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Abstract
Background: Recent research examining cross-platform correlation of gene expression
intensities has yielded mixed results. In this study, we demonstrate use of a correction factor for
estimating cross-platform correlations.

Results: In this paper, three technical replicate microarrays were hybridized to each of three
platforms. The three platforms were then analyzed to assess both intra- and cross-platform
reproducibility. We present various methods for examining intra-platform reproducibility. We also
examine cross-platform reproducibility using Pearson's correlation. Additionally, we previously
developed a correction factor for Pearson's correlation which is applicable when X and Y are
measured with error. Herein we demonstrate that correcting for measurement error by estimating
the "disattenuated" correlation substantially improves cross-platform correlations.

Conclusion: When estimating cross-platform correlation, it is essential to thoroughly evaluate
intra-platform reproducibility as a first step. In addition, since measurement error is present in
microarray gene expression data, methods to correct for attenuation are useful in decreasing the
bias in cross-platform correlation estimates.

Background
Previous microarray gene expression studies have exam-
ined within-platform reproducibility among different
generations of the Affymetrix GeneChip [1,2] and among
cDNA-based array platforms [3,4]. Subsequently, several
cross-platform reproducibility studies have been reported,

many of which examined either the consistency of inten-
sities or the consistency with which different platforms
identify genes significantly differently expressed [5-18].
Results from another large cross-platform study, the
MicroArray Quality Control (MAQC) project, led by the
US Food and Drug Administration with 51 participating
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universities and major biotechnology companies, have
also been reported [19-24]. Some of these early studies
demonstrated poor cross-platform correlations. For exam-
ple, among 384 genes commonly declared present in a
cDNA-based microarray and the Affymetrix HG-U95Av2
GeneChip platform, the Spearman correlation was only
0.131. Other cross-platform studies also reported low
cross-platform correlations [5,8]. In addition, in a study
examining three microarray platforms in ten laboratories,
correlations between Affymetrix and two-channel arrays
ranged from 0.13 – 0.57 [25]. More recent research has
demonstrated that poor correlations may be observed
when at least one platform under examination suffers
from low intra-platform reproducibility or when a poor
data analytic method is applied [26].

Most of these studies estimated Pearson's correlation as a
means of assessing cross-platform reproducibility. That is,
we consider X and Y to be microarray gene expression val-
ues from two different platforms, and ρXY is estimated.
However, for microarray data, both random variables X
and Y are subject to measurement error. It is well known
that the flourescent intensities from the scanned microar-
ray images are proxies for the true underlying gene expres-
sion values [27]. Therefore, microarray gene expression
values are measured with error. When examining cross-
platform correlation, inconsistencies in measured intensi-
ties can be due to systematic platform biases as well as ran-
dom intra-platform variability. Statistical methods that
account for measurement error (ME), such as regression
calibration, have been applied in a variety of scenarios to
correct for the known bias caused by ME in parameter esti-
mation [28]. In a recent review, the authors stated that
within the next 5 years, "calibration methods will be
introduced to systematically correct ratio underestimation
by microarray technology" [29]. We have undertaken such
an effort to account for the random intra-platform varia-
bility by developing a "disattenuated" correlation esti-
mate [30] which accounts for random intra-platform
variation in both X and Y, and demonstrate its use in
measuring cross-platform correlation.

Microarray hybridizations were performed using three dif-
ferent technologies, each in a different laboratory. The
Affymetrix (Affy) HG-U133A GeneChip was utilized in
the Virginia Commonwealth University's (VCU) Division
of Molecular Diagnostics Laboratory. A custom-designed
oligonucleotide microarray designed specifically to inter-
rogate genes more commonly expressed in brain tissue
was used in VCU's School of Engineering's Center for Bio-
electronics, Biosensors and Biochips (C3B). The C3B
microarray platform comprises 10,000 genes represented
by 3' fifty-mer oligonucleotides (MWG Biotech) that were
spotted in duplicate. Finally, a cDNA microarray spotted
with full and partial length PCR probes (Research Genet-

ics/Invitrogen) was used in George Mason University's
(GMU) Center for Biomedical Genomics and Informatics.

Each laboratory designed a small experiment to assess
intra-platform quality control. Each laboratory used the
same lot of reference RNA, the Stratagene Total Human
RNA, for hybridizing a set of technical replicates for a
process variability study. These 'self-self' hybridizations
permit meaningful assessments of reproducibility since,
under ideal circumstances such as that the same experi-
mental conditions exist among platforms and that there
are no probe-binding affinity effects, each gene across the
set of chips should exhibit linearly related gene expression
intensities across platforms. Although the RNA hybridized
was from the same lot, the study designs and protocols
differed from lab to lab. A description of of each experi-
ment can be found in the Methods section of this paper.

Results
Within-platform comparisons
Prior to estimating cross-platform correlations, we per-
formed a thorough examination of intra-platform repro-
ducibility, as recommended [29]. Since the Stratagene
Total Human RNA was used as both the experimental and
reference sample, the expected log2 ratio for all genes is 1,
so that no correlation is expected when comparing two
arrays in terms of the log2 ratio. Therefore for two channel
arrays, we restricted attention to intensities from one
channel as well as to the post-normalized intensities from
that same channel. For the Affymetrix GeneChip, intensi-
ties were highly correlated across the set of three technical
replicates for all expression summary methods (Table 1
and Figure 1). The GMU arrays were strongly correlated,
though the C3B arrays were not highly correlated (Figures
2 and 3).

The weighted kappa statistics indicated that the Affymetrix
platform had the highest agreement among ranked inten-
sities (Table 2), followed by the GMU array which also
exhibited good agreement among the technical replicates
when considering the ranked gene intensities. The
weighted kappa statistics for C3B platform suggested the

Table 1: Average correlation for the Affymetrix, C3B, and GMU 
Stratagene Technical Replicates dataset for various expression 
summary methods.

Platform Expression Summary Method Average Correlation

Affymetrix MAS 5.0 0.9955
(N = 22,283) RMA 0.9994

GC-RMA 0.9998
C3B Channel 1 foreground 0.6560
(N = 21,168) Print-tip loess normalized Ch1 0.6593
GMU Cy5 foreground 0.6236
(N = 21,168) Print-tip loess normalized Cy5 0.8475
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ranked intensities from the three technical replicates were
not in agreement, yielding an insignificant p-value for two
of the array comparisons. A similar conclusion, that the
Affymetrix platform followed by the GMU array demon-
strated the highest reproducibility, with low reproducibil-
ity among the C3B arrays, was noted upon examination of
the proportion of invariant features (Table 3). Although
intra-platform reproducibility varied among the three
platforms studied, all platforms yield gene expression

intensities that are subject to some degree of measurement
error.

Cross-platform comparisons
For the GMU array the 21,168 spots correspond to 19,894
distinct clones, with the feature name of each spot
denoted by Unigene ID. There were 2,744 Affy probe sets
that matched a GMU Unigene ID. Among these, 145 Uni-
gene IDs were interrogated by more than one probe set.
After restricting attention to unique clones and probes sets

AffymetrixFigure 1
Affymetrix. Pairwise scatterplots and Pearson's correlation for Affymetrix GeneChips (MAS5 summaries) restricted to the 
1,288 genes in common among the three platforms.
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there were 2,587 unique probe sets/clones in common to
GMU and the Affy platforms. For the C3B arrays, since its
design is essentially two identical subarrays laid out in
duplicate with the feature name of each spot denoted by
RefSeqID, the average expression for each RefSeqID was
calculated prior to merging the spots with the Affymetrix
probe sets. That is, the 21,168 long oligos correspond to
10,040 distinct genes. For the C3B array, there were 9,000
distinct RefSeqIDs were interrogated by at least one
Affymetrix probe set meeting our criteria. Once the data

from the two different 2-channel arrays were merged to
the Affymetrix GeneChip data (i.e., GMU-Affy and C3B-
Affy), these two resulting datasets were then merged by
Affymetrix probe set ID, resulting in 1,288 common
probe sets/spots among the three platforms.

Not accounting for measurement error, the average Pear-
son correlations ( w) of the log transformed Affymetrix

GeneChip expression and C3B array expression are
reported in Table 4 for MAS 5.0, RMA, and GC-RMA

ρ

C3BFigure 2
C3B. Pairwise scatterplots and Pearson's correlationfor C3B arrays restricted to the 1,288 genes in common among the three 
platforms.
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expression summaries as 'naïve' estimates of correlation.

In addition, the disattenuated correlations ( ), obtained

when considering that the C3B and Affy gene intensities
are subject to measurement error, are also reported. Not-
ing that the attenuation for the C3B arrays is 0.386, that is,
over half of the variability is attributed to measurement
error, the disattentuated correlations estimated using
measurement error models are substantially higher, irre-

spective of the Affymetrix expression summary method
used. This suggests that previous use of Pearson's correla-
tion under-estimated true underlying cross-platform cor-
relations. That is, the effect of the presence of random
intra-platform variation is degraded performance on the
apparent cross-platform correlation. Therefore, by remov-
ing random intra-platform variation through measure-
ment error methodology, the cross-platform correlation
will go up.

ρ

GMUFigure 3
GMU. Pairwise scatterplots and Pearson's correlation for GMU arrays restricted to the 1,288 genes in common among the 
three platforms.
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The average Pearson correlations ( w) of the log trans-

formed Affymetrix GeneChip expression and GMU array
expression are also reported in Table 4 for MAS 5.0, RMA,
and GC-RMA expression summaries, as well as the disat-

tenuated correlations ( ). The attenuation for the GMU

arrays is 0.824, therefore the disattenuated correlations
estimated using measurement error models are larger than
their corresponding naïve estimates, though not as mark-
edly in comparison to the C3B arrays. This is due to the
higher reliability among the GMU expression intensities.

Discussion
In this paper, both intra- and cross-platform reproducibil-
ity was examined for the Affymetrix and two dual channel
microarrays (C3B and GMU). We applied various meth-
ods for examining within-platform reproducibility
including Pearson's correlation, the weighted kappa, and
percent of invariant genes. We also examine cross-plat-
form reproducibility using Pearson's correlation. We pre-
viously demonstrated the effectiveness of applying a
correlation correction factor via a small simulation study
and demonstrated its application in estimating gene-spe-
cific correlations. In this paper we demonstrated its use in

estimating cross-platform reproducibility. We note that
correcting for measurement error by estimating the "disat-
tenuated" correlation removes the bias or attenuation
inherent in cross-platform correlation estimates. Specifi-
cally, to the extent that random intra-platform variation is
present, the effect is degraded performance on the appar-
ent cross-platform correlation. Therefore, by removing
random intra-platform variation through measurement
error methodology, the cross-platform correlation will go
up.

Due to the increased public availability of gene expression
microarray data through Gene Expression Omnibus [31]
and ArrayExpress [32], researchers are increasingly inter-
ested in methods that integrate the results from various
microarray studies performed on similar types of samples
[33-37]. A careful understanding of variability due to plat-
form-specific bias and random intra-platform variability
will help investigators select methods for integrating
cross-platform results. Specifically, the amount of attenu-
ation for a specific platform could be used as a platform-
specific quality measure and incorporated into a meta-
analytic framework [38]. Moreover, gene-specific attenua-
tion factors could be used to adjust for quality in a gene-
wise fashion in such models.

A major application of DNA microarray technology is dif-
ferential gene expression profiling, or the detection of the
differences in expression levels of genes between two dif-
ferent types of samples. Some have argued that the con-
sistency of the differences via fold-change or ratio is a
more relevant metric for assessing cross-platform compa-
rability than intensities from a single channel. However,
to estimate the correlation between fold-changes from
two platforms, two different samples are needed. We
therefore plan to use data from the MAQC project to
examine cross-platform fold-change correlations. In addi-
tion, it has been suggested that a more relevant metric is
not agreement in the identification of individual differen-
tially expressed genes, but rather whether consistent and
accurate predictions of sample class is obtained from the

ρ

ρ

Table 4: Cross-platform average Pearson correlations ( w) and 

disattenuated cross-platform correlations ( ) for Stratagene 

Technical Replicate Dataset using MAS 5.0, RMA, and GC-RMA 
Affy expression summaries.

MAS 5.0 RMA GC-RMA
Platform

w w w

C3B 0.240 0.391 0.210 0.338 0.168 0.270
GMU 0.384 0.428 0.348 0.383 0.399 0.440
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Table 3: Frequency and percent of invariant features from each 
platform (P < 0.0001). Print-tip loess normalized Cy5 intensities 
were used for both two-channel arrays; MAS5.0 expression 
summaries were used for Affymetrix GeneChips.

Invariant Not Invariant
N, (%) N, (%)

Affymetrix 11,732 (52.65%) 10,551 (47.35%)
C3B 594 (2.81%) 20,574 (97.19%)
GMU 3,036 (14.34%) 18,132 (85.66%)

Table 2: Observed agreement and p-value for each pairwise 
comparison within each platform using the weighted kappa 
statistic. Print-tip loess normalized Cy5 intensities were used for 
both two-channel arrays; MAS5.0 expression summaries were 
used for Affymetrix GeneChips.

Chips compared Observed Agreement P-value

GMU
1420 v 1421 71.89% < 0.0001
1420 v 1422 66.31% < 0.0001
1421 v 1422 75.41% < 0.0001

C3B
7–7 v 8–22 28.18% 1.00
7–7 v 8–31 51.82% < 0.0001
8–22 v 8–31 29.14% 1.00

Affymetrix
QAQC8 v QAQC10 89.75% < 0.0001
QAQC8 v QAQC13 89.54% < 0.0001
QAQC10 v QAQC13 89.57% < 0.0001
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platforms being compared [39]. This metric should be
included is such cross-platform studies as well.

Previous researchers demonstrated that single and two
channel microarrays yield consistent results, and con-
cluded that the selection of which technology to use is not
necessarily a critical factor in the design of a microarray
study [20]. Here we demonstrate the critical need to thor-
oughly evaluate intra-platform reproducibility, a finding
which has been been noted by others [26]. In this study,
we examined two dual channel platforms and the Affyme-
trix platform. While the C3B and GMU platforms are not
widely used by the microarray research community, they
do represent a class of microarrays that are commonly
used, two channel custom spotted/home brewed arrays.
Thus, we believe these results are of general interest to
those who use both commercial and custom designed
arrays. While the C3B two channel platform had poor
reproducibility, the GMU two channel and Affymetrix
platforms had good reproducibility. We repeated the
intra-platform analysis using the following three sets of
randomly selected Affymetrix GeneChips (6, 12, 2), (5,
16, 14), and (5, 2, 3) and the intra-platform Affymetrix
results were consistently reproducible with what is pre-
sented in this paper. This high reproducibility of the
Affymetrix GeneChip data has also been reported by other
investigators [14,40]. These data have proven useful in
selecting a platform for studying biological specimens
being collected by our tissue bank. We recommend that
prior to performing expensive microarray hybridizations
using irreplacable biological specimens procured from
clinical studies, a thorough assessment of intra-platform
reproducibility be conducted.

One limitation of this study is that platform is completely
confounded with laboratory technician and protocol, that
is, the platform-specific sequence of reactions, scanner,
procedures and events involved in the production of
microarray data. It was previously noted that there is a
high positive correlation between technician experience
and intra-platform correlation [25]. This is consistent
with our findings, whereby a first year graduate student
performed the C3B hybridizations (  = 0.656), while the

GMU and Affy hybridizations were performed by Ph.D.
faculty members (  = 0.848 and  = 0.996, respec-

tively). Future studies that control for external factors that
may influence intra-platform reliability are warranted.

In calculating cross-platform correlation, we assumed that
the correlation estimated using the using the 1288 match-
ing probes across the three platforms are representative of
expected correlation of genes in the human genome that
could be represented on the plaforms. Examination of

absolute tag counts for the Stratagene Total Human RNA
obtained using Serial Analysis of Gene Expression data
(available from GEO #GSM1734) revealed that the inten-
sity distribution of the 1,288 genes in common among the
three platforms is not representative of the range of
expected values (Figures 4, 5, 6, 7). Thus the commonly
invoked procedure of estimating cross-platform consist-
ency using only probes in common to all platforms is
demonstrated to suffer from bias related to genomic cov-
erage and probe annotation. Future studies comparing
commercially available and custom designed arrays need
to take this into consideration.

Conclusion
When estimating cross-platform correlation, it is essential
to thoroughly evaluate intra-platform reproducibility as a
first step. We also note that the commonly invoked proce-
dure of estimating cross-platform consistency using only
probes in common to all platforms is demonstrated to
suffer from bias related to genomic coverage and probe
annotation. Future studies comparing commercially avail-
able and custom designed arrays need to take this into
consideration. Moreover, to the extent that random intra-
platform variation is present, the effect is degraded perfor-
mace on the apparent cross-platform correlation. There-
fore, by removing random intra-platform variation
through measurement error methodology, the cross-plat-
form correlation will go up. Methods to correct for atten-

ρ

ρ ρ

Histogram of log2 absolute tag counts from SAGEFigure 4
Histogram of log2 absolute tag counts from SAGE. 
Histogram of log2 absolute tag counts from Serial Analysis of 
Gene Expression using the Stratagene Total Human RNA for 
the 14000 unique tags. Data available from GEO Accession 
#GSM1734.
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uation, such as that presented, are thus useful in
decreasing such a bias in cross-platform correlation esti-
mates. Platform-specific attenuation estimates may subse-

quently be used as a platform-specific quality measure
and incorporated into a meta-analytic framework.

Methods
Stratagene Technical Replicates Dataset
Previously, each laboratory designed a small experiment
to assess intra-platform quality control. Each laboratory
used the same lot of reference RNA, the Stratagene Total
Human RNA, for hybridizing a set of technical replicates
for a process variability study. These 'self-self' hybridiza-
tions permit meaningful assessments of reproducibility
since, under ideal circumstances such as that the same
experimental conditions exist among platforms and that
there are no probe-binding affinity effects, each gene
across the set of chips should exhibit linearly related gene
expression intensities across platforms. Although the RNA
hybridized was from the same lot, the study designs and
protocols differed from lab to lab.

The Affy platform was assessed using an unbalanced
three-factor design using 16 technical replicates [41]. The
same reference RNA sample was examined in 16 different
chips run on two days in four different modules of the
Affymetrix fluidics workstation. Fresh fragmented cRNAs
were hybridized to the first four GeneChips on Day 1
while frozen fragmented cRNAs were hybridized to
remaining four GeneChips on Day 1 and to all eight
GeneChips processed on Day 2. To eliminate operator

Histogram of log2 average GMU signalFigure 7
Histogram of log2 average GMU signal. Histogram of 
log2 average GMU signal for the Stratagene Total Human 
RNA using the 1,288 genes in common among the three plat-
forms.
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Histogram of log2 average Affymetrix MAS5 signalFigure 5
Histogram of log2 average Affymetrix MAS5 signal. 
Histogram of log2 average Affymetrix MAS5 signal for the 
Stratagene Total Human RNA using the 1,288 genes in com-
mon among the three platforms.
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Histogram of log2 average C3B signalFigure 6
Histogram of log2 average C3B signal. Histogram of log2 
average C3B signal for the Stratagene Total Human RNA 
using the 1,288 genes in common among the three platforms.
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variations, the same person completed the synthesis and
hybridization of all 16 chips. The images were scanned at
a 6 μm resolution using the Agilent G2500A Technologies
Gene Array scanner. The full set of 16 Affymetrix Gene-
Chips is publicly available [42].

At GMU, the RNA was amplified using the MessageAmp
aRNA Kit (Ambion). The amplified RNA (aRNA) was
quantified and its quality was monitored by agarose gel
and average size by the Agilent 2100 Bioanalyzer. The
same amount of aRNA (4 μg) were labeled with Cy3 and
Cy5 according the The Institute for Genomic Research
protocol and hybridized to three Human I chips. For each
chip, the Stratagene Total Human RNA served as both the
experimental and reference sample [43]. The ScanArray
Express HT confocal laser scanner with settings at 75% of
photomultiplier tube, 75% of laser power, and 10 μm of
pixel resolution was used. Images were aquired by ScanAr-
ray Express 2.0 software and processed with QuantArray
software.

The C3B laboratory assessed quality of their fabricated
microarray using a fractional factorial design. The factors
investigated were cDNA labeling strategy (3 levels: Dye
conjugated nucleotide, aminoallyl, and Genesphere
dendimer labeling), input total RNA concentration ratio
(3 levels: 1:1, 1:2, 1:4), hybridization time (2 levels: 4 and
16 hours), hybridization buffer (3 levels: Genesphere,
MWG, and Amersham buffer), and production lot (2 lev-
els: lot 7 and 9). Due to the expense of microarray produc-
tion and hybridization, a fractional factorial design, rather
than the full factorial design, was used. Therefore, all com-
binations of experimental conditions were not included.
Specifically, by assuming that high-order interactions are
negligible, information regarding the main effects and
low-order interactions may be obtained by running only
a fraction of the complete factorial design. Since we were
interested in examining the effects of hybridization buffer
(3 levels), RNA input ratio (3 levels), labeling strategy (3
levels), hybridization time (2 levels), and lot (2 levels), we
were initially interested in a 33 × 22 design. However, due
to the expense involved in running a full factorial micro-
array experiment, a 28-2 fractional factorial design was
adopted with defining relation is I = ABCDG = ABEFH =
CDEFGH. This resolution V design permits estimation of
all main effects and two-factor interactions under the
assumption that three-way and higher order interaction
terms may be ignored. Thus our experiment required 64
C3B arrays to be hybridized given the factors and levels of
interest. Again, for each array the Stratagene Total Human
RNA served as both the experimental and reference sam-
ple. Hybridized arrays were scanned with ScanArray
Express microarray scanner (Perkin Elmer) at 80% laser
power, 70% PMT gain, and 5 μm scan resolution. Spot

intensities were acquired from the images using QuantAr-
ray software.

The analyses conducted in the current study were
restricted to an equal number of chips by platform to
ensure one technology did not dominate the results sim-
ply because of having a larger sample size. Three arrays
were hybridized at GMU, so a random sample of size 3
was taken from the 16 Affy hybridized samples. These
three GeneChips were QAQC8.CEL (Day 1 Frozen),
QAQC10.CEL (Day 2 Frozen), and QAQC13.CEL (Day 2
Frozen). The three replicates selected from the C3B frac-
tional factorial study were chosen based on 'optimal'
hybridization conditions identified from the fractional
factorial experiment. Specifically, the number of genes
found to be signficantly different from the analysis of var-
iance model was used as the metric estimating the relative
influence of each main and two-factor interaction term.
The level of each factor having the smallest number of
genes differentially expressed was considered optimal.
The three C3B chips used in this study were hybridized
using the same buffer (Amersham), ratio of input experi-
mental and control samples (1:1), and labeling method
(Aminoallyl Post RT). The chips differed with respect to
lot number and hybridization time, though these factors
were found to not significantly influence the resulting
intensities in the larger study.

Normalization
Since single-channel arrays measure expression intensities
on an absolute scale whereas two-channel arrays measure
expression intensities on a ratio-metric scale, we first
investigated intra-platform reproducibility using different
methods for calculating gene expression to aid in our
determination of how to best transform the intensities
from the three platforms to a similar scale. In addition,
since the objective included an assessment of platform-
specific reproducibility across the set of available techni-
cal replicates, methods for within-array normalization
rather than methods that simultaneously normalize the
data across all arrays, were applied in a platform-specific
fashion.

For the two-channel arrays, we employed a commonly
used procedure of normalizing the spot-level intensities
on the array using print-tip loess regression and the subse-
quently analyzing the normalized spot-level intensities
[44]. The use of normalized spot intensities has removed
the systematic sources of variability (or at least, reduced)
attributed to technical artifacts of no interest, such as dep-
osition differences, differences in labeling efficiencies,
print-tip differences etc. Specifically, due to spot differ-
ences attributed to deposition gain, print-tip, and dye
effects noted among two-channel arrays, each two-chan-
Page 9 of 13
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nel array (C3B and GMU) was normalized by estimating

the corrections  for spots i = 1, ..., G by fitting print-tip

loess regression models to the Mi = log2(channel 1i/chan-

nel 2i) (log difference) on Ai = (log2(channel 1i) +

log2(channel 2i))/2 (log average) [45]. Probe intensities

were then adjusted by , therefore, 

represents the normalized log ratios [46]. In addition, to
enforce an absolute expression measure, the normalized
ratios were subsequently transformed to yield the channel

1 normalized intensities by [44]. Back-

ground was estimated by the Quantarray software as the
mean intensity among those pixels within the masked
area between the 5th and 20th percentile of intensities for a
given spot. Since simple background subtraction has been
demonstrated to increase spot-level variability [47], no
background correction was applied.

The Affymetrix GeneChip Operating System (GCOS) was
used to calculate expression summaries with a target
intensity of 100 using the Microarray Suite version 5.0
(MAS 5.0) method [48]. For completeness, we also esti-
mated expression using the robust multiarray average
(RMA) [49] and GC-RMA methods [50], although these
methods normalize and estimate probe set expression
summaries utilizing data across the entire set of Gene-
Chips and therefore may overestimate reproducibility. All
normalization and expression summary methods were
performed using the R software [51] and relevant Biocon-
ductor packages [52].

Identifying common genes across platforms
The RESOURCERER annotation and cross-reference data-
base [53] was developed to help investigators identify
genes commonly interrogated by different microarray
platforms. Other software tools such as MergeMaid [54],
GeneHopper [55], MatchMiner [56], and ProbeMatchDB
[57] have been developed for a similar purpose. Recent
research has demonstrated improved cross-platform cor-
relations when spots are matched by sequence rather than
by gene identifiers [58-60].

Therefore, probe sets and spots with common sequences
to all three platforms were retained for analysis using the
following method. First, the GCG program 'netfetch' was
used to obtain the NCBI GenBank records for spot IDs on
the GMU and C3B microarray platforms. The perfect
match (PM) probe level sequence data for the Affymetrix
HG-U133A GeneChip was downloaded from the Affyme-
trix website (06/14/2005). BLASTN (v2.2.10) was used to
query the Affymetrix probe sequences against the C3B

sequences. Thereafter, all probe sets for which at least 60%
of the probes reported low e-scores values (E <0.000001)
for the same spot were retained as matches. This threshold
was determined considering the breakdown bound of the
Tukey biweight estimator used in the MAS 5.0 expression
summary algorithm. M-estimators with symmetric ψ-
function have breakdown bound close to 50%. Therefore,
probe sets for which > 60% of its PM probes specifically
interrogated the same RefSeqID were retained. For the
C3B microarray, each RefSeqID is spotted two times on
the array. For the intra-platform reliability study (Strata-
gene dataset), average spot intensity per RefSeqID was
retained as C3B gene expression. For the Affymetrix Gene-
Chips, when multiple probe sets interrogated the same
transcript, first, that probe set with the maximum propor-
tion of probes with E <0.000001 was retained; when two
or more probe sets had the same proportion, then the
most 3' probe set was retained, defined by the probe set
with maximum stop query sequence location among
probes within a GenBank ID; when both quantities were
the same, the probe set was randomly selected.

This process was completed separately for the Affy-C3B
and Affy-GMU platform pairs. These two resulting data-
sets were merged by Affymetrix probe set ID, resulting in
a dataset containing only genes in common to all three
platforms.

All raw microarray files used in this study are publicly
available [61].

Intra-platform analyses
It has been suggested that poor cross-platform correlation
is likely a result of low intra-platform consistency [26].
Therefore, prior to estimating cross-platform reproduci-
bility and gene-specific reliability, intra-platform repro-
ducibility for three different microarray platforms was
examined. After normalization and calculation of gene
expression summaries, within-platform correlation was
estimated using average Pearson correlation for the K = 3
chips. In addition, reproducibility was examined by com-
paring the proportion of invariant genes across the set of
technical replicates within a platform. Specifically, for
spot i = 1, . . ., G, the ranked expression for the kth replicate
of platform l is denoted by Rikl. We then identified the
rank difference for each spot i within platform l as Δil =
abs(argmaxil(Rikl) - argminil(Rikl)). A gene was designated as
'invariant' for platform l using the indicator I(Δil/G ≤
0.05). As an example, this would correspond to permit-
ting the rank to shift by no more than 1,114 when 22,283
genes are spotted on the array. Statistical tests of hypothe-
sis comparing the proportions of invariant genes across
platforms were conducted using a chi-square test.

M̂i

M M Mi
norm

i i= − ˆ Mi
norm

xi
norm Ai

Mi
norm

=
+

2 2
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Finally, the weighted kappa statistic was estimated by first
grouping gene expression intensities into 25 approxi-
mately equal-sized classes based on their ranked intensi-
ties, yi. A weighted kappa statistic was used to allow a
smaller penalty of misclassification among closely related
classes, where the weights were taken to be wrc = (1 - 0.1 ×
|r - c|) when |r - c| < 10 and 0 otherwise.

Attenuation
When fitting a linear regression model

yi = β0 + β1xi + εi

for observed random variables xi and yi on observations i

= 1, ..., n, it is assumed xi ~ N(μx, ), εi ~ N(0, ) which

is independent of xi, and xi is measured without error [62].

Using the formulas for estimating Pearson's correlation

and the slope parameter β1, Pearson's correlation can be

shown to be

Therefore, Pearson's correlation measures the strength of
the linear relationship between X and Y.

For a general problem, suppose xi cannot be measured

precisely but rather is measured with error. Denote the

error-prone measurements  = xi + ui where ui ~ (0, ).

It is well known that fitting the model

using the error-prone values  leads to the attenuated

estimate β1* for β1 [28]. That is, the slope parameter is

biased. Therefore, when fitting a simple linear regression

model using the error prone measurements , the least-

squares estimate is

β1* = λβ1,

where β1 is the true slope parameter describing the rela-
tionship between yi and xi and λ is the attenuation factor.
The attenuation factor is given by

and is used to estimate β1 when measurement error is
present in both X and Y [28].

Estimating cross-platform correlation

From the intra-platform results, it is clear that microarray
gene expression data is subject to measurement error.
When estimating cross-platform correlation, let X and Y
represent the random variables for two different plat-

forms, known to be measured with error. That is,  = Xi

+ ui where Xi ~ N (μx, ) and ui ~ (0, ) while  = Yi

+ vi where Yi ~ N (μy, ), vi ~ (0, ). The average Pear-

son's correlation ( w), which is not corrected for meas-

urement error, can be estimated as

where  is the average log2 Affymetrix intensities and

 is C3B or GMU expression. However, a more appro-

priate measure, the "disattenuated" correlation [30], can
be calculated as

ρw = λp × ρ

where

This estimate adjusts for the bias present in estimating the
correlation when measurement error is present. Estimates

for σx, σu, σy, and σv were fit using the regression calibra-

tion rcal function in Stata version 9 [63]. In estimating 

and , the repeated measurements were assumed to be

unbiased for the true gene expression values. Moreover,
any missing value was treated as missing at random. Pre-
vious investigators have reported high reproducibility
estimates for Affymetrix expression values [14,40], there-
fore, we were primarily interested in estimating the corre-
lation between Affymetrix and the custom designed arrays
(C3B and GMU) that we have used in various cancer
genomics projects. The disattenuated correlation, , and

average Pearson correlation, w, were estimated sepa-

rately for the GMU and C3B platforms relative to Affyme-
trix.
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