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Correspondence analysis is an explorative computational method
for the study of associations between variables. Much like principal
component analysis, it displays a low-dimensional projection of the
data, e.g., into a plane. It does this, though, for two variables
simultaneously, thus revealing associations between them. Here,
we demonstrate the applicability of correspondence analysis to
and high value for the analysis of microarray data, displaying
associations between genes and experiments. To introduce the
method, we show its application to the well-known Saccharomyces
cerevisiae cell-cycle synchronization data by Spellman et al. [Spell-
man, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen,
M. B., Brown, P. O., Botstein, D. & Futcher, B. (1998) Mol. Biol. Cell
9, 3273–3297], allowing for comparison with their visualization of
this data set. Furthermore, we apply correspondence analysis to a
non-time-series data set of our own, thus supporting its general
applicability to microarray data of different complexity, underlying
structure, and experimental strategy (both two-channel fluores-
cence-tag and radioactive labeling).

M icroarray technology provides insight into the transcrip-
tional state of the cell, measuring RNA levels for thou-

sands of genes at once. As such, it has become one of the
workhorses of functional genomics. However, the technology
results in large amounts of data, the interpretation of which is
still a major bottleneck.

Transcriptional profiling with microarrays involves several
steps. mRNA is prepared from cells growing under certain
experimental conditions. For each condition, the prepared
mRNA is processed separately, performing reverse transcription
with radioactively or fluorescent-tag-labeled nucleotides. In case
of two-channel f luorescent-tag labeling, each hybridization in-
volves additional application of a differently labeled cDNA,
stemming from a control condition. Subsequently, the labeled
cDNA mixture is hybridized to the microarray. After detection
of the signals, image analysis programs are used to determine
spot intensities.

We refer to a set of conditions as a multiconditional experi-
ment when all hybridizations are done with reference to one and
the same control condition. Data thus produced may be regarded
as a table, each row representing a gene, each column standing
for an experimental condition. However, multiple measurements
for each condition, involving repeated sampling, labeling, and
hybridization, offer the opportunity of extracting more robust
signals. When a condition is sampled repeatedly, resulting in
several hybridizations, we will call the individual data set a
hybridization and represent it by a separate column in the table.
One condition of a multiconditional experiment can thus com-
prise several columns.

The intensity measurements in this table must not be taken at
face value, though. Different levels of background may result in
additive offsets, or different amounts of mRNA or different label
incorporation rates may lead to multiplicative distortions among
the hybridizations. Therefore, the columns of the table have to
undergo a normalization procedure, correcting for affine-linear
transformation among the columns. Subsequently, it is advisable
to disregard all genes, the values of which do not change in the
entirety of conditions or which do not appear to be expressed
under any of the conditions.

Given a thoroughly preprocessed data set, one expects to be
ready to tackle the biological questions of data interpretation.
Naming all of the methods recently used for microarray data
analysis would result in an outline of applied statistics, however.
Most methods fall into one of three groups, namely clustering,
classification, and projection methods. Examples of clustering
techniques are k-means clustering (1), hierarchical clustering
(2), and self-organizing maps (3). Classification methods take as
input a grouping of objects and aim at delineating characteristic
features common and discriminative to the objects in the groups.
Examples of classification methods range from linear discrimi-
nant analysis (4) to support vector machines (5) or classification
and regression trees (6, 7).

Other methods produce a low-dimensional projection of an
originally high-dimensional data set. One can, e.g., represent
genes as numerical vectors, with the number of elements of each
vector being the number of hybridizations involved. Therefore,
those vectors could be plotted as points in hybridization-
dimensional space, if only the number of dimensions were small
enough for visualization. Methods like multidimensional scaling
(8) or principal component analysis (PCA) (9, 10), as well as the
technique proposed in this paper, project these points into a two-
or three-dimensional subspace so they can be plotted. Such an
embedding attempts to represent objects such that distances
among points in the projection resemble their original distances
in the high-dimensional space as closely as possible. Singular
value decomposition, which is also at the core of correspondence
analysis, can be used to determine the most influential param-
eters for two variables. This method has recently been applied to
microarray data by Alter et al. (11). Although their approach
is similar to the one discussed below with respect to scaling
down dimensions by decomposition into principal axes, it
differs significantly by both distance measure and displayed
information.

All of the above methods perform well for the analysis or
visualization of either genes or hybridizations. We are particu-
larly interested in studying associations between genes and
hybridizations. Our contribution to this effort consists in the
application of correspondence analysis (CA) for revealing in-
terdependencies between two variables. CA directly visualizes
associations between genes and hybridizations. It is an explor-
atory technique, allowing visualization of structures within the
data and thus revealing which questions could be asked or which
hypotheses could be put forward. Unlike many other methods,
CA does not require any prior choice of parameters.

Like other projection methods, CA represents variables such
as transcription intensities of genes as vectors in a high-
dimensional space. In our case, the dimensionality of the space
would be the number of hybridizations involved. Both PCA and
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CA reveal the principal axes of this high-dimensional space,
enabling projection into a subspace of low dimensionality that
accounts for the main variance in the data. Unlike PCA, CA is
able to account for the genes in hybridization-dimensional space
and the hybridizations in gene-dimensional space at the same
time. Both representations of the data matrix will be projected
into the same low-dimensional subspace, for example, a plane
(yielding a so-called ‘‘biplot’’), revealing associations both within
and between these two variables.

In this paper, we will provide a short theoretical introduction
into the method, demonstrate its performance on the well-
known synchronized yeast cell cycle data set of Spellman et al.
(12), and provide a thematically related example that we have
chosen from our own collection of microarray data, produced at
our center.

Experimental and Computational Methods
Sampling and Hybridization. The yeast strains used were deriva-
tives of W303 (ade2–1, his3–11, 15, leu2–3, 112, trp1–1, ura3,
ssd1D, can1–100, [psi1], ho) being wild-type (WT) or over-
producing after induction with respect to Cdc14p. The strains
will be referred to as WT or CDC14 transgenic
(ura3::GAL1-MycCDC14-URA3 CLB2HA3). Yeast cultures of
both strains were grown in complete medium plus 2% raffinose
to midlogarithmic growth phase (OD600 5 0.5) when nocodazole
was added to a final concentration of 15 mgyml. Samples were
taken before addition of nocodazole and when synchronization
of the cell culture was proven by microscopy. For overexpression
of Cdc14p, cells were induced by 2% galactose, and samples were
taken after 1 h. Harvesting of cells for RNA preparation,
radioactive labeling by reverse transcription, and hybridization
onto the PCR-based whole-genome DNA array were performed
as described (13).

Normalization. Before high-level analysis, data have to be nor-
malized and filtered. We largely followed the procedures de-
scribed in ref. 14. Each hybridization was normalized with
respect to the gene-wise median of the hybridizations belonging
to the control condition (‘‘standard hybridization’’). From
among the options given in ref. 14, we used the 5% quantile of
each hybridization as the additive offset to subtract initially.
Furthermore, because a sufficient number of nondifferential
genes is available, normalization factors were computed on the
basis of the majority of the spots. In contrast to ref. 14, we kept
low-intensity signals to avoid missing data. Instead, we shifted all
hybridizations additively to a higher range to prevent overly
biasing CA by the large relative error common to low intensities.
This shifting was done such that the 5% quantiles coincided with
that of the standard hybridization.

Filtering. We select genes that fulfill the following criteria:
significant absolute expression level in at least one of the
conditions, substantial change relative to the control condition
in at least one of the other conditions, and reliable reproduc-
ibility in the separation from the control condition in at least one
of the other conditions (14). Details and data are published as
supporting information on the PNAS web site (www.pnas.org).

Correspondence Analysis. We provide here a concise summary of
the technique (see refs. 15 and 16 for a thorough exposition). An
informal intuitive description will be given below. The aim is to
embed both rows (genes) and columns (hybridizations) of a
matrix in the same space, the first two or three coordinates of
which contain the bulk of the information. Let I genes and J
hybridizations be collected into the I 3 J matrix N with elements
nij. Let ni1 and n1j denote the sum of the ith row and jth column,
respectively. By n11, we denote the grand total of N. The mass
of the jth column is defined as cj 5 n1jyn11, and likewise the

mass of the ith row is ri 5 ni1yn11. The basis for the calculation
is the correspondence matrix P with elements pij 5 nijyn11, from
which the matrix S with elements sij 5 (pij 2 ricj)/=ricj is derived.
S is submitted to singular value decomposition (18), i.e., it is
decomposed into the product of three matrices: S 5 ULVT. L is
a diagonal matrix, and its diagonal elements are referred to as the
singular values of S. We think of them as sorted from the largest
to the smallest and denote them by lk. The coordinates for gene
i in the new space are then given by fik 5 lkuik/=ri, for k 5 1,..., J.
Hybridizations are viewed in the same space with hybridization
j given coordinates gjk 5 lkvjk/=cj, for k 5 1,..., J. These
coordinates are called principal coordinates.

To reduce dimensionality, only the first two or three coordi-
nates of the new space are plotted. The loss of information
associated with this dimension reduction is quantified in terms
of the proportion of the so-called total inertia (k lk

2 that is
explained by the axis displayed. Total inertia is proportional to
the value of the x2 statistic, and thus the amount of information
represented in, e.g., a planar embedding (l1

2 1 l2
2)y(k lk

2,
corresponds to the proportion of the x2 statistic explained by the
embedding.

Standard Coordinates as an Aid in Visualization. Correspondence
analysis attempts to separate dissimilar objects (genes or hybrid-
izations) from each other; similar objects are clustered together
resulting in small distances. In contrast, the distance between a
gene and a hybridization cannot be directly interpreted. For
visualization of between-variable association in the plot, one
includes virtual genes that have all their intensity focused in one
hybridization (16). The coordinates of such a gene are called
standard coordinates of the hybridization where this gene is
expressed. Likewise, one could introduce standard coordinates
for genes. The standard coordinates for the genes are computed
as uiky=ri and for the hybridizations as njky=cj . In practice, the
spread of the set of real genes and hybridizations is much smaller
than the spread introduced when including those virtual genes
and hybridizations via their standard coordinates. As a conse-
quence, the real points would shrink to a tiny area, so we rather
depict the direction from the centroid of the data to the standard
coordinates instead of the standard coordinates themselves.

Medians and Replicate Hybridizations in CA. Typically, replicate
hybridizations are performed for each condition under study,
leading to several values for one geneycondition pair. The
number of such repeated hybridizations is often small. We
therefore represent these values by their gene-wise median
rather than their gene-wise average, because the median is less
sensitive to outliers. The need remains, though, to visualize also
the original data and not only the median, because they contain
valuable information about experimental variance and quality of
individual hybridizations. In fact, CA offers the possibility to
reflect both aspects. To this end, CA is first effected by using the
gene-wise medians, determining the coordinate system to embed
the original hybridization intensities. These data points are then
referred to as supplementary points or points without mass. Thus
the share of noise belonging to an experimental condition is
shown by the spread of its hybridizations around the median. As
the dimensions of the data are reduced by using medians of
hybridizations per experimental condition, we refer to this
strategy as hybridization-median-determined scaling (HMS).

The embedding for hybridizations without mass is computed
as follows. Let the matrix N contain only the hybridization
medians and let N* of elements n*ij9 be the original data matrix
containing all of the hybridizations. N is submitted to corre-
spondence analysis. Let P* have elements p*ij9 5 n*ij9yn*11. The
principal coordinates for the supplementary hybridizations from
correspondence matrix P* are then calculated as
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In our own data sets, a single hybridization consists of two
corresponding spot sets, because each cDNA had been spotted
twice on the array. We call these spot sets primary and secondary
spots. They tend to show a higher correlation than hybridizations
belonging to the same experimental condition. When plotted
separately (duplicating the number of supplementary points),
they provide an atomic unit of distance in the biplot, where no
units are assigned to the axes.

Interpretation of a Correspondence Analysis Biplot. Correspondence
analysis was originally developed for contingency tables and is
intimately connected with the x2 test for homogeneity in a
contingency table. The value of the underlying x2 statistic is high
when there is an association between rows and columns of the
table. In CA, points are depicted such that the sum of the
distances of the points to their centroid (called ‘‘total inertia’’)
is proportional to the value of the x2 statistic of the data table.
The farther away a point is from the centroid, the higher is its
row’s contribution to the value of the statistic. In this sense, CA
decomposes the overall x2 statistic. Distances among points are
not meant to approximate Euclidean distances but rather the
so-called x2 distance. This distance is low when the profiles of
two vectors show similar shape, independent of their absolute
values.

Together with the row-points, correspondence analysis dis-
plays points representing columns and does so by using the same
x2 criterion. This criterion also establishes the link between row
and column points. If a column determines an outstanding entry
of a row (and vice versa), then the corresponding row and column
points tend to lie on a common line through the centroid. For a
positive association like up-regulation of a gene in a particular
condition, the two points will lie on the same side of the centroid,
with the distance to it larger, the stronger the association. A
negative association like down-regulation will cause the column-
point and the row-point to lie on opposite sides of the centroid.
To properly visualize associations between rows and columns, we
will introduce virtual genes that are fully concentrated on one
condition. They thus serve as representatives of the hybridiza-
tions in gene-space (see standard coordinates above).

Results
Spellman et al. Cell-Cycle Data. To introduce the method, we show
its performance on a well known data set before proceeding to
own data. The analyzed data set comprises the hybridizations
referred to by Spellman et al. (12), which are publicly available
(http:yygenome-www.stanford.eduycellcycleydatayrawdatay
combined.txt). Spellman et al. arrested the S. cerevisiae cell cycle
by four different methods, namely a factor-, CDC15-, and
CDC28-based blocking and elutriation. Here and in the legend
to Fig. 1, we will refer to these four methods as ‘‘alpha,’’ ‘‘cdc15,’’
‘‘cdc28,’’ and ‘‘elu,’’ respectively. At certain timepoints after
releasing the block, samples from each of the methods had been
drawn and their cell-cycle phase had been classified and the
transcriptional status assayed by microarray hybridization.

The data consist of two-channel f luorescence signals. Follow-
ing the original authors, we based our analysis on the logarithmic
ratio of the intensities of the two channels. To make the data
analyzable by CA, the data were additively shifted to a positive
range. In our analysis, we gave mass to all hybridizations instead
of applying HMS. The standard coordinates of the hybridization
medians, on the other hand, have been computed ‘‘without
mass’’ and are depicted as lines emanating from the centroid. We
analyzed the 800 cell-cycle associated genes depicted in Fig. 1a

in ref. 12 over all 73 hybridizations. Hybridizations are colored
according to their phase assignment and following the color code
of Fig. 1a in ref. 12 to allow for direct comparison.

The planar embedding produced by CA (Fig. 1a) shows the
hybridizations clearly separated according to their cell-cycle
phase. They are arranged in circular order of correct sequence.
The lines denoting the direction of the hybridization medians
emphasize this arrangement. The black dots correspond to
genes. Genes that show strong expression in a certain phase are
located in the direction determined by the hybridizations of this
phase. The farther away from the center, the more pronounced
is the association of the genes with that phase. Genes that are
down-regulated in this phase appear on the opposite site of the
centroid. As an example of strong association with the S-phase,
the gene profiles for the histone gene cluster, also marked by
Spellman et al. (12), have been encircled in black. Their profiles
are shown in Fig. 1b, which is further subdivided according to the
method of cell-cycle arrest that had been used. The red-encircled
genes will be discussed in the following section in the context of
CDC14 induction. Genes equally transcribed in most or all of the
cell-cycle states had been removed by Spellman et al., causing a
hole near the centroid of the CA plot where otherwise genes
would lie that show little change.

On close inspection, the biplot reveals interesting details about
the data. Notice that hybridization cdc15o30 (cdc15-based block-
ing, 30-min timepoint) classified as MyG1 (yellow) lies in the
green (classified G1) sector rather than in the yellow one.
Likewise, hybridization cdc15o70 is classified G1 but clusters
together with the blue dots (S-phase), and one S-phase hybrid-
ization, cdc15o80, lies in the red sector of G2 hybridizations. All
these outliers come from the series of hybridizations where
cell-cycle arrest was achieved by using CDC15-based blocking.
This arrangement of cdc15 hybridizations suggests an improper
phase classification for these samples.

This hypothesis can be validated on the basis of the gene
profiles. For the histones, the shift toward an earlier stage in cell
cycle is visible in the Fig. 1b Upper Right. Timepoints cdc15o30
to cdc15o90 show the up-regulation of the histones already at the
end of MyG1 (yellow) instead of G1 (green), as well as too early
down-regulation: the curves intersect the zero line (identity to
the control channel) at cdc15o90, classified as G2 (red) instead of
M (brown), as, e.g., in the elutriation experiment. The nine
histones are only a small subset of the 800 cell-cycle-regulated
genes. Profiles of other genes, although different from the ones
plotted, also display shifting of the above timepoints to expres-
sion patterns associated to an earlier state in cell cycle by the
remaining timepoints (data not shown). CA computes the pro-
jection for timepoints cdc15o30 to cdc15o90 according to their
expression patterns in the entirety of the geneset, independent
of their phase classification. Fig. 1a displays them displaced in
clockwise shift compared with equally colored squares, that is, in
positions inconsistent with their cell-cycle state classification.

Overexpression of CDC14. Instead of following the cell cycle
through S-phase, G2, mitosis, and G1, in this experiment, we
focus on the transition from mitosis to G1. In late mitosis, mitotic
cyclin-dependent protein kinases have to be inactivated to exit
mitosis. Cdc14p plays a major role in this transition to G1, being
a dual specific phosphatase. In our approach, cells were arrested
in mitotic metaphase, and CDC14 was overexpressed by inducing
the controlling GAL1 promoter. Thus, one cannot directly
observe the effect of CDC14 overexpression, because it will be
overlaid with gene expression changes because of the presence
of galactose. To subtract for these effects, WT and mutant strain
were grown under repressing and inducing conditions, leading to
four samples that were subjected to array hybridization: WT
without galactose, WT with galactose, transgenic yeast without
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galactose (no induction of CDC14), and transgenic yeast with
galactose.

The data, consisting of three to four hybridizations per
condition, were normalized. Genes (1,400 of 6,100) were ex-
tracted for being reproducibly differential from the control
condition (WT strain without induction) in at least one of the
other conditions. Measurement noise was further reduced by
HMS. Planar embedding by HMS (Fig. 2) explains 80.8% of the

total inertia, compared with 52.5% in case of embedding all of
the hybridizations separately (not shown). Hybridization medi-
ans are represented both in principal coordinates and as lines to
their standard coordinates. The actual hybridizations, each
separated into primary and secondary spot set, are drawn as
supplementary points. They are represented only in principal
coordinates, as are the genes.

The biplot displayed in Fig. 2 clearly shows four directions

Fig. 1. Cell-cycle synchronization data by Spellman et al. (12). The data set composed of 800 cell-cycle-associated genes has been projected by CA as is. No HMS
has been used so as not to bias the resulting plot in terms of separation of the cell-cycle phases. The outlying hybridizations have been identified to be caused
by a slight phase shift of the cdc15-based synchronization visible in b Upper Right, which shows the profiles of the nine histone genes HHF1, HHF2, HHT1, HTB2,
HHT2, HTB1, HTA1, HTA2, and HHO1, encircled in black in a. Additional explanation is given in the text.
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corresponding to the four conditions. Genes in the direction of
galactose induced transgenic yeast are those specifically up-
regulated on CDC14 induction, as opposed to genes activated by
galactose also in the WT strain, like GAL1 and GAL7. This
subtraction has been achieved purely computationally and is
based on the provision of galactose activated genes in WT as a
separate condition. The set of genes associated specifically to the
Cdc14p overproducing condition comprises CDC14 itself as well
as SIC1, known to be accumulated in a Cdc14p-dependent
fashion (18), and CTS1, which belongs to the cluster of SIC1
coregulated genes (12). RME1, CRH1, and PST1 are known to
be cell-cycle regulated with peaks in mitosisyG1 transition, G1,
or late G1, respectively, but have not yet been described in
association with Cdc14p activity. YBR071W, PIR1, YGR086C,
YLR194C, and YFL006W have not been annotated to be cell
cycle regulated, but our results show that they are. This is in
agreement with the data of Spellman et al. (12) (see Fig. 1, genes
marked by red circles), who also show these genes to be
transcribed during mitosisyG1 transition. The role of the nuclear
pore protein GLE2 in a Cdc14p activation context remains
unclear.

Discussion
Traditionally, correspondence analysis has been used prevalently
on categorical data in the social sciences (19, 20), but its

application has been extended also to (positive) physical quan-
tities (15) and to proteomics (21, 22). We have shown that CA
applied to microarray data provides an informative and concise
means of visualizing these data, being capable of uncovering
relationships both among either genes or hybridizations and
between genes and hybridizations. In our hands, the method
turned out to be generally applicable to microarray data, re-
gardless of whether they have been obtained by radioactive
labeling or by two-channel f luorescent-tag labeling. Normaliza-
tion procedures lead to intensity values that can be interpreted
as being proportional to a cell’s content of mRNA molecules per
gene and per condition. For two-channel intensities, the log
ratios of red vs. green channel appear to work just as well.

Visualization by using CA is based on representing x2 distance
among genes and among hybridizations, thus representing a
decomposition of the value of the x2 statistic. Emphasis is placed
on the genes and hybridizations that contribute to this value
through their association. In this respect, it resembles the doubly
sorted hierarchical clusterings (23), although our examples dem-
onstrate that CA is capable of revealing intricate detail, e.g.,
subtle discrepancies between phase classification and transcrip-
tion pattern of hybridizations. Moreover, CA is capable of
subtracting particular effects, like the influence of galactose in
the medium. The emphasis on association between genes and
hybridizations distinguishes CA from other embedding methods,

Fig. 2. Overexpression of Cdc14p. In arrested yeast cultures, Cdc14p expression was induced under control of the GAL1 promoter and investigated in comparison
to uninduced transgenic, uninduced WT, and inductor-exposed WT cells. Three to four hybridizations have been performed for each experimental condition.
Both spot sets of the array are drawn separately for each hybridization, primary, and secondary spot set depicted in light and dark colors, respectively. The
conditions are colored, and their hybridization medians are marked according to the legend in the Upper Right corner. Lines are drawn in the direction of the
standard coordinates of the condition medians in appropriate colors: genes like GAL7 and GAL1 are associated with both the WT and the transgenic strain grown
in the presence of galactose to an equal share. CDC14 is associated with the induced transgenic strain only.
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like principal component analysis or multidimensional scaling,
although these methods share the idea of representing objects in
a two- or three-dimensional space that can be visualized. Al-
though CA and PCA use the same mathematical machinery for
dimension reduction and visualization, namely singular value
decomposition, their difference stems from the different dis-
tances used.

Alter et al. (11) successfully applied singular value decompo-
sition to the analysis of the same data set that we used as our first
example. Their approach is based on selecting from the ‘‘eigen-
genes’’ (i.e., their expression profiles over a time course), which
have been obtained by singular value decomposition, those that
fit a model wave function representing the typical behavior of a
cell-cycle-regulated gene. We assumed the knowledge of cell-
cycle-regulated genes as our starting point and showed how CA
displays the associations between genes and cell-cycle phases and
identified shifts in the phase assignment of particular hybridiza-
tions. In our plots, the distance of a given gene from the centroid
represents the strength of its association with a hybridization
lying in the same direction and vice versa. A direct comparison
with phase and radius in the visualization of Alter et al. (11) (as
given, e.g., at http:yygenome-www.stanford.eduySVDyPNASy
DatasetsySortoElutriation.txt) shows that this is not necessarily
the case in the singular value decomposition alone. Moreover,
CA does not depend on model assumptions, as demonstrated in
our second example. There, genes have been identified, the
transcripts of which are specifically up-regulated in an overex-
pressing mutant yeast strain that is induced by galactose, whereas

they are at normal levels (or even nondetectable) in this mutant
strain without galactose and likewise in WT, irrespective of the
additive. Thus we find CA to be generally applicable to and
particularly well-suited for gene expression data because of its
capability of displaying simultaneously genes and hybridizations
as well as the strength of their association.

Projection methods generally aim at explaining the major
trends in the data while at the same time ignoring minor
fluctuations. We have further enhanced this effect through the
use of the condition medians. Our HMS technique furthermore
allows the original data to be still visible in the plot, thus
combining the noise reduction capability of HMS with the
quality control aspect of retaining the original data. Along the
same lines, the introduction of the lines representing the stan-
dard coordinates is of great help in the interpretation of the
plots, relating genes and conditions to each other.

Moreover, CA is capable of simultaneous visualization of both
continuous and categorical variables. We plan to include addi-
tional information like gene and experiment annotations. We are
already storing such data in a form accessible to statistical
analysis, and they could be integrated into extended analyses by
multiple or joint CA.

We thank Wolfgang Seufert for critical discussions and Sonja Bastuck
and Melanie Bier for excellent technical help. This work was supported
by the German Science and Research Ministry (BMBF) as part of the
German Human Genome Project and the ZIGIA Consortium, and by
the European Commission under contracts BIO4-CT95–0080 and BIO4-
CT97–2294.

1. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. & Church, G. M. (1999)
Nat. Genet. 22, 281–285.

2. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. (1998) Proc. Natl.
Acad. Sci. USA 95, 14863–14868.

3. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E.,
Lander, E. S. & Golub, T. R. (1999) Proc. Natl. Acad. Sci. USA 96, 2907–2912.

4. Fisher, R. A. (1936) Ann. Eugen. 7, 179–188.
5. Brown, M. P., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey,

T. S., Ares, M. J., Jr., & Haussler, D. (2000) Proc. Natl. Acad. Sci. USA 97,
262–267.

6. Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984) Classification
and Regression Trees (Wadsworth and BrooksyCole, Monterey, CA).

7. Dudoit, S., Fridlyand, J. & Speed, T. P. (2000) Comparison of Discrimination
Methods for the Classification of Tumors by Using Gene Expression Data (Dept.
of Statistics, University of California, Berkeley, CA), Technical Report 576.

8. Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radma-
cher, M., Simon, R., Yakhini, Z., Ben-Dor, A., et al. (2000) Nature (London)
406, 536–540.

9. Lefkovits, I., Kuhn, L., Valiron, O., Merle, A. & Kettman, J. (1988) Proc. Natl.
Acad. Sci. USA 85, 3565–3569.

10. Hilsenbeck, S. G., Friedrichs, W. E., Schiff, R., O’Conell, P., Hansen, R. K.,
Osborne, C. K. & Fuqua, S. A. W. (1999) J. Natl. Cancer Inst. 91, 453–459.

11. Alter, O., Brown, P. O. & Botstein, D. (2000) Proc. Natl. Acad. Sci. USA 97,
10101–10106.

12. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen,
M. B., Brown, P. O., Botstein, D. & Futcher, B. (1998) Mol. Biol. Cell 9,
3273–3297.

13. Hauser, N. C., Vingron, M., Scheideler, M., Krems, B., Hellmuth, K., Entian,
K. D. & Hoheisel, J. D. (1998) Yeast 14, 1209–1221.

14. Beissbarth, T., Fellenberg, K., Brors, B., Arribas-Prat, R., Boer, J. M., Hauser,
N. C., Scheideler, M., Hoheisel, J. D., Schütz, G., Poustka, A. & Vingron, M.
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