across genes to improve variance estimates and thereby 
increase statistical power. A weighted combination of 
data from the specific gene and data from all genes 
can be used in a procedure called variance shrinkage 
(BOX 2). This has the greatest benefit when sample sizes 
are small, decreasing as the sample size increases. 
Different procedures weight the gene-specific and 
combined elements differently41–43, but all seem to 
work reasonably well41; future research should aim 
to find the optimal weighting. Some researchers also 
shrink the differential expression estimate itself 44, but 
this approach is less popular.

Consensus point 3: False-discovery rate is a good alter-
native to conventional multiple-testing approaches. 
Microarrays involve multiple testing — the testing 
of many hypotheses within a single study — which 
presents important challenges. Testing tens of thou-
sands of transcripts is likely to produce hundreds 
of false positives if α-values that are commonly 
applied in other types of statistical analysis are 

Box 2 | Shrinkage

To ‘borrow information’ across genes, many differential expression tests manipulate 
the denominator of a test statistic that, practically speaking, is a t-test (for example, the 
‘SAM’ procedure4 and the regularized t-test5). Most if not all of these t-like statistics 
(including Student’s t-statistic itself) can be seen as special cases of a statistic that 
combines the gene-specific variance estimate and a predicted variance (often the 
microarray-wide average) in different ways. They can be roughly generalized in the form 
(equation 1): 

σ ∼ 2 σ 2∧
B + (1 – B) √

δ
∧

(1)

where 
∧
δ  is some sample statistic that quantifies group differences in gene 

expression, σ ∼ 2 is a predicted variance of 
∧
δ  that is based on all genes on the array,  

σ 2∧  is an estimated variance of 
∧
δ  that is based only on the data from the gene 

being tested, and B is a ‘shrinkage factor’ that ranges between 1 and 0. The main 
differences between the many procedures that are offered are the value to which 
B is set and whether σ 2∧  is transformed before shrinkage. When B is 1, we are 
essentially putting a constant in the denominator and letting all inference 
information come from 

∧
δ  — that is, basically fold change. When B is 0, we have 

a standard t-test without any shrinkage. 

R E V I E W S

58 | JANUARY 2006 | VOLUME 7  www.nature.com/reviews/genetics



© 2005 Nature Publishing Group 

 

Survival analysis
A statistical methodology for 
analysing time-to-event data.

α-value 
The nominal probability (set by 
the investigator) of making a 
type 1 error.

Bonferroni correction
A family-wise error rate (FWER) 
control procedure that sets the 
α-value level for each test and 
strongly controls the FWER for 
any dependency structure 
among the tests.

Bayesian probability
The probability of a 
proposition being true, which is 
conditional on the observed 
data.

Gene Ontology
A way of describing gene 
products in terms of their 
associated biological 
processes, cellular components 
and molecular functions in a 
species-independent manner.

Null hypothesis
The hypothesis that is being 
tested in a statistical test. 
Typically in a microarray 
setting it is the hypothesis that 
states: there is no difference 
between gene-expression 
levels across groups or 
conditions.

p-value
The probability, were the null 
hypothesis true, of obtaining 
results that are as discrepant 
or more discrepant from those 
expected under the null 
hypothesis than those actually 
obtained.

Permutation test
A statistical hypothesis test in 
which some elements of the 
data are permuted (shuffled) to 
create multiple new pseudo-
data sets. One then evaluates 
whether a statistic quantifying 
departure from the null 
hypothesis is greater in the 
observed data than a large 
proportion of the 
corresponding statistics 
calculated on the multiple 
pseudo-data sets.

Intersection-union tests
Multicomponent tests in which 
the compound null hypothesis 
consists of the union of two or 
more component null 
hypotheses.

used (for example, 0.05) (REF. 45). Methodologists 
initially reacted to this problem in a way that was 
reflexive, draconian and largely unresponsive to the 
goals of biologists by providing family-wise error 
rate (FWER) control methods such as the Bonferroni 
correction. These methods limit the probability of mak-
ing one or more type 1 errors to less than the α-value 
across the entire experiment; however, most biologists 
seem willing to accept that some errors will occur, as 
long as this allows findings to be made. For example, 
an investigator might specify that it is acceptable for a 
small proportion of findings (for example, a maximum 
of 10%) to be wrong. Such an investigator is expressing 
interest in FDR control or estimation, not FWER.

This difference between the needs of biologists and 
the tools that are provided by methodologists ushered 
in a whole new approach to inference. Benjamini and 
Hochberg46 first coined the term FDR, and provided 
a procedure for its control. Subsequently, much new 
methodology and accompanying jargon emerged11,47,48 
(for clarification of some of these terms see REF. 49). 
We introduced mixture-models, which treat genes as 
being composed of two or more populations — one 
represents those genes that are differentially expressed, 
and the other(s) those genes that are not differentially 
expressed9. Many related mixture-model methods 
(MMMs) were subsequently devised50–52. MMMs esti-
mate FDRs for genes that are declared differentially 
expressed, whereas the original Benjamini and Hochberg 
approach controls the FDR at or below a certain level. 
Consequently, MMMs tend to be much more powerful. 
Although there are subtle distinctions between different 
MMM approaches49, they all estimate a ‘gene-specific’ 
FDR that is interpreted as the Bayesian probability that 
a gene that is declared to be differentially expressed 
is a false positive.

FDR is equivalent or related to several other metrics 
that quantify the confidence we can have that any particu-
lar gene is differentially expressed49,53–55. The methods for 
estimating these quantities all seem to perform reasonably 
well under some circumstances. Therefore, there is a con-
sensus that FDR-estimation procedures are preferred to 
both FDR- and FWER-controlling procedures, although 
there is no consensus as to which FDR-estimation pro-
cedure is best. However, limited evidence indicates that 
differences in performance might not be profound52.

Finally, questions remain about accommodating 
dependence among genes in FDR estimation. This relates 
to the possibility that the amount of one transcript in a 
biological specimen might be related to the amount of 
other transcripts, and whether and how this should be 
tackled is unresolved.

Consensus point 4: Gene-class testing is desirable. 
Small sample sizes, coupled with efforts to maintain low 
FDRs, often result in low power to detect differential 
expression. Therefore, obtaining a long list of genes that 
can be confidently declared as differentially expressed 
is, initially, a triumph. However, this often subsequently 
leaves investigators bewildered by a myriad of unorgan-
ized findings. In response to the dual need to increase 

power to detect differential expression and to reduce 
the interpretive challenge that is posed by a long list 
of differentially expressed genes56,57, gene-class testing 
(GCT) has become a popular and widely accepted 
analytical tool. Gene classes are usually based on Gene 
Ontology (GO) categories (for example, genes that are 
involved in organ growth, or genes that are involved 
in feeding behaviour), but alternatives exist57. Several 
GCT methods and software packages are available58–61, 
most of which use statistical tests to compare the 
number of genes in a class that are ‘significant’ with 
the number that are expected under a particular null 
hypothesis.

One problem with GCT is that the null hypotheses 
that are tested are often poorly defined (if defined at 
all). There are also other unresolved issues. First, the 
typical reliance on a list of significant genes ignores 
the continuity of available evidence. Rather than using 
the continuous distribution of p-values, which quanti-
fies the strength of evidence, GCT arbitrarily dichot-
omizes them at some threshold and loses information. 
To our knowledge, only two GCT methods (erminej60,61 
and GoDist62) use continuous evidence. Second, most 
methods treat the gene, rather than the case, as the unit of 
analysis, and this is also the case when such methods are 
used in permutation testing (see later). This is inappropri-
ate for several reasons, including the fact that it assumes 
that transcripts are expressed independently63. We know 
of only one method — gene-set-enrichment analysis 
(GSEA)56 — that correctly permutes across cases.

Other unresolved issues include how to handle 
multiple testing58 and the curious fact that many 
approaches (for example, GSEA56) ‘penalize’ some gene 
classes when other gene classes are highly differentially 
expressed in the same data set64. This occurs in a ‘zero-
sum-game’ manner — that is, gene classes are pitted 
against one another such that the stronger the evidence 
in support of differential expression is for one class, the 
weaker the evidence for differential expression is judged 
to be for a second class. This occurs even though the data 
for the second class have not changed.

In summary, we believe GCT is valuable, although all 
current approaches suffer from at least one major flaw. 
GSEA56 and erminej60,61 suffer the least from these prob-
lems and merit use, and improved methods are likely to 
become available soon.

Remaining question 1: How should intersections 
between sets of findings be assessed? Some of the 
issues surrounding the testing of multiple hypotheses 
in microarray analysis have begun to be addressed. 
Intersection-union testing (IUT) is useful when asking 
‘and’ or ‘all’ questions, such as which genes are differ-
entially expressed or correlated with each other in all 
tissues analysed (or all species analysed, or all condi-
tions analysed). For example, Persson et al.65 sought to 
identify Arabidopsis thaliana genes for which expres-
sion correlated with all genes that are known to be 
involved in cell-wall formation.

A typical IUT approach was used in a study by Kyng 
et al.66 The authors evaluated differential expression 
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Chi-square test of 
independence
A test of the independence of 
two categorical variables that is 
based on the chi-square 
distribution. The test is valid 
only under the assumption that 
all cases are independent.

Min-test
A statistical IUT test in which 
the union of a null hypotheses 
is rejected if, and only if, for 
each component null 
hypothesis the p-value <α.

Posterior probability
The Bayesian probability that a 
hypothesis is correct, which is 
conditional on the observed 
data.

Bootstrap analysis
A form of computer-intensive 
resampling-based inference. 
Pseudo-data sets are created 
by sampling from the observed 
data with replacement (that is, 
after a case is resampled, it is 
returned to the original data 
and can, potentially, be drawn 
again).

between cell lines from normal young and old people, 
and also between those from normal young people and 
young people with Werner syndrome (WRN, also 
known as WS, which is an accelerated ageing disease). 
They reported that “alterations in WS were strikingly 
similar to those in normal aging: 91% of annotated 
genes displayed similar expression changes in WS 
and in normal aging, 3% were unique to WS, and 6% 
were unique to normal aging.” To determine whether 
the degree of overlap in genes that was found to be 
differentially expressed in the WRN versus young 
comparison and the old versus young comparison 
was significantly greater than expected by chance, 
it would be tempting to treat the gene as the unit 
of analysis. A chi-square test of independence of two 
dichotomous variables could then be calculated, 
which would reveal whether a gene was differentially 
expressed in old versus young, and whether it was 
differentially expressed in the normal young versus 
the WRN young group. This would probably produce 
a small p-value.

However, there are at least three problems with this 
approach. First, it is valid only if all transcript levels are 
independent, apart from the effects that are putatively 
induced by independent variables (in this case, age and 
WRN). However, this is unlikely to be true. Second, 
this approach ignores the fact that both old and WRN 
cell lines are compared with the same young cell lines. 
Therefore, even if there were no true population-level 
correlation in the degree of differential expression across 
the two comparisons, a sample correlation would still 
exist given the common comparitor67. This will make it 
seem that there is a significantly greater consistency of 
effects across the two comparisons than is expected by 
chance because the expectation will be erroneous.

Finally, by imposing cut offs for declaring differen-
tial expression, the approach described above ignores 
the continuity of the available evidence. If the classic 
IUT min-test68 was used, a gene with p-values of 0.009 
for both the old versus young comparison and the 
WRN versus young comparison would be declared 
differentially expressed at the 0.01 level. The same 
would apply to a second gene with p-values of 0.009 
for the old versus young comparison and 10–20 for 
the WRN versus young comparison. The min-test 
offers no ability to distinguish between these differ-
ent degrees of evidence and therefore does not yield a 
distribution of p-values that will be suitable for FDR-
estimation procedures. These limitations have led us 
to consider Bayesian approaches in which posterior 
probabilities rather than p-values are used to quantify 
evidence against the union of several null hypotheses 
(K. Kim et al., personal communication).

Remaining question 2: How should computationally 
intensive resampling-based inference be used? Many 
inference methods that are used for microarray analysis 
are parametric tests, which rely on specific assumptions 
about the distribution of the variables studied, and 
derive properties of theoretical distributions to make 
inferences. By contrast, instead of using parametric 

tests, resampling-based inference (RBI) methods rely on 
resampling data. Compared with parametric testing, RBI 
has the advantage of being robust and flexible enough 
to accommodate almost any new statistic (for example, 
the statistic that is obtained after shrinkage of variance), 
without the need for methodologists to mathematically 
derive a statistic’s distribution. RBI has the disadvantage 
of being computationally intensive, but with modern 
computational tools it is now feasible in most cases and 
is widely used69–73. However, there are marked differ-
ences in how such approaches are implemented, and 
some confusion and uncertainty remains. Microarray 
investigators who use RBI rarely discuss these issues 
or state why one RBI approach (for example, bootstrap 
analysis or permutation testing) is chosen over another. 
Different RBI procedures can yield markedly different 
results in two-group microarray studies74, so choice of 
procedure is important.

Problems, which are often unrecognized, can arise 
when using RBI for complex experiments. For example, 
consider the use of permutation testing in an experiment 
to test the difference between two groups (for example, 
old and young mice) after controlling for some other 
factor (for example, body fat). There are several ways 
to permute the data in such circumstances, and only 
some will produce valid inferences75. Another issue is 
the sampling unit; a common error is to treat the gene 
rather than the case as the unit of analysis (for example, 
in GCT). This type of resampling effectively ignores 
both sample size and non-independence across genes, 
and can result in completely nonsensical results (for 
example, tests in which power does not increase with 
sample size).

Another issue that faces RBI is that, because of the 
small samples that are typically used in microarray 
experiments, RBI p-value distributions can be coarse 
or ‘granular’, and it will often be algebraically impos-
sible to obtain p-values that are below some specified 
level76. This greatly reduces the ability to follow RBI 
with the popular FDR procedures that are described 
above. To overcome this problem some software (for 
example, the SAM algorithm42) combines all resam-
pled test statistics across all genes to obtain very small 
p-values. This is based on two assumptions: that the 
null distribution of the test statistic is the same for 
all transcripts; and that all transcripts are independ-
ent. Unfortunately, neither assumption is necessarily 
correct. Therefore, some software offers a choice of 
whether the resampled test statistics are combined 
across genes41. Consequently, how to obtain the 
benefit of combining RBI statistics across transcripts 
without requiring the two assumptions is an important 
question meriting research.

Classification
The process of classification entails either placing objects 
(for example, genes) into pre-existing categories (super-
vised classification), or developing a set of categories 
into which objects can subsequently be placed (unsuper-
vised classification). Many classification algorithms are 
extensively used in microarray research (BOXES 1,3).
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Consensus point 1: Unsupervised classification is 
overused. Unsupervised classification was one of the 
first statistical techniques to be applied to microarray 
analysis, and is one of the most popular. Its popularity 
is understandable: no hypotheses and almost no data 
assumptions are required, but the researcher is guar-
anteed to obtain a clustering of genes, irrespective of 
sample size, data quality or experimental design — or 
indeed any biological validity that is associated with 
the clustering.

We believe that unsupervised classification is over-
used; first, little information is available about the abso-
lute validity or relative merits of clustering procedures77,78; 
second, the evidence indicates that the clusterings that 
are produced with typical sample sizes (<50) are gener-
ally not reproducible18,79,80; third, and most importantly, 
unsupervised classification rarely seems to address the 
questions that are asked by biologists, who are usu-
ally interested in identifying differential expression. 

However, it is important to note that there might be 
cases where clustering is warranted — for example, if 
the goal is to simply obtain a general description of how 
genes covary with respect to their gene-expression levels 
within a population.

Consensus point 2: Unsupervised classification should 
be validated using resampling-based procedures. In 
situations where unsupervised classification is war-
ranted, some reproducibility measure should be pro-
vided. Standard unsupervised-classification procedures 
provide no information about the extent to which the 
results reflect a pattern that exists in the population 
rather than random sampling variation81. A consensus 
has emerged that resampling techniques can assess 
the reproducibility of unsupervised classification and 
should be used18,78,81–84. In these procedures, subsets 
are resampled from the original sample, unsupervised 
classification is applied, and the consistency of results 

Box 3 | Classification

Classification algorithms are used either to discover 
new categories within a data set (class discovery; 
unsupervised classification) or assign cases to a 
given category (class prediction; supervised 
classification).

Supervised classification
Supervised classification (often called ‘class 
assignment’, ‘prediction’ or ‘discrimination’) entails 
developing algorithms to assign objects to a priori-
defined categories. Algorithms are typically 
developed and evaluated on a ‘training’ data set and 
an independent ‘test’ data set, respectively, in which 
the categories to which objects belong are known 
before they are used in practical applications. Many 
supervised classification algorithms are available, but 
all are susceptible to overfitting to some degree. The 
phenomenon of overfitting is shown in the figure, which shows the effect of the complexity of the model 
used on its predictive accuracy. The smaller the sample and the larger the number of transcripts modelled, the 
more algorithms will capitalize on chance sample patterns and obtain predictive functions that perform 
well with training data but poorly with new data. The great challenge is to determine the optimal degree 
of model complexity that a given data set can support. A common misconception is that the set of the most 
differentially expressed genes will necessarily give the best predictive accuracy. The gene list that is obtained 
from hypothesis testing does not necessarily give the best prediction. No one method for constructing 
prediction algorithms is widely accepted as superior or optimal. However, experience and intuition suggest 
that with the sample sizes that are typically available in microarray studies, simpler methods might out-perform 
more complex approaches. 

Unsupervised classification
Algorithms for unsupervised classification or cluster analysis abound. Unfortunately however, algorithm 
development seems to be a preferred activity to algorithm evaluation among methodologists. Cluster-analysis 
algorithms group objects on the basis of some sort of similarity metric that is computed for one or more ‘features’ or 
variables. For example, genes (biological objects) can be grouped into classes on the basis of the similarity in their 
expression profiles across tissues, cases or conditions. Hierarchical cluster analysis graphically presents results in a 
tree diagram (dendrogram), and is probably the most common unsupervised classification algorithm in microarray 
analysis. Non-hierarchical clustering methods divide the cases (samples or genes) into a predetermined number of 
groups in a manner that maximizes a specific function (for example, the ratio of variability between and within 
clusters). Cluster-analysis approaches entail making several choices, such as which metric to use to quantify the 
distance or similarity among pairs of objects, what criteria to optimize in determining the cluster solution, and how 
many clusters to include in the solution. No consensus or clear guidelines exist to guide these decisions. Cluster 
analysis always produces clustering, but whether a pattern observed in the sample data characterizes a pattern 
present in the population remains an open question. Resampling-based methods can address this last point, but 
results indicate that most clusterings in microarray data sets are unlikely to reflect reproducible patterns or patterns 
in the overall population18.
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Inference

Classification
• Use a statistic that incorporates variability
• Fold change alone is not appropriate
• Use variance shrinkage in analyses
• Use FDR-estimation methods to handle 

multiple testing
• Use gene-class testing to boost power and 

facilitate interpretation. ermineJ and GSEA 
might be among the best methods that are 
currently available

Follow-up/validation
• Determine goals of validation and select 

approach to protect against the most 
plausible threats to validity

• Unsupervised: Is cluster analysis truly 
desired? If so, evaluate stability 
through resampling methods

• Supervised: Use cross-validation and 
take selection bias into account

Design
•  Biological replication should be incorporated
•  More replicates provide greater power
•  mRNA pooling can be useful when testing for 

differential expression
•  Avoid confounding by extraneous factors

Preprocessing
• High-density oligonucleotide arrays: RMA or 

GCRMA are reasonable choices
• cDNA microarrays: Many methods abound, 

however there is no clear winner

Sampling variation
The variability in statistics that 
occurs among random samples 
from the same population and 
is due solely to the process of 
random sampling.

Overfitting
This occurs when an 
excessively complex model 
with too many parameters is 
developed from a small sample 
of ‘training’ data. The model 
fits those data well, but does 
so by capitalizing on chance 
variations and, therefore, will fit 
a fresh set ‘test’ data poorly.

Selection bias
This occurs when the 
prediction accuracy of a rule is 
estimated using cases that had 
some role in the derivation of 
the rule. It is an upward bias — 
that is, one that overestimates 
the predictive accuracy.

Operational validation
Re-testing a hypothesis using 
the original methodology (also 
referred to as operational 
replication).

across the resamples is quantified. Those procedures 
that resample at the level of the case — rather than the 
gene — all perform reasonably well, and none is widely 
recognized as the best.

Consensus point 3: Supervised-classification procedures 
require independent cross-validation. In supervised 
classification, the aim is to obtain a function or rule 
that uses expression data to predict whether a case is 
of one type or another (for example, drought-resistant 
versus non-drought-resistant). A computer algorithm 
finds the rule that best classifies a set of available cases 
for which the correct type is known. Because of this 
attempted optimization, overfitting is a concern (BOX 3). 
To estimate how well the rule will perform on fresh 
data, one must cross-validate it on test data that are 
completely independent from the data from which 
the classification rule was derived, and there are many 
approaches to this85.

One key point is the need to avoid selection bias. 
This requires cross-validation procedures that separate 
the validation data from all aspects of the rule-derivation 
process, including the selection of initial transcripts to 
include in the model86–88. Early microarray papers failed 
to account for selection bias and thereby radically overes-
timated prediction accuracy86. Of course, effective cross-
validation requires an adequate sample size, and methods 
for estimating sample sizes for supervised classification 
studies have been developed89–91.

Validation
Many researchers have called for the ‘validation’ of 
microarray findings (for example, see REF. 92). But 
exactly when and how should validation be carried out93, 
which error types should be protected against, and what 
are the criteria by which one can say that a finding has 
been validated? Here we consider only the operational 
validation of efforts to detect differentially expressed 
genes, not constructive validation. Operational validation 
can arise from at least two potential sources of error: 
measurement error and sampling error.

Remaining question 1: Is it necessary to validate against 
measurement error? For genes that are not declared dif-
ferentially expressed, it is possible that random meas-
urement error has reduced the ability to detect true 
differences and has produced an erroneous inference. 
So, one could argue that the genes that should be ‘vali-
dated’ are those for which the test statistic was almost 
significant. This could be done by using a more precise 
gene-expression measure and/or a larger sample size. It 
makes sense to do this because random measurement 
error does not bias results away from, but only towards, 
the null hypothesis.

However, this strategy is not generally used. Investi-
gators seem more concerned about false positives, and 
might therefore seek to ‘validate’ significant results by 
taking fresh aliquots from the same specimens using a 
different mRNA-measurement procedure (for example, 

Figure 2 | Guidelines for the statistical analysis of microarray experiments. The flow chart indicates the 
guidelines for each relevant stage of a microarray study. FDR, false-discovery rate; RMA, robust multi-array average 
(includes a modification, CGRMA). 
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Constructive validation
Testing a hypothesis through a 
different methodology (also 
referred to as constructive 
replication).

reverse-transcriptase PCR). Assuming that this is more 
accurate than the initial measurement procedure (which 
is debatable), this might protect against erroneous infer-
ences that are due to poor measurement quality. However, 
there is no reason to suspect that measurement errors 
cause false positives unless the measurement error in 
microarrays is not random but systematic. Moreover, it 
would have to be systematic in a manner such that, under 
the null hypothesis, the measurement errors are correlated 
with the study’s independent variable (for example, dif-
ferent treatment of samples). Therefore, for genes that are 
declared to be differentially expressed, we believe repeat-
ing measurements on aliquots from the same biological 
specimen with a new measurement technique is a highly 
questionable practice that stems more from tradition than 
careful thought.

Remaining question 2: How should validation against 
sampling variability be conducted? Sometimes, by 
chance alone, a sample from one population will 
have a substantially different mean level of expres-
sion for a particular transcript than a sample from 
another population, even though the two popula-
tions do not differ in terms of the mean expression 
of that transcript. This is more likely to occur when 
many transcripts are tested. Such an event would be 
considered a type 1 error that is due to random sam-
pling variability. The evaluation of whether specific 
significant results obtained in microarray studies are 
actually false positives can be carried out by using 
new cases to test for differential expression using the 
same experimental model that was used in the ini-
tial experiment. Repeating the analyses on the same 

biological specimens with a new measurement proce-
dure would not help. We believe that this distinction 
is not generally made in the literature.

Remaining question 3: What are the criteria under 
which a finding can be said to be validated? What 
result must be obtained in a second set of observations 
to state that one has validated a result obtained in a 
first set of observations? Must a particular p-value be 
achieved and, if so, which value? Is it sufficient that the 
effect-size obtained in the second set is not significantly 
different from that obtained in the first? If so, must a 
certain level of power be obtained before the conclusion 
that there is no difference between results is accepted? 
Investigators are only just beginning to address these 
important questions about validation, which method-
ologists and applied researchers will need to address 
in the future.

Implications and future directions
We have attempted to distil the statistical literature to 
provide a guide to choosing methods at each stage of 
microarray analysis (FIG. 2) and identifying unresolved 
issues that merit further research (BOX 4). The many 
current methods can be reduced to a modest number of 
categories, and there is often little evidence to support 
one method within a category over others. In such situ-
ations, although investigators should be encouraged to 
pick a method from within an important category, there 
should be no dogma about which methods are chosen 
until further data emerge. Methodologists should now 
focus as much on assessing the comparative merits of 
various procedures within classes as on developing new 

Box 4 | Recommendations for future microarray analysis methods

• Empirical evidence about the performance of pooling is based on a small number of experiments in a few model 
organisms. Extensions to other situations and species are recommended. 

• More research is needed on how to best examine intersections between sets of findings and evaluate complex 
multi-component hypotheses. Bayesian approaches might be especially advantageous here.

• More careful consideration of how to best use resampling-based inference is warranted, as are guidelines 
for its use for the field. If and how the vast number of genes assayed in microarray experiments can be 
used to partially compensate for small sample sizes when using resampling-based inference requires 
further study.

• Methods for microarray quality-control assessment are needed, as are approaches to the validation of 
such methods.

• For all statistical procedures, the fact that transcripts are not necessarily independent should be considered. 
The potential impact of this on the performance of procedures should be assessed, and ways to accommodate this 
are needed. 

• Whether microarrays require any validation guidelines that are fundamentally different from other types of study 
deserves questioning. If this is found to be the case, the exact goals of such validation should be defined, and an 
assessment of which procedures will meet those goals will be needed.

• Development of standardized testing platforms, similar to AffyComp, for platforms other than Affymetrix would 
be useful.

• In many areas (for example, cluster-analysis algorithms, normalization algorithms and false-discovery-rate estimation 
procedures), the need for thoroughly evaluating existing techniques currently seems to outweigh the need to develop 
new techniques.

• Well-curated publicly available archives of plasmode data sets are needed to test the validity of various 
methods.
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procedures. Moreover, the need for new procedures 
seems highly questionable in those categories in which 
there are already several options, whereas it is acute 
in other categories for which few valid alternatives 

are available. We hope that our discussion serves to 
highlight those areas in which further research is 
needed, as well as those in which consensus has been 
reached.
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AffyComp II software: http://affycomp.biostat.jhsph.edu
A free online microarray analysis course from the 
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ArrayExpress microarray data repository: http://www.ebi.
ac.uk/arrayexpress
BioConductor open source software for bioinformatics: 
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Cyber-T statistics program: http://visitor.ics.uci.edu/genex/
cybert/index.shtml
ermineJ — Gene Ontology analysis for microarry data: 
http://microarray.genomecenter.columbia.edu/ermineJ
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nih.gov/geo
Gene Ontology Database: www.geneontology.org
HDBStat! High Dimension Biology Statistical analysis 
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Access to this interactive links box is free online.
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