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Abstract
As gene expression profile data from DNA microarrays accumulate rapidly, there is a natural need
to compare data across labs and platforms. Comparisons of microarray data can be quite
challenging due to data complexity and variability. Different labs may adopt different technology
platforms. One may ask about the degree of agreement we can expect from different labs and
different platforms. To address this question, we conducted a study of inter-lab and inter-platform
agreement of microarray data across three platforms and three labs. The statistical measures of
consistency and agreement used in this paper are the Pearson correlation, intraclass correlation,
kappa coefficients, and a measure of intra-transcript correlation. The three platforms used in the
present paper were Affymetrix GeneChip, custom cDNA arrays, and custom oligo arrays. Using
the within-platform variability as a benchmark, we found that these technology platforms exhibited
an acceptable level of agreement, but the agreement between two technologies within the same
lab was greater than that between two labs using the same technology. The consistency of
replicates in each experiment varies from lab to lab. When there is high consistency among
replicates, different technologies show good agreement within and across labs using the same RNA
samples. On the other hand, the lab effect, especially when confounded with the RNA sample
effect, plays a bigger role than the platform effect on data agreement.

Background
Diversity of microarray data poses some unique and inter-
esting questions on cross-experiment comparisons and
the analysis tools needed for such comparisons. Since the
invention of the microarray technology in 1995 [1], statis-
tical methods and data mining techniques specific for
microarray data have mushroomed [2], many of which
have been packaged into commercial software such as
GeneSpring and Spotfire. Such tools are useful for han-
dling individual experiments, including quality control,

significance testing, and clustering. However, researchers
have questioned whether studies across different labs and
technology platforms will have an acceptable level of
agreement.

Possible incompatibility of results between similar micro-
array experiments is a major challenge that needs to be
addressed, even though the data produced within a single
experiment may be consistent and easy to analyze. Differ-
ent labs produce microarray data in different ways using
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different technology platforms, such as Affymetrix Gene-
Chip, spotted cDNA array, and spotted oligo array.
Affymetrix GeneChip uses one fluorescent dye while the
spotted array uses two fluorescent dyes in the experi-
ments. Direct comparison of raw data obtained from dif-
ferent technologies may not be meaningful. Instead, the
final form of the data is often presented as relative expres-
sion levels, mostly ratios of intensities, after some statisti-
cal treatments including filtering, normalization and
model-based estimation. Experiments using different
technologies require different protocols for analyzing the
raw data to derive the ratios. Scientists have published
microarray data in a variety of formats including raw
intensities and ratios of intensities. Does it make a differ-
ence which technology platform is chosen? Can we make
use of the studies from different platforms and labs? To
answer these questions and provide some guidance for
platform comparisons, we report on a comparative study
of three different platforms. The experiment is a simple
two-tissue comparison between mouse liver and spleen.
We used previously published data sets from two different
sources as well as new data sets produced in house. There
are several similar studies published in recent years [3-8].
A noticeable difference of this study from earlier ones is
that we considered lab as a major factor in the compari-
son. In addition, we compared three major types of tech-
nology platforms, namely Affymetrix GeneChip, spotted
cDNA array and spotted long oligo array. This study aims
to provide a basis for further development of methodolo-
gies for comparing microarray data across different exper-
iments and for the integration of microarray data from
different labs.

Results
Data collection
As summarized in Table 1, a total of five data sets were
either collected from a public source or generated in
house. The samples for the experiments were normal
mouse liver and spleen RNA, which were purchased from
Clonetech (Catalog No. 64042-1 liver; Catalog No.
64044-1 spleen) except for the data set GNF generated by
Su et al. [9] at the Genomics Institute of the Novatis

Research Foundation. Detailed sample descriptions for
the GNF data can be found at http://expression.gnf.org.
Two data sets were downloaded from the NCBI Gene
Expression Omnibus http://www.ncbi.nih.gov/geo/,
which were generated by Choi et al. at California Institute
of Technology (Cal Tech) using Agilent oligo (GEO acces-
sion: GSE334) and cDNA arrays (GEO accession:
GSE330), respectively. Two other data sets were generated
at the Functional Genomics Unit at the W. M. Keck Center
for Comparative and Functional Genomics at the Univer-
sity of Illinois using an in-house printed cDNA mouse
array and Affymetrix mouse expression set 430A, and the
data sets are available at http://titan.biotec.uiuc.edu/
cross_platform/. Another data set was downloaded from
http://expression.gnf.org and it was generated using
Affymetrix Murine Genome set U74Av2. The data set
names (e.g., KC for the cDNA data set generated at the
Keck Center at the University of Illinois) given in Table 1
will be used throughout the paper.

Consistency of replicates
One indication of data reliability is the consistency of rep-
licates in a particular data set. We used kappa coefficients
as well as the Pearson correlation coefficients and
intraclass correlation coefficients on the replicates within
each data set. Those measures set a benchmark against
which the reliability of different platforms can be
assessed; see Figure 1. The data set KC has four replicates
from double spots of each gene on the array and from the
dye swap. Therefore, we can do six pairwise comparisons
of replicates. The data sets CC and CO have three repli-
cates each; therefore, there are three pairwise compari-
sons. All Affymetrix data sets have two replicates and thus
only one comparison. From Figure 1, we see that the rep-
licates were quite consistent within each technology. The
replicates in all the data sets showed pairwise Pearson cor-
relation coefficients of 0.80 or higher, intraclass correla-
tion coefficients of 0.77 or higher, and kappa coefficients
of 0.43 or higher. The data from the Cal Tech (CC and
CO) showed the highest agreement among the replicates,
and the data from GNF and KAV showed a low level of

Table 1: Summary of data collection

Data Set Array Genes Sample Replicates Data type Platform Lab Data Source

KC CI 15K cDNA 15K Clonetech 4 Raw intensity cDNA Keck In house
KAV Affymetrix 430A 23K Clonetech 2 AV(Bioconductor) Affymetrix Keck In house
KLW Affymetrix 430A 23K Clonetech 2 Li and Wong Affymetrix Keck In house
KRMA Affymetrix 430A 23K Clonetech 2 RMA Affymetrix Keck In house

CC Riken16K cDNA by Agilent 16K Clonetech 3 Raw intensity cDNA Cal Tech NCBI GEO
CO Riken16K Oligo by Agilent 16K Clonetech 3 Raw intensity Oligo Cal Tech NCBI GEO
GNF Affymetrix U74Av2 12K In house 2 AV(MAS4.0) Affymetrix GNF expression.gnf.org
Page 2 of 9
(page number not for citation purposes)

http://expression.gnf.org
http://www.ncbi.nih.gov/geo/
http://titan.biotec.uiuc.edu/cross_platform/
http://titan.biotec.uiuc.edu/cross_platform/
http://expression.gnf.org


BMC Genomics 2005, 6:71 http://www.biomedcentral.com/1471-2164/6/71
Consistency of replicatesFigure 1
Consistency of replicates.
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agreement between replicates. These results suggest a lab
effect in microarray data experiments.

For the KC data, we can see that two pairwise comparisons
gave slightly higher agreement than the other four. It is,
we believe, due to the double spots of each gene on the
array. The two comparisons with higher agreement are the
comparisons between the replicates within the slides.

Pairwise comparisons among data sets
Using the matched genes by common UniGene IDs, we
compared different data sets in this study. Table 2 shows
the Pearson correlation coefficients (PCC), intraclass cor-
relation coefficients (ICC) and intra-transcript correlation
coefficients (ITC) on log ratios, and the kappa coefficients
(Kappa) for two-fold changes. The detailed descriptions of
these measurements can be found in the "Methods" sec-
tion. Figure 2 shows the histograms of the pairwise PCC,
Kappa, ICC and ITC, respectively. With the exception of
the GNF, most of the kappa coefficients are between 0.4
and 0.6, as compared to 0.6 for the replicates within the
KC data set.

From Figure 2 and Table 2, we see that the rankings of the
pairwise comparisons are almost the same across four dif-
ferent measures of agreement. All the measures involving
GNF are at the low end of the comparisons. The same is

observed from the sensitivity check, which was done by
leaving out one data set at a time and recording the
changes of ICC as shown in Table 3. Excluding GNF
resulted in the largest increase in ICC.

In a recent study, Jarvinen et al. [4] compared Affymetrix
GeneChip, commercial cDNA array and a custom cDNA
array using the same RNA samples from human cancer
cell lines. They found that the data were more consistent
between two commercial platforms and less consistent
between custom arrays and commercial arrays. Their con-
clusion is consistent with our findings. In our study, KC is
a custom cDNA array, whereas CC and CO are commer-
cial cDNA and oligo arrays, respectively. If we do not con-
sider comparisons involving GNF, we found that KC_CC
(shorthand for KC versus CC) and KC_CO comparisons
were ranked at the bottom. The samples used in KC, CC,
and CO were identical, so biological variability is not an
issue here. The variability among those data sets was
mainly due to technical factors, such as platforms and labs
conducting the experiments. Jarvinen et al. [4] analyzed
the experiments conducted in one lab, and therefore their
study was mostly concerned with the platform difference.
Another study by Culhane et al. [3] used the co-inertia
analysis to compare overall expression profiles across dif-
ferent platforms. Their analysis could be used on matched
genes, as well as on all the data from different platforms.

Table 2: Correlation coefficients for pairwise comparisons between data sets. Pearson correlation coefficients (PCC), kappa 
coefficients (Kappa), intraclass correlation coefficients (ICC) and intra-transcript correlation coefficients (ITC) for pairwise 
comparisons.

Comparisons No. of Matched 
Unigene IDs

PCC Kappa ICC ITC

GNF vs. KC 1,838 0.590 0.327 0.693 0.748
GNF vs. CC 1,374 0.513 0.312 0.678 0.774
GNF vs. CO 1,914 0.633 0.365 0.707 0.729
GNF vs. KAV 2,058 0.727 0.452 0.686 0.724
GNF vs. KLW 3,295 0.640 0.374 0.681 0.690
GNF vs. KRMA 3,452 0.686 0.400 0.706 0.705
KC vs. CC 2,730 0.597 0.363 0.681 0.830
KC vs. CO 3,043 0.641 0.423 0.714 0.812
KC vs. KAV 2,964 0.747 0.523 0.726 0.908
KC vs. KLW 4,362 0.680 0.461 0.714 0.868
KC vs. KRMA 4,516 0.725 0.493 0.736 0.893
CC vs. CO 3,262 0.688 0.429 0.770 0.836
CC vs. KAV 2,285 0.708 0.461 0.746 0.859
CC vs. KLW 3,658 0.650 0.407 0.739 0.837
CC vs. KRMA 3,843 0.707 0.472 0.772 0.862
CO vs. KAV 3,001 0.806 0.555 0.781 0.865
CO vs. KLW 4,725 0.759 0.503 0.782 0.847
CO vs. KRMA 5,018 0.805 0.580 0.813 0.854
KAV vs. KLW 7,181 0.923 0.666 0.832 0.917
KAV vs. KLW 7,237 0.955 0.734 0.848 0.938
KLW vs. KRMA 14,130 0.921 0.732 0.765 0.971
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Correlation coefficients for pairwise comparisons between data setsFigure 2
Correlation coefficients for pairwise comparisons between data sets.
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While they considered the agreement for the overall
expression profiles, we focused on the agreement in
expressions at the gene level. Using the within-platform
variability as a benchmark, we found that these technol-
ogy platforms exhibited an acceptable level of agreement.
For example, the overall comparison of all five data sets
using KLW for the in-house Affymetrix gives ICC = 0.662,
as compared to the ICC around 0.8 for replicates within
each data set. These results indicate that the agreement of
different technologies is decent.

Since we only used a subset of genes in the study due to
the gene matching problem, we asked whether the gene-
to-gene variation was impacted by the choice of the sub-

set. A comparison of the box plots for the full data set and
for the subset used in the overall comparison showed that
the variation in the subset of genes is similar to that of the
full data set. For example, Figure 3 and Figure 4 give the
box plots for the full data set and the subset of CO, respec-
tively. Therefore, we believe that a reasonable conclusion
can be made based on the subset being used.

Discussion
UniGene has been widely used to match genes on differ-
ent microarrays. Using UniGene and sequence similarity,
Thompson, et al. [10] reported a number of gene markers
that showed platform-independent expression profile.
When we matched genes from different arrays using the
mouse UniGene IDs, we found that there were multiple
gene IDs in an array corresponding to one UniGene ID.
Those genes were considered as "duplicate" genes, which
made the cross matching of genes more complicated. A
common approach is to average the expressions of those
"duplicate" genes; however, we considered these "dupli-
cate" genes as replicates in the technology and lab com-
parisons. One observation we should make is that the
variability among these "duplicate" genes can be large. For
example, in the CC arrays, there are 11,301 genes (upon
filtering), corresponding to 8,318 UniGene IDs. Among
the 8,318 UniGene IDs, 1,708 of them have "duplicate"
genes. For the 12 Unigenes that have 10 or more

Table 3: Sensitivity check of the overall comparison among all 
the data sets

ICC

Before leaving out 0.662
Leave out GNF 0.703
leave out KLW 0.650
leave out KC 0.663
leave out CC 0.684
leave out CO 0.670

Boxplot of the full data set of CO, with 7,282 Unigene IDsFigure 3
Boxplot of the full data set of CO, with 7,282 Unigene IDs.
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Boxplot of the subset of CO, overlapped with the other 4 datasets, with 551 Unigene IDsFigure 4
Boxplot of the subset of CO, overlapped with the other 4 
datasets, with 551 Unigene IDs.
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"duplicate" genes, the ICC of the replicates decreased
from 0.99 to 0.86 due to gene matching by Unigene IDs.
Note that gene matching was performed only for the com-
parisons across data sets, and that we did not use the Uni-
Gene IDs in measuring the consistency within the same
data set. This means that the agreement measures we
obtained across different data sets were expected to be
slightly lower than those from the replicates, even if the
actual agreement was the same within or between data
sets. In earlier studies, such as the one reported by
Jarvinen et al., it has been shown that using different
clones on different arrays is a major factor for the discrep-
ancies between platforms. Using UniGene IDs to match
the clones on different platforms can be problematic and
result in biased comparisons. Sequence validation of the
clones in different arrays may help resolve some of the
problems and make the data from different platforms and
labs more comparable.

From the present study, we showed that the GNF data set
had the lowest agreement with the other data sets. This
difference is compounded with the facts that the consist-
ency of replicates within the GNF data set is the lowest
and the sample used to generate the data is different from
those used by other labs. We believe that the technology
platform plays a relatively minor role in the disagreement,
but the variation introduced by sample differences is one
of the major factors. It has been shown that the expression
level can vary significantly between genetically identical
mice [11]. Variation among different individuals can be a
significant factor for sample differences. Our analysis also
indicates that data generated from different labs may have
different quality even among the replicates, and thus qual-
ity control is important.

In this study, we also found that the lab effect can be
greater than the platform effect. As shown in Figure 5, the
comparisons between two different technology platforms
in the same lab (KC_KRMA and CC_CO) showed better
agreement than between two labs using the same technol-
ogy (KC_CC). We also showed that the different
summarization methods for Affymetrix exhibited good
agreement.

Obviously, the present study has limitations. The results
were generated from a very limited number of data sets.
Using UniGene IDs for gene matching across data sets can
also be questioned. Further research is clearly needed to
address these limitations.

Conclusion
In this paper, we aim to address several issues in compar-
ing microarray data across different platforms and differ-
ent labs. We demonstrated that the consistency of
replicates in each experiment varied from lab to lab. With

high consistency among replicates, different technologies
seemed to show good agreement within and across labs
using the same RNA samples. A closer look at the results
indicated that the variability between two labs using the
same technology was higher than that between two tech-
nologies within the same lab. The source of RNA samples
can make a difference in microarray data, however in our
present study we do not show conclusive results pertain-
ing to possible sample or lab effects, because we did not
have data collected from two different samples within one
lab.

Methods
Data processing
For the spotted arrays (KC, CC, and CO), we used raw
intensity data from both Cy5 and Cy3. We filtered out the
non-expressive data points using median plus three times
median absolute deviation (MAD, [12]) of the negative
control genes as a criterion. We then performed global
lowess normalization on each slide. For the KC data, we
also performed paired-slide normalization following the
method in Yang et al. [13] because of the dye swap in the
experiment.

For the in-house Affymetrix data, we used three summari-
zation methods to generate the probe set level signals.
KAV and KRMA are based on the R package affy of Biocon-
ductor using the average difference (AV) between Perfect
Match (PM) and Mis-Match (MM) probe pairs, and the
Robust Multi-Array Average (RMA) expression measure
developed by Irizarry et al. [14], and KLW is the model-
based expression indexes developed by Li and Wong [15].
The GNF Affymetrix data were available to us only in the
format of average differences. For both GNF and in-house

Comparisons between the same technology but different labs (KC_CC) and comparisons between different technologies in the same lab (KRMA_KC and CO_CC)Figure 5
Comparisons between the same technology but different labs 
(KC_CC) and comparisons between different technologies in 
the same lab (KRMA_KC and CO_CC).

KRMA KC

CO CC

PCC : 0.725

Kappa : 0.493

ICC : 0.736

ITC : 0.893

PCC : 0.688

Kappa : 0.429

ICC : 0.770

ITC : 0.836

PCC : 0.597
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ICC : 0.681

ITC : 0.830
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Affymetrix probe set signals, we performed global lowess
normalization for the three pairwise combinations of the
liver and spleen slides, and used the averaged lowess
adjustment for the normalization. The genes with probe
set signals lower than 20 in either liver or spleen tissue
were filtered out.

To stabilize the variances of data across the full range of
gene expressions, we also performed the generalized log
transformation for all the data sets following Durbin et al.
[16].

Gene matching across arrays
There are five different data sets in this study. The origins
of the genes vary in those datasets. In order to study inter-
lab agreement, we have to first identify common genes
represented in different arrays. Based on the annotation of
each data set, we found that we could maximize the
number of cross-matched genes using the mouse Uni-
Gene IDs (Build 107). Based on the common UniGene
IDs, we found 551 common genes across all five different
data sets. But in the pairwise comparisons, the number of
common genes ranged from 1,374 to 5,018 (see Table 2).
All comparisons between data sets were made from the
matched genes.

Statistical procedures for inter-platform and inter-lab 
comparisons
In the analyses, the ratio is defined as normalized and
transformed intensity from liver samples versus that from
spleen samples.

Agreement of two-fold changes using kappa coefficients
An intuitive measurement of agreement is to count the
percentage of genes falling in the same categories (two-
fold up-regulated, no change, and two-fold down-regu-
lated). However, this percentage can be high even if the
data obtained from different platforms are not so compat-
ible. Usually the ratios for the great majority of genes do
not show a two-fold change, and the percentage of agree-
ment can be high just due to chance. To adjust for this
excess agreement expected by chance, we prefer to use the
kappa coefficient, which is a popular measure of inter-
rater agreement in many other areas of science. The kappa
coefficient was first proposed by Cohen [17] for analysing
dichotomous responses, and was extended later to more
than two categories of responses. We applied this measure
to three categories (two-fold up-regulated, no change, and
two-fold down-regulated), and computed the kappa coef-
ficients between two data sets from 3 by 3 frequency
tables. For a study of q categories, the kappa coefficient is

calculated by: , where  is

the overall agreement probability,  is

the measure of the likelihood of agreement by chance,
and nij is the number of subjects in the (i, j) cell, ni+ is the
sum of the i th row, n+ j is the sum of the j th column, and
n is the total number of subjects.

For example, the kappa coefficient between KC and KAV
is 0.523. Table 4 gives the two-fold gene regulation fre-
quency table between KC and KAV. Except for the 8 genes
that showed two-fold up-regulation in one data set but
two-fold down-regulation in another, KC and KAV agreed
very well.

Correlation coefficients of the ratios
We used three measures of correlation to compare the
ratios from different data sets: Pearson correlation coeffi-
cient, intraclass correlation coefficient (ICC) and intra-
transcript correlation coefficient (ITC). ICC measures the
inter-rater reliability relative to the total variability of the
ratios. Here, a rater could be a replicate or a technology
platform. ICC is the variance of different ratios between

UniGene IDs, , divided by the total variance . A high
ICC (close to 1) means that the inter-rater ratios vary little
relative to the overall variability in the data. In computing

the ICC for the replicates,  equals , where 
is the variance within UniGene IDs. If we consider lab as
a random effect in the overall comparison, the total vari-

ance  will equal , where  is the vari-
ance between labs. The ICC incorporates both the
association between raters and the rater differences, while
the Pearson correlation is insensitive to the latter.

We introduced the ITC for pairwise comparisons as
described below. For each gene i, we defined ρi to be the
square root of the ratio of within dataset sum of squares
(SSW) and the total sum of squares (TSS). A common
SSW was used in comparing lab pairs to avoid the prob-
lem of having seemingly higher ITC's due to unusually

kappa =
−

−
P P

P
a e

e1
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n
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1

Table 4: Frequency table for KAV and KC

KAV KC

Frequency -2 0 2 Total
-2 173 136 5 314
0 157 1,972 146 2,275
2 3 112 260 375
Total 333 220 411 2,964

Kappa coefficient = 0.523
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large within-lab variability at some lab. We applied logit
transformation to each ρi to get γi, and then calculated the
average γ. Converting γ back to the correlation scale, we

obtained .
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