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ABSTRACT

Gene expression and phenotypic functionality can best be asso-

ciated when they are measured quantitatively within the same

experiment. The analysis of such a complex experiment is

presented, searching for associations between measures of

exploratory behavior in mice and gene expression in brain regions.

The analysis of such experiments raises several methodological

problems. First and foremost, the size of the pool of potential

discoveries being screened is enormous yet only few biologically

relevant findings are expected, making the problem of multiple

testing especially severe. We present solutions based on screening

by testing related hypotheses, then testing the hypotheses of

interest. In one variant the subset is selected directly, in the other

one a tree of hypotheses is tested hierarchical; both variants control

the False Discovery Rate (FDR). Other problems in such experiments

are in the fact that the level of data aggregation may be different for

the quantitative traits (one per animal) and gene expression

measurements (pooled across animals); in that the association

may not be linear; and in the resolution of interest only few

replications exist. We offer solutions to these problems as well.

The hierarchical FDR testing strategies presented here can serve

beyond the structure of our motivating example study to any

complex microarray study.

Contact: ybenja@post.tau.ac.il

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The initial and simplest statistical question in functional

genomics is the identification of genes differentially expressed

between two classes that differ in functionality. The two classes

may involve healthy versus sick cells, one region in the brain

versus another, hearing versus deaf animals, or a high activity

strain of mice versus a low one. The development of microarray

technology has opened a new era for functional genomics, in

that tens of thousands of such experiments can be conducted

concurrently (for review see Lee and Saeed, 2006). At the

same time it has generated a concern regarding the effect of

conducting multiple statistical tests, a concern that may cast

doubt on the validity of the statistical discoveries (e.g. Dudoit

et al., 2002, Efron et al., 2001, Reiner et al., 2003, Storey and

Tibshirani, 2003).

When more than two classes of function exist, that is the

functionality is classified into a few categories, the resolution

offered by the experiment increases yet the multiplicity problem

is compounded. Here, the effort may initially involve the

identification of genes that are not similarly expressed across all

functional categories, leading towards the use of one-way

analysis of variance (ANOVA). Next, one may be interested in

comparisons among pairs of categories in order to specifically

identify where the difference lies (Smyth et al., 2005, Yekutieli

et al., 2006). More generally, the interest is in linear contrasts

that compare the average expression in one subset of levels with

the average in another, as when comparing the expression

pattern of genes in active mouse strains versus low activity

strains (Pavlidis and Noble, 2001).
A better opportunity to study the connection between the

gene expression level and functional outcome is when the

information on individuals can be measured quantitatively.

For example, measuring some quantitative traits that reflect the

activity of the animal, such as the distance traveled, are

preferred for associating expression levels with activity, than

merely classifying activity to high and low. The approach is

gaining popularity for example in correlating gene expression

and/or expression QTLs (eQTLs) with a particular phenotypic

trait (Chesler et al., 2005, Kerns et al., 2005, Letwin et al.,

2006), although only trait averages on other animals, taken

from data bases, are used in the above studies.

1.1 Multiple testing

As the above-mentioned studies exemplify, the number of

hypotheses being tested in microarray studies has increased

dramatically. Therefore, the concern about controlling the

increased type I errors (false discoveries) resulting from*To whom correspondence should be addressed.
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multiple testing, while not loosing too much power, becomes

most important. It has become quite common to confront

this concern about multiplicity by using the False Discovery

Rate (FDR) methodology in one form or another (e.g. Efron

et al., 2001, Reiner et al., 2003, Storey and Tibshirani, 2003).

The linear step-up procedure offered by Benjamini and

Hochberg (1995, hereafter BH) was shown to control the

FDR under independence, and under certain type of positive

dependence (Benjamini and Yekutieli, 2001), as demonstrated

on gene expression data by Reiner et al (2003). More recently,

Reiner (2007) proved that the BH procedure controls the FDR

for two sided normally distributed tests with any correlation

structure at the desired level q. Many adaptive procedures offer

a way to estimate the proportion of true hypotheses �0¼m0/m,

and then use the BH procedure at level q/�0 thus gaining power

when m0/m is substantially smaller than 1 (e.g. Benjamini and

Hochberg, 2000, Jiang, 2004, Storey 2002, Storey and

Tibshirani, 2003, Benjamini et al., 2006). The results of

Reiner (2007) do not carry over to this dependent case (as the

FDR is higher than the bound when independent) and the

sensitivity of the adaptive FDR procedures to the dependency

remains an issue.

Even within the FDR framework, however, the more

complex studies, such as the ones described above, pose new

multiplicity challenges, and the problems involved have not

been adequately addressed (see comment in Letwin et al., 2006).

In this article we aim to use recent advances in FDR

methodology (Yekutieli, 2007, Yekutieli et al., 2006) in order

to make well-founded inference on gene-level functionality. The

underlying idea is that the problem of testing a potentially very

large family of hypotheses can be alleviated by initial screening,

that is excluding a large proportion of the hypotheses where

findings are not likely to occur. The remaining ones are tested

using a multiple testing procedure either (a) jointly as a

single family, or (b) separately within each emerging subfamily.

In the latter case the hypotheses are organized in a tree

structure and tested hierarchically. We take the second strategy

a step further, by showing that the demands raised by existing

theoretical bounds can be lowered. At the same time we warn

against the indiscriminate use of test statistics that are

dependent across stages of the analysis.

Rather than continuing in generality, we describe the

experiment that motivated the methodological work presented

here, and discuss the above issues in this context.

1.2 The experiment

The goal of the current study is to find associations between

open field exploratory behavior of mice and the level of

gene expression in different brain regions, some of which

will then be followed by biological verification. On the

behavioral side, the purpose was to use the highly informative

and quantitative characterization of open-field exploratory

behavior, as encompassed by the recently developed SEE

(Software based strategy for Exploring Exploration, Benjamini

et al., 2001, Drai et al., 2000, Kafkafi et al., 2005). This strategy

attempts to capture highly structured behavioral patterns using

ethologically relevant measures (so-called tests, behavioral

traits or behavioral endpoints). For that purpose, the path of

the animal in a large open field is automatically tracked and

digitized for 30min. It is subsequently smoothed robustly

and statistically segmented into discrete behavioral units of

stops (lingering episodes) and progression segments. The

quantitative properties of the segments, such as their length,

duration, maximal speed and spatial spread constitute a large

number of the traits studied, that otherwise include more

traditional traits such as total activity and time spent at center.

The traits studied at three laboratories exhibited high

broad sense heritability with significant strain differences

(Kafkafi et al., 2005). In the current study, we used the

tracking data of 10 males from each of 8 traditionally used

inbred mouse strains measured in the Maryland Psychiatric

Research Center laboratory of the Kafkafi et al. (2005) study.
The gene expression part of the experiment involved

harvesting tissue from the same mice 7–12 days following the

behavioral assessment. Five brain regions were dissected

(prefrontal cortex; ventral striatum; temporal lobe; periaqua-

ductal gray and cerebellum). Each region from mice of the same

strain was pooled into two groups in order to have sufficient

quantities of RNA for measuring expression levels, thereby

providing two biological replications per strain per region,

for some �27 000 genes (such pooling strategy is often

employed, see Lee and Saeed, 2006). For experimental

details related to the microarray hybridizations and data pre-

processing see Letwin et al. (2006).

1.3 The problem of testing following screening

The search for gene-behavior associations involves testing over

17 behavioral traits, 5 regions and �27 000 genes—representing

more than 2 millions potential hypotheses. We approach this

mega-family of hypotheses by first screening for potential

families of hypotheses for which the correlation is non-zero.

For that purpose, we make use of general evidence from the

previous analysis in other labs that the 17 behavioral traits vary

between the strains. Therefore, if the expression of a particular

gene in a particular brain region is the same for all strains, then

there is no reason to believe it can be correlated with behavior.

Hence, an informative screening question is whether genes are

differently expressed between the strains in each region of the

brain (a question of scientific value by itself). This strategy is

intuitive, and has been practiced in recent microarray analyses

(Letwin et al., 2006, Pavlidis, 2003) and implemented in

software (LIMMA at Bioconductor, see Smyth, 2005).
Still, when (multiple) testing is preceded by screening the

same data, the distribution of the P-values corresponding to a

true null hypothesis may no longer remain Uniform (0,1)

or stochastically larger, as needed for valid testing. For

example, in a small simulation study we investigated all

pairwise differences between gene expressions of 8 strains

for 10 000 genes. When the procedure in Benjamini and

Hochberg (1995), at level 0.05, is used to test jointly all

280 000P-values from the pairwise t-statistics, the FDR was

0.036; When the same procedure was applied first to the 10 000

one-way ANOVA F-test P-values in order to screen genes,

and then applied to simultaneously test all screened hypoth-

eses—the FDR was 0.272 (all simulation SE50.006).
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The phenomenon is well known at the level of a single
ANOVA, where it is termed post-hoc analysis. Such questions

have not received much theoretical or practical consideration

when the post hoc analysis is in the context of screening and

with less obvious connection between the screening test and the

follow-up one.

1.4 Additional considerations

The joint analysis of behavior and expression in a single

experiment raises additional concerns that require methodolo-

gical attention. First, screening with ANOVA at each

combination of gene and brain region, provides less than
ideal number of biological repetitions at each combination,

because of tissue pooling. Second, how should the association

between the expression level and the behavioral trait be

measured? Third, the implications of measuring behavior at

the individual animal level while measuring expression level

from pooled tissues from the same brain region because of
the scarcity of biological material, may be an exaggerated

correlation, a phenomenon sometimes termed ‘ecological

correlation’. These problems are known, even though not

always recognized, and have recently come to light in a number

of gene-phenotype association studies toxicogenomics and

environmental genomics. The first two problems have known

answers to be merely highlighted; the solution for the last
problem has to be tailored for the situation at hand.

2 METHODS

Let us first introduce some notations for the parameters of the model

describing the above experiment, and for the measured values.

The behavioral endpoint b of mouse m from strain s is denoted by

Bbsm, and its expectation given the strain is �bs. Mgrsm is the level of the

expression of gene g (averaged over dye-swap hybridizations), in mouse

m, in strain s, in region r and its expectation given the strain is �grs. We

denote the average expression level across all the strains in brain region

r by �grþ, and the average expression level across all strains and brain

regions by �gþþ. With these notations the hypothesis HASSOC
0 ðb,g,rÞ

states Bbsm and Mgrsm are not associated; the hypothesis for each gene

g and each brain-region used for screening of no strains difference is

HSTR
0 ðg,rÞ: �gr1¼�gr2¼ . . .¼�gr8.

2.1 Testing following screening

2.1.1 Selected subset testing The procedure involves screening

for potentially successful hypotheses while controlling the FDR at level

q1 in the first stage, and then testing the set of identified hypotheses as a

single family while controlling the FDR at level q2 in the second stage.

Independence between the tests in the first stage and those in the second

stage is crucial. One important example of data dependent choice where

the condition is satisfied is the case where the same hypotheses are

tested again using independent data in both stages. This approach

can be much more powerful than testing indiscriminately the

original family of hypotheses (Benjamini and Yekutieli, 2005,

Zehetmayer et al., 2005, Reiner et al., 2003).

In the case we address here: (1) The same data is used in both

stages; (2) Different hypotheses are tested at the screening stage

and at the second stage. However, if we still can assure the test statistics

for the true null hypotheses at the second stage are independent of

those in the first stage—the procedure will obviously control the

FDR at level q2.

In our case, we first test HSTR
0 ðg,rÞ using ANOVA for strain

differences in expression levels in a brain region and then test for

association using the Spearman’s test, as displayed in Figure 1. Under

the null hypothesis the Spearman’s test is not dependent on whether the

distribution of the expression data is more dispersed between the strains

or less so, which is the hypothesis tested at the first stage. Thus using the

procedure in BH at level q2 at the second level controls the FDR at q2.

In fact one may even use an adaptive procedure at stage two and

similarly control the FDR at that level.

2.1.2 Hierarchical FDR testing In the subset selection method

discussed above, all hypotheses regarding the correlations that passed

the first screening are tested simultaneously as a single family. However,

there is more structure than that to our problem. Every rejected

hypothesis at the screening stage suggests that for this pair of gene and

brain region the expression level may be associated with some or all of

the 17 behavioral traits. Can we test each such subfamily of 17

hypotheses by itself while controlling the FDR of the entire process

of inference? The question can be answered in the positive but

elaboration is needed. Our problem can be imbedded in the

general scheme for hierarchical testing of trees of hypotheses described

in Yekutieli et al. (2006). In our case the tree has two levels, as

displayed in Figure 1. In the first level, the family of hypotheses tested are

the hypotheses regarding the question of strain differences within brain

regions for each gene {HSTR
0 ðg,rÞ:g¼ 1,2,. . . 27000; r¼ 1,2, . . . ,5}; each

hypothesis at the first level is parent to the subfamily of hypotheses

regarding the association between the expression of the gene within the

brain region and the 17 behavioral traits, namely

{HASSOC
0 ðb,g,rÞ:b¼ 1,2, . . . ,17}. These hypotheses are referred to as

Level-2 hypotheses. Now, testing begins by applying the BH at level q

procedure to the family of hypotheses at level 1; Level-1 discoveries only

are followed to Level 2, where the BH procedure is separately applied to

each subfamily of association hypotheses, again at level q.

Yekutieli (2007) proved a bound for the FDR of the hierarchical

testing procedure under the assumption that the P-values correspond-

ing to the hypotheses are independently distributed:

FDR � E
Rt þ J

Rt þ 1

� �
� q�* � ~�0, ð1Þ

where J is the number of families tested, Rt is the total number of

discoveries, ~�0 is a weighted mean of the proportion of true null

hypotheses in the J families of hypotheses, and �* is family-specific

multiplicative factor (its upper bound is shown to be smaller than 1.44,

but typically �*� 1). In some cases it is possible to derive universal

bounds for the FDR. (a) If the researcher is interested in the entire set

of discoveries (both strain differences and association discoveries),

namely the full-tree FDR, then it is easy to see that the bound for the

FDR in expression (1) is less than is 2q�*. (b) It can also be argued

that once expression is found to be associated with behavior, the initial

strain difference discovery is no longer of interest—thus the ‘interesting’

discoveries are all the association discoveries, and strain difference

discoveries with no subsequent association discoveries, namely

end-node FDR. Note that in this case Rt is greater than Rt in case (a)

divided by the number of levels in the FDR tree—therefore the FDR is

less than 4q�* (the bound in (a) times L). (c) If the researcher is only

interested in the association discoveries, then there is no universal upper

bound for this level-2 FDR.

Yekutieli (2007) addresses both theoretically and via simulations

the power and FDR control of hierarchical testing in cases (a), (b) and

(c). He finds that settings like the one confronted here, where the

number of sub-families is large and each one has few hypotheses,

are the most demanding in terms of FDR control. We therefore choose

to verify using a simulation study settings somewhat similar to the

Associating quantitative behavioral traits with gene expression in the brain
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problem we face, and study the behavior of

B Rl,Jð Þ ¼ E
Rl þ J

Rl þ 1

� �
:

Moreover, let B̂ðRl,JÞ be its observed value, namely the ratio between

the total number of association discoveries plus the number of families

and the total number of discoveries plus 1. We use it as to estimator in

the FDR for the association discoveries: B̂ðRl,JÞ � q�
*: Finally, note that

if the number discoveries greatly exceeds the number of tested families

(i.e. most of discoveries are association discoveries) then the FDR is

also �q�* � ~�0 in testing scenarios (a) and (b).

2.2 Screening using ANOVA

As discussed before, analysis of variance will be used to test the

difference between strains at the gene-brain region level. When strain

differences are assessed during the first stage of research we face the

problem of a small sample size since the data consists of only two

biological replicates for each gene in each brain-region, resulting in

8(2� 1) degrees of freedom for estimating the error term. This problem

is quite common in microarray experiments that include more than one

factor, for the mere reason of high economical cost. Pavlidis et al.

(2003) show in this context that statistical analysis of experiments

containing less than five biological replicates may result in poor power

and reproducibility Thus, rather than using the conventional one-way

ANOVA F-test, we will test the simple effect of strain within brain-

region, as proposed by Winer (1971). Namely, for each brain-region,

the test is based on the between-strain variation estimated from the one-

way model only for that specific brain region (numerator), and the

within-strain variation is estimated from the full two-way model with

interaction (denominator). Since expression levels from the same

biological replicate in different brain regions may be correlated, we

use the simple effect analysis within a mixed model framework, where

observations from the same biological replicate across the brain region

are treated as repeated measurements and the model errors having

compound symmetry covariance structure. For details for implementa-

tion see Supplementary Material.

2.3 Testing for association

In order to assess the association between gene expression and the

quantitative trait we use Spearman’s correlation rather than Pearson’s.

Our choice is motivated by the fact that the rank-based Spearman’s

correlation assesses the strength of a monotone relationship between

the two, while Pearson’s assesses the strength of the linear relationship.

It is true that through the use of suitably chosen transformations

for each combination of gene, region and trait, Pearson’s correlation

may be almost as useful. However, with little-monitored screening of

many correlations this becomes a formidable task. The use of Pearson

correlation and the effort involved cannot be avoided when the number

of observations available for the correlation analysis is very small, in

this case Spearman’s correlation cannot achieve low enough P-values

even when the association is strong due to the granularity of rank

correlation distribution. This is not the case in our example.

2.4 Jittering for estimating correlation when pooling

samples for gene expression

Recall that within each strain we have individual data for the

behavioral trait but we have only two means for the gene expression

data due to pooling. One option was thus to reduce all information to

strain averages, producing only 8 points, which amounts to using

strains as the unit of correlation analysis. This type of correlation

has been termed ecological correlation (e.g. Greenland and Robins,

1994, Robinson, 1950) that has limitations when it comes to

interpretation, since it is the individual animal for which we wish to

study the behavior and gene expression. Furthermore, this approach

yields high correlations but also high P-values (not very significant)

because of the small number of strains available.

It may still be argued that since strains are genetically identical it is

reasonable to assume that the individual gene expressions for each

strain are all at the same (mean) level while still making use of the

individual behavioral information. Such an approach leads to a

correlation that is always too high due to the artificially reduced

variation of the expression level: In the calculation of Spearman’s

correlation, the ranks of expression levels are being used. Thus all

expression levels of animals from the same strain will receive the same

rank, artificially reducing the real variability of expression levels.

We may simulate individual values of gene expression for mice,

under the null hypothesis of no correlation between expression level

Fig. 2. FDR for full-tree and outer node schemes, as estimated from the

simulation study. The FDR for full tree is lower than that of the outer-

node; both are much lower than the theoretical bound 0.144.

. . 

. . .. . .

. . .

. . .. . .

. . . . . .

Fig. 1. Schematic display of the selected subset testing and the

hierarchical tree testing for testing for association after screening for

strain differences in expression levels in specific brain region. The set of

discoveries is marked by black circle; Hypotheses tested together as a

family, using the BH procedure, are enclosed in an ellipse.
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and behavior, by jittering the mean expression values: from the

estimated variance of the biological replicates �̂2
b,gr we can estimate for

gene g and brain region r the between mice individual variability in

expression levels:, �̂2
gr ¼ �̂2

b,gr � ngr=kgr (where ngr is the number of

animals for which gene expression in gene g and brain region r was

measured, and kgr is the number of biological replicates taken to

measure this expression level). We then assign the random values to the

individual animals. Now the correlation and the significance from these

values are more realistic. For instance, consider the correlation of Glo1

expression in the cerebellum and the proportion of time the mouse

spends in the center of the arena (See Supplementary Material S2 for

details). The estimated correlation with the behavioral trait is �0.62,

with P-value50.0001. Two different runs for the above combination

yield correlations of �0.31 and �0.44, and the P-values are 0.029 and

0.001, respectively. Both are weaker than before and somewhat less

significant, but closer to reality.

We simulated such data 1000 times and averaged the correlations and

the logarithm of the P-values over the simulation. In the above example

the simulation-averaged correlation is �0.36.

2.5 A simulation study

A simulation study of the FDR level achieved by hierarchical testing

was conducted on data simulated to have the same characteristics as

our experiment data (except for number of genes). Expression data at

the gene and brain-region level was set to include non-zero differences

between strains for a proportion pd of the cases. Of them, a proportion

pc was set to correlate with some of the behavioral traits. Correlation of

each gene were introduced either to one of its brain regions (with

probability pa) or to all of them, and pt of the traits were correlated with

expression. Thus we incorporated expression correlation into the

‘networks’ of genes that are correlated with behavior. We did not

incorporate the across brain region correlations, for at this stage of the

simulation all we need is that the P-values will be valid. Effect and noise

sizes were chosen so that the power under the alternative at the first

stage will be high—from 0.5 to 1. Details are given in the

Supplementary Material. The simple effect F-test was applied here at

the first stage to select combinations of gene and brain region where

strain differences in expressions were found. Next, the expression levels

of the selected combinations were tested for association with the

behavioral traits using Spearman’s Correlation. The FDR controlling

procedure in BH was applied in two ways: using the selected subset

testing, and using the hierarchical testing scheme.

3 RESULTS

3.1 Results concerning methodology

For the subset selection method, the FDR is controlled at

the desired level of 0.05. For the hierarchical testing method,

we first examine the value of �*. The values found are close to 1,

around 1.04–1.06. Running additional simulations on config-

uration 3 with q set to 0.01 and 0.1, which yields �* of 1.03

and 1.06, respectively, we may reasonably conclude that �*
keeps stable for any q. The �� 1 is consistent with results

of previous simulations.
The full tree FDR should be controlled at the level of 2q�*.

Consequently, the conservative bound on the FDR level is

still 2q, and as seen in Figure 2, it is achieved for

all configurations. When the proportion of false null hypoth-

eses is small, most of the rejected hypotheses are parent

hypotheses. This was indeed the case where the full-tree FDR

reaches its upper limit.
Next we examined the FDR of the end-node testing scheme,

which under independence should be controlled at level
2Lq�*¼ 4q�*. Again, �� 1, and the conservative bound of 4q

still applies. This is evidently much too conservative a bound,

the actual value that can be inferred from Figure 2 lies well

below 2q. The degree of this excess depends on the number of

correlations. Where it is relatively small, this gap is relatively

small. Where there are no correlations at all the two criteria

are nearly equal. Here, the expected total number of discoveries

remains the same as that of the full-tree scheme. In view of

the above, for both full-tree and end-node FDR control we

use the BH at level q1¼ q2¼ q/2, in order to control the FDR

at level q.
Restricting our interest to the correlation-testing level,

we focus on how much this FDR is increased due to the

restriction. The multiplier B(Rl,J), increases in the number

of subfamilies visited relative to the number of rejections

within them. Indeed, as shown by our simulation results in

Figure 3, the multiplier, averaged over a specific configuration,

can take very large values. Here, it reaches around 56 and 77,

when there are no correlations (configurations 1 and 4),

and thus very few rejections relative to the number of gene

and brain-region combinations selected in the first stage.

However, when there are correlations in the data, this

multiplier is much smaller. For the cases with the smallest

number of correlations the multiplier is around 5.3 and 3.1.

For cases with a larger number of correlations it is already less

then 2, here around 1.6 and 1.8. For the case with the

largest number of correlation, the factor moves further

towards 1, here 1.3.

The large values that the FDR multiplier can take are

responsible for the large values that the Level-2 FDR reaches.

Nevertheless, it seems that dividing Level-2 FDR by the

estimated B(Rl,J), will reduce it to the desired level. Thus, for

the level-restricted testing scheme, a q* ¼ q=B̂ Rl,Jð Þ may

achieve control at level q. While �* can in principle get as

Fig. 3. Estimated FDR when restricted to correlation level.

Uncorrected and corrected by B(Rl,J).
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high as 1.44, we see from Figure 3 that it is just around 1 over

the configurations studied. Hence, using the minimal q* such

that q* � B̂ Rl,Jð Þ � q, may offer Level-2 FDR� q.
Next we compare the power of both approaches with the

BH procedure and two representative adaptive procedures:

the adaptive BH (Benjamini and Hochberg, 2000) and the

Average Estimate (Jiang, 2004). For estimating �0 the Average

Estimate considers an k regions (i/k,1) for i¼ k,k� 1,. . .1, and

estimate �0 for each as in Storey’s � (2002). The choice of the

particular i to be used is done in a way similar the choice in the

adaptive BH (Benjamini and Hochberg, 2000), that is starting

from i¼ k� 1 and continuing as long as the number of P-values

in ((i/k,(iþ 1)/k] decreases. Even though it has not been shown

to control the FDR analytically, it is claimed to be equivalent

or slightly superior to many existing adaptive procedures and

hence we included it in our study. Single-step methods were also

found to have FDR� 0.05.
It is well documented (Benjamini and Hochberg, 2000;

Storey, 2002, and many others) that the adaptive methods offer

better alternative to the BH when �0 is medium or small. Our

interest is in higher values of �0 where discoveries are expected

to be few and estimating higher values of �0 offers little

improvement, if any. Table 1 displays the power of the

proposed methods to identify correlations compared to the

single-step methods, for such higher values of �0. (More on the

configurations in Supplementary Material S3). When �0 is near
1, that is when the potential findings are scarce, the hierarchical

tree testing scheme achieves the highest power while controlling

the FDR, in spite of requiring a lower q relative to other

methods. When �0 is much smaller than 1, the advantage of

single-step adaptive methods take the lead.

3.2 Results on associations

Using the hierarchical procedure with an overall FDR of.05,

124 pairs of genes and brain regions were identified in the initial
screening for strain differences; they involved 64 genes and all

brain regions, though not equally represented (e.g. 17 genes in
the CER versus 6 in TL). In the second stage 186 associations

were found involving only 20 genes and all brain regions. At
this level B¼ (124þ 186)/187¼ 1.66, justifying the somewhat

conservative value of 2 we chose. The results for the genes and
brain regions are displayed in Figure 4. The familiar looking

display does not carry the usual information: rather than
expression levels it displays the direction and significance of the

association between a behavioral trait (at the row) and the

Fig. 4. Significance and Direction of Associations between Gene expression in Brain Regions and Behavioral Measures. Brain region information is

given below gene identities: prefrontal cortex (PF), ventral striatum (VS), temporal lobe (TL), periaqueductal gray (PG) and cerebellum (CR).

Table 1. Power at three configurations (SE5.01)

Type of Method Method Power

�0¼ .820

(conf. 7)

�0¼ .990

(conf. 3)

�0¼ .998

(conf. 2)

Single-step methods BH 0.76 0.45 0.29

Adaptive BH 0.78 0.45 0.29

Average

estimate

0.78 0.45 0.29

Proposed methods Subset

selection

0.59 0.44 0.34

Hierarchical

tree

0.59 0.49 0.50
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expression level of the gene at the brain region identified in the
column. The non-significant correlations are blackened, as we
cannot be sure about the direction of the association even if it

exists. The behavioral traits are clustered by the correlation
over mice. The clustering process did not influence the
expression data.

Using the subset selection procedure FDR screening at 0.025,
(as in the screening stage of the hierarchical method) and
testing for association at FDR level .05, 52 pairs of genes and

brain regions were identified to be associated with at least one
trait, i.e. 13 more genes than found by hierarchical procedure.
However, only 161 associations were found with this method,

25 less than by the hierarchical one.
Genes identified in this study are now subject to biological

experimentation in order to establish direct and causative

associations. The full implication of the biological findings will
be discussed when these results become available.

4 DISCUSSION

We suggested two approaches to control the FDR in multilayer

screening strategies. In both methods only families correspond-
ing to genes that passed the FDR screening are subsequently
tested for their correlation with a behavioral endpoint. In the

first method all these families are combined into a single
family over which the FDR is controlled (i.e. subset selection
procedure). In the hierarchical FDR testing each screened

family is tested separately while controlling the FDR within it.
In this case the overall FDR can still be controlled by lowering

the level at each stage. The amount by which the level should be
lowered depends on the goal of the researchers, whether in full-
tree, fixed-layer or end-nodes.

If all screened families are approximately the same in terms
of m0/m and P-values distribution, the first method is superior
as the testing is done at a higher q and the behavior of BH

will be little affected by the amalgamation of the families.
If a few families have high correlations while many others have
none (or close to none) the second method has the advantage in

spite of lower q at both stages. As expected, in our example
the subset selection method was more powerful in the first
stage, but the hierarchical was more powerful in identifying

correlations for the families selected in the first stage. Even
when theoretical bounds do not guarantee control of FDR
within one stage l, it seems that a correction using B̂ Rl,Jð Þ will

provide control at the desired level.
The single-step adaptive methods should be more powerful

than both method when m0/m is substantially smaller than 1.

However, this is not the typical case in microarray data or in
other high throughput studies, since researchers look for

discoveries which are not abundant. In our case the proportion
of associations discovered is less than 0.0001, so even if the
number of true associations is larger by an order of magnitude

we have m0/m40.999. In contrast, the hierarchical method has
the advantage of reducing the number of tested hypotheses,
thus reducing the cost in power due to multiplicity. Thus, if the

researcher identifies an initial screening criterion of the genes
that would successfully eliminate cases with no chance of being
selected in the second stage, the hierarchical testing scheme will

yield the largest number of discoveries.
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