
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Independent component analysis reveals new and biologically 
significant structures in micro array data
Attila Frigyesi1,2, Srinivas Veerla3, David Lindgren3 and Mattias Höglund*3

Address: 1Department of Cardiology, University Hospital, SE-221-85Lund, Sweden, 2Centre for Mathematical Sciences, Mathematical Statistics, 
Lund University, SE-223 62 Lund, Sweden and 3Department of Clinical Genetics, Lund University Hospital, SE-221-85Lund, Sweden

Email: Attila Frigyesi - attila.frigyesi@kard.lu.se; Srinivas Veerla - Srinivas.Veerla@med.lu.se; David Lindgren - david.lindgren@med.lu.se; 
Mattias Höglund* - mattias.hoglund@med.lu.se

* Corresponding author    

Abstract
Background: An alternative to standard approaches to uncover biologically meaningful structures
in micro array data is to treat the data as a blind source separation (BSS) problem. BSS attempts
to separate a mixture of signals into their different sources and refers to the problem of recovering
signals from several observed linear mixtures. In the context of micro array data, "sources" may
correspond to specific cellular responses or to co-regulated genes.

Results: We applied independent component analysis (ICA) to three different microarray data
sets; two tumor data sets and one time series experiment. To obtain reliable components we used
iterated ICA to estimate component centrotypes. We found that many of the low ranking
components indeed may show a strong biological coherence and hence be of biological significance.
Generally ICA achieved a higher resolution when compared with results based on correlated
expression and a larger number of gene clusters with significantly enriched for gene ontology (GO)
categories. In addition, components characteristic for molecular subtypes and for tumors with
specific chromosomal translocations were identified. ICA also identified more than one gene
clusters significant for the same GO categories and hence disclosed a higher level of biological
heterogeneity, even within coherent groups of genes.

Conclusion: Although the ICA approach primarily detects hidden variables, these surfaced as
highly correlated genes in time series data and in one instance in the tumor data. This further
strengthens the biological relevance of latent variables detected by ICA.

Background
The genome project has greatly increased our knowledge
of genome sequences, the genes that they encode, and
made it possible to investigate diverse physiological and
disease conditions in detail. However, owing to the lay-
ered complexity of biological systems, studying one gene
or one protein at a time is not a rational approach. The
simultaneous analysis of a large number of genes to exam-

ine alterations in gene expression i.e., expression profil-
ing, is a more promising approach. The most powerful
applications of molecular profiling involve the study of
patterns of gene expression alterations across many sam-
ples representing sets of cellular responses, phenotypes, or
conditions. The simplest way to identify genes of poten-
tial interest is to search for those that are consistently
either up- or down regulated across similar conditions. To
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this end, a simple statistical analysis of gene-expression
levels will be adequate. However, identifying patterns of
gene expression and grouping genes into expression
classes might provide much greater insight into biological
function and relevance and several statistical techniques
have been used for these purposes [1]. Most of these tech-
niques are however analogous in as much as they tend to
show the same features of the data represented in different
ways e.g., correlation among genes/samples in the appear-
ance of e.g., a hierarchical cluster analysis, K-means clus-
tering, or principal component analysis. However,
choosing the appropriate algorithms for analysis is a cru-
cial element of the experimental design and will affect the
type of information that is retrieved.

An alternative approach to uncover biologically meaning-
ful structures in data is to treat micro array data as a blind
source separation (BSS) problem [2,3]. BSS attempts to
separate a mixture of signals into their different sources
and refers to the problem of recovering signals from sev-
eral observed linear mixtures. In the context of micro array
data, "sources" may correspond to specific cellular
responses or to co-regulated genes. The strength of the BSS
model is that only mutual statistical independence
between the source signals is assumed and an a priori
information about, e.g., the characteristics of the source
signals or the mixing matrix, is not needed. A frequently
used BSS approach is independent component analysis
(ICA) using the FastICA algorithm [4]. This algorithm is
based on the identification of non-Gaussian components
in a sample space under the assumption that Gaussian
distributions represent noise. The identification of non-
Gaussian, typically super-Gaussian, is biologically rele-
vant in an expression profiling situation as most genes e.g.
house keeping genes, are not expected to change at a given
physiological/pathological transition, and thus conform
to a Gaussian distribution. Only the genes that constitute
the physiological/pathological state will change and thus
produce super-Gaussian distributions. Liebermeister [5]
applied the FastICA algorithm to the yeast cell cycle and
B-cell lymphoma data and proposed that the expression
profiles were determined by hidden regulatory variables,
"expression modes", identified as ICA components. Lee
and Batzoglou [6] evaluated the efficiency of different var-
iants of ICA procedures, including both linear and non-
linear alternatives. The results obtained were compared to
other commonly used clustering algorithms. The evalua-
tion was conducted by comparing the number of biologi-
cally significant and coherent gene clusters that was
obtained, as determined by gene ontology (GO) term
analysis. The authors conclude that ICA outperformed all
methods used in the comparison. Martoglio et al. [7]
made use of the fact that the expression profiles of the
samples S is a linear mixture of the components C i.e., in
matrix notation S = A × C, and used A to identify compo-

nents characterizing ovarian tumor subtypes and thus
show that ICA may be used for disease (tumor) classifica-
tion. A similar approach was used by Saidi et al. [8] in the
analysis of endometrial cancer. Zhang et al. [9] has shown
that ICA may be used for classification of colon and pros-
tate tumors.

In contrast to principal component analysis (PCA), all
ICA algorithms face the problem of convergence to local
optima, thus slightly different components will be pro-
duced when the same data is reanalyzed. In a worst case
scenario the algorithm will be trapped in a local opti-
mum. Furthermore, most ICA algorithms return the
number of components specified without any indications
as to which ones are the more stable. To solve some of
these problems Chiappetta et al. [3] constructed consen-
sus components by rerunning the FastICA algorithm with
random initializations and by only including compo-
nents that passed certain criteria of stability in the final
analysis. Himberg et al. [10] also introduced re-sampling
of ICA components and used estimated centrotypes as
representatives of ICA components. In the present investi-
gation we further evaluate ICA as a tool for micro array
analysis and particularly focus on the biological counter-
parts of components. We show that hidden, latent varia-
bles identified by ICA may in certain datasets surface as
clusters of correlated genes and hence that "expression
modes" identified by ICA have distinct biological corre-
lates.

Results
We used the acute myeloid leukemia (AML) data set
described by Bullinger at al. [11]. Cases with a high fre-
quency of missing values were excluded, reporters for
identical genes merged, and genes with at least 80% val-
ues selected and corrected for missing values by KNN (k-
nearest neighbor) imputation. The final data set included
4651 genes and 108 cases. To prevent over-learning the
dimension of the data was reduced using PCA so as to
maintain 90% of the variance. This reduced the dimen-
sion, and hence the maximum number of components, to
60. The FastICA was iterated with 50 randomized initial
conditions and each series of iterations repeated 5 times.
We used the cluster quality index, IQ, to evaluate the resa-
mpled components and to obtain support for the most
suitable number of components. The IQ estimates ordered
the components almost according to rank. As no thresh-
old IQ value that distinctly identified reliable components
could be establishes all 60 components from a run using
50 randomized initial conditions were selected for further
analyses.

To identify genes associated with specific components, the
gene with the highest absolute loading on a given compo-
nent was retrieved and the remaining data tested to fit a
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normal distribution using the Lilliefors' test. This was
repeated until the remaining data converged to a normal
distribution using a predefined p-value of 0.15. The
retrieved genes were then considered to be associated with
the component. Two of the components, C5 and C27, did
not show convergence and was excluded from further
analysis. This procedure identified 2271 genes with signif-
icant loading on at least one component and hence the
original data set was condensed to 36% of the original
number of genes. The results from a hierarchical cluster
analysis (HCA) using the reduced number of genes is seen
in Figure 1a.

The number of genes per component ranged from 8 to
351, with the majority of components having 30–100
gene members (See Additional file 1 for genes in each
component). As expected several genes, 50%, were
present in more than one component, Table 1. The top 10
genes most frequently participating in components were
CPVL (13), DPPA4 (13), LOC92235 (12), LY86 (12),
SERPINEG1 (12), TACSTD2 (12), P2RY5 (11), ADM (10),
C9orf58 (10), and GABBR1 (10). The significant genes for
each component were then subjected to GO term analysis

using the software EASE. In total 8 components were sig-
nificant for GO term categories (Table 2). The most signif-
icant were "nucleosome assembly" (component 8, C8)
and "mitotic cell cycle" (C17) with corrected EASE scores
of 4.4 × 10-16 and 2.5 × 10-29, respectively. By treating
genes with negative and positive loadings on the compo-
nents separately, six additional components showed sig-
nificant GO terms, whereas one component (C52) lost
significant EASE scores (Table 2). Notably, four different
components showed significant EASE scores for the GO
category "defense response".

We then inspected components individually by producing
scatter plots of the loading values. Several components
showed complex structures with groups of genes showing
substantial loadings (Figure 2) whereas others showed
"simple "structures with the majority of the loadings
forming a dense cluster close to the origin and with only
a few genes with substantial loadings. This was particu-
larly evident for C1 were the gene with highest loading
had a value 15 times the next value. In total 22 compo-
nents were identified that either showed significant GO
term categories or complex patterns of potential biologi-
cal significance.

Analysis of the component weights (A) revealed several
components that were either tumor cluster or chromo-
somal aberration specific (Figure 1b). Component 6
showed particularly low weights in clusters a and d, of
which cluster d correspond to the majority of t(9;11)
AMLs, but high weights in t(15;17) AMLs. The t(15;17)
AMLs also showed height weights for C7. Component 8,
associated with "nucleosome assembly", showed particu-
lar high weights in tumor clusters a and c. The four com-
ponents C3, C24, C33, and C51, all characterized by the
GO category "defense response", showed a complex distri-
bution across the tumors and overlapped in their weight
profiles.

Gene clusters obtained by ICA were then compared with
groups of co-expressed genes as determined by correla-
tion. We used the QT clust algorithm to identify clusters
of co-expressed genes. In total 23 clusters were identified
and seven of these showed significant enrichment of GO
term categories (Table 2). Three of the significant GO cat-
egories, "immune response", "extracellular" and "mitotic
cell cycle" associated with the QTC clusters were also
found among the ICA clusters. The median expression
value for each QTC gene cluster was calculated and
aligned to the dendogram in Figure 1 (Figure 1c). QTC
gene clusters 1, 7, 9, 15, and 20 showed high expression
in tumor cluster a, and low in b. Only a few gene clusters
showed tumor type/cluster specific expression. No obvi-
ous link between ICA and QTC gene clusters could be
observed.

Hierarchical cluster analyses of the AML data setFigure 1
Hierarchical cluster analyses of the AML data set. A) Hierar-
chical cluster analysis of AML cases using genes assigned to at 
least one component. Cluster names (a-h) as indicated. 
Color codes for chromosomal aberrations; grey, normal 
karyotype; orange, inv(16); yellow, +8 sole; purple, t(9;11); 
green, del(7q)/-7; black, complex karyotype; red, t(15:17); 
blue, t(8;21). B) The aligned heat map of A values for the cor-
responding components. C) The aligned heat map of the 
median expression values for the corresponding QTC clus-
ters.
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We then analyzed the serum induced gene expression
described by Chang et al. [12]. This data set differs from
the previous by being of low dimension and by consisting
of only 568 genes. Due to the low dimension, 16 time
points, sixteen components was derived using 50 rand-
omized initial conditions. ICA reduced the number of
genes to 557. All but one component (C12) converged to
a normal distribution. The number of genes per compo-
nent ranged from 5 to 86 and 48% of the genes were
present in more than one component (See Additional file
2 for genes in each component). The top ten genes most
frequently participating in components included AREG

(5), SLC16A6 (5), ALDH1A1 (4), ANGPTL4 (4), BRDT
(4), C14orf06 (4), C4BPB (4), CMAH (4), and EGR1 (4).
The genes in each component were subjected to GO term
analysis and C13 was found to show significant enrich-
ment for GO categories related to the cell cycle, e.g., for
"mitotic cell cycle" with a corrected EASE score of 3.4 × 10-

12. To investigate the influence of each component on the
expression profile across the time points the component
weights (A) were used to construct a heat map, Figure 3A.
The distributions of the values of A revealed single outliers
for C1, C2, C4, C5, and C6, whereas seven of the compo-
nents showed a clear temporal distribution of the A val-

Table 1: Genes present in more than one component in the AML data set.1

Gene Number of C2 Gene Neg load3 Gene Pos load4

CPVL 13 TACSTD2 8 LY86 9
DPPA4 13 DPPA4 7 P2RY5 8
LOC92235 12 SERPING1 7 GABBR1 8
LY86 12 ADM 7 NOV 8
SERPING1 12 ARHGAP5 7 SCHIP1 8
TACSTD2 12 CLIPR-59 7 CPVL 7
P2RY5 11 EGR1 7 C9orf58 7
ADM 10 GPC4 7 ROBO3 7
C9orf58 10 NBL1 7 ZNF521 7
GABBR1 10 CXCL3 7 C3orf6 7
NOV 10 CPVL 6 DPPA4 6
PRG2 10 LOC92235 6 LOC92235 6
SCHIP1 10 PRG2 6 FCER2 6
SH2D1A 10 C10orf38 6 GOPC 6
AREG 9 HTRA3 6 TPSB2 6
ARHGAP5 9 BHLHB3 6 GUCY1A3 6
C10orf38 9 SPRY2 6 KCNQ1OT1 6
CD200 9 SH2D1A 5 SERPING1 5
CD36 9 AREG 5 SH2D1A 5
CDW52 9 CDW52 5 CD200 5
CLIPR-59 9 KLF12 5 CD36 5
EGR1 9 PPBP 5 MEIS1 5
FCER2 9 SDPR 5 NKX3-1 5
GPC4 9 SCN2A2 5 TRH 5
KLF12 9 SERPINB2 5 AQP1 5
MEIS1 9 COBLL1 5 HOXA4 5
NKX3-1 9 GABRB3 5 KYNU 5
PPBP 9 MMP9 5 ME1 5
ROBO3 9 UGT2B7 5 RSNL2 5
SDPR 9 EDG1 5 S100A12 5
TRH 9 LIN7A 5 CD34 5
ZNF521 9 TNF 5 IL1B 5
AQP1 8 TNFRSF19 5 LGALS2 5
C14orf128 8 DSG2 5 LSP1 5
GOPC 8 EIF5A 5 TNFAIP6 5
HOXA4 8 CD200 4 PALM2-AKAP2 5
HTRA3 8 CD36 4 S100A8 5
IGSF9 8 MEIS1 4 UNC13B 5
IL1R2 8 NKX3-1 4 HBG1 5

1 The top 40 genes in each category are listed.
2 The number of components the gene was assigned to.
3 The number of components in which the gene had a negative load.
4 The number of components in which the gene had a positive load.
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ues. The cell cycle component C13 showed high A values
during the later stages of the serum induced expression.

Groups of co-expressed genes were then identified by the
QTC algorithm. Nine clusters of genes were identified and
the number of cluster members ranged from 11 to 114. By
aligning the median values for each gene cluster with the
times points a clear temporal order with regards to peak
expression could be seen. The GO analysis revealed two
clusters with enriched GO categories, QTC1 with a cor-
rected EASE score of 1.7 × 10-3 for "lipid biosynthesis" and
QTC2 with a corrected EASE score of 1.8 × 10-15 for
"mitotic cell cycle". Figure 3 indicates both positive and
negative correlations between A values and median values
for QTC clusters. A subsequent correlation analysis
revealed significant strong positive (r > 0.80) and negative
(r < -0.80) correlations between weights for several com-
ponents and QTC cluster median expression values (Table
3). Hence, in the time series data a link between QTC gene
clusters and ICA components genes is seen.

We then analyzed the head and neck squamous cell carci-
noma (HNSCC) expression data described by Chung et al.

[11]. The data was downloaded excluding expression pro-
files obtained from duplicate biopsies. Reporters for iden-
tical genes were merged and genes with at least 80%
values were selected and corrected for missing values by
KNN imputation. This produced a data set comprising
8620 genes and 53 cases. The dimension of the data was
then reduced to 35 to maintain 90% of the variance. Iter-
ated FastICA was applied in five runs using 50 rand-
omized initial conditions and the IQ indices evaluated. As
in the case of the AML dataset no clear distinction between
reliable and unreliable components could be established.
Consequently the maximum number of components, 35,
was retrieved. Our procedure reduced the number of
genes from 8620 to 4665 using p-value of 0.01 in the Lil-
liefors' test for normality. All but one component (C3)
converged to a normal distribution. The number of genes
per component ranged from 36 to 726 and 2551 genes
(55%) were present in more than one component (See
Additional file 3 for genes in each component). The top
ten genes most frequently participating in components
included UPK1B (16), C20orf114 (14), CRISP3 (14), SER-
PINB (14), GOS2 (13), KSP37 (13), MMP7 (13), PSPHL
(13), and BCL3 (12). A HCA performed by using all genes

Table 2: GO analyses of genes assigned to ICA components and to QTC clusters in the AML data set.

All genes in component Genes with positive loading Genes with negative loading

Gene 
cluster

GO category ES1 GO category ES GO category ES

C3 extracellular 1.52 × 10-2

defenes resposne 4.18 × 10-2 defenes resposne 4.70 × 10-3

C6 antigen processing/
exogeneous antigen

3.36 × 10-8 antigen processing/exogeneous antigen 2.30 × 10-9

C8 nucleosome assembly 4.39 × 10 -16 nucleosome assembly 1.36 × 10-17

C13 inflammatory respons 1.6 × 10-3 inflammatory respons 5.12 × 10-5

C14 inflammatory respons 4.55 × 10-2

C16 T-cell receptor complex 2.07 × 10-5 T-cell receptor complex 5.4 × 10-6

C17 mitotic cell cycle 2.50 × 10-29 cell communication 2.76 × 10-2 mitotic cell cycle 1.41 × 10-32

C24 defense respons 7.59 × 10-6

C33 defense respons 1.57 × 10-2

C42 extracellular 4.08 × 10-2

C44 respons to wounding 1.68 × 10-2

C45 immune response 6.75 × 10-7 immune response 6.44 × 10-9

C49 Cell-cell adhesion 3.23 × 10-2

C51 defense respons 2.14 × 10-2

C52 cell-cell signalling 2.85 × 10-2

QTC1 immune response 5.5 × 10-9

QTC2 extracellular 9.9 × 10-4

QTC3 intracellullar 1.6 × 10-2

QTC4 mitotic cell cycle 4.3 × 10-28

QTC8 nucleus 9.7 × 10-3

QTC14 unlocalized 3.4 × 10-2

QTC23 organell organization 
and biogenesis

1.8 × 10-2

1ES; Step down Bonferroni corrected Ease scores
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that were present in at least one ICA component produced
three major branches of clusters that could be subdivided
further into the six sub-clusters a to f (Figure 4a).

The genes assigned for each component were then sub-
jected to GO term analysis and 17 components were
found to be significant for GO term categories (Table 4).
The most significant were "immune response" (C6),
"extracellular matrix" (C9), "defense response" (C30) and
"muscle fiber" (C1) with corrected EASE scores of 5.7 ×
10-32, 2.3 × 10-28, 5.8 10-17, and 6.0 × 10-14, respectively.
By treating genes with negative and positive loadings on
the components separately the EASE scores increased and
one additional component showed significant GO terms
(Table 4). Intriguingly, several of the lower ranking com-
ponents (C20 to C35) showed considerable EASE scores,
e.g., C30, indicating biological significance and six com-
ponents were significant for the category "extracellular".
The component weights (A) were used to construct a heat

map that was aligned to the dendrogram in Figure 4a. The
first component, significant for the GO category "muscle
fiber", showed particularly high weights in cluster a and
low weights in cluster c tumors. The tumors displayed spe-
cific expression patterns of the "extracellular" compo-
nents. Component 9 showed predominantly high weights
in cluster e tumors, C15 in cluster c tumors, C30 in cluster
d and f tumors, and C33 in cluster d tumors. The remain-
ing two "extracellular" components, C18 and C35,
showed less distinct patterns of weight distributions.

We identified 13 clusters of co-expressed genes using the
QTC algorithm and the same settings as for the AML cases.
Seven of the identified groups of co-expressed genes
showed significant enrichment for GO term categories
(Table 4). The corrected EASE scores for the top ranking
GO categories ranged from 10-14 to 10-8. In contrast to the
ICA analysis, the QTC produced only one cluster signifi-
cant for the GO category "extracellular". The median gene

Scatter plots of ICA components obtained from the AML data setFigure 2
Scatter plots of ICA components obtained from the AML data set. A) Components C2, C3, and C4. B) Components C7, C9, 
and C14. C) Components C15, C18, and C30. D) Components C28, C29, C32 all with a limited number of high loading genes.
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cluster expression profiles were used to produce a heat
map aligned to the HCA clustered tumors in Figure 4a.
Some correlation with tumor subclusters could be seen
e.g., QTC3 showed low expression in cluster f but rela-
tively high in clusters a, b, and c, and QTC5 showed low
expression in cluster e but relatively high in clusters a, c,
and d. Interestingly, the median expression values for
QTC9 ("muscle fiber") showed a strong correlation (r =
0.972) with the weights (A) for C1, also significant for the
category "muscle fiber".

Discussion
In the present investigation we have used a blind source
separation (BSS) methodology to estimate linear mixtures
of statistically impendent sources in micro array data. The
fact that of BSS identifies latent variables, or sources, that
ultimately produce an overall "profile" is attractive from a
biological point of view as these sources may be used as
first approximations of expression modules [5,14]. Unlike
principal component analysis, most BSS procedures, such

as ICA, are based on minimization of an objective func-
tion in a large dimensional space; hence most algorithms
are related to gradient descent and sensitive to initial con-
ditions. One approach to estimate less unstable compo-
nents is to iterate the algorithm using different random
initializations and to only consider components repeat-
edly obtained as reliable [3]. A further development of
this approach, employed in the present investigation, is to
use centrotypes of repeated estimates of the same compo-
nent [10].

A central issue associated with ICA is the number of com-
ponents to extract and, the related issue, how to identify
the most relevant ones. For the larger datasets, AML and
HNSCC, we performed an initial dimension reduction
using PCA to the number of dimensions explaining 90%
of the variance. There are alternative approaches, how-
ever, a too harsh initial dimension reduction may result in
loss of biologically relevant components, and a too gentle
may leave to many dimensions to be analyzed. Conse-
quently, we choose to be conservative and trimmed the
data by excluding only a small (10%) proportion of the

Hierarchical cluster analyses of the HNSCC data setFigure 4
Hierarchical cluster analyses of the HNSCC data set. A) 
Hierarchical cluster analysis of HNSCC cases using genes 
assigned to at least one component. Cluster names (a-f) as 
indicated. B) The aligned heat map of A values for the corre-
sponding components. C) The aligned heat map of the 
median expression values for the corresponding QTC clus-
ters.

ICA and QTC analyses of the serum induced expression responseFigure 3
ICA and QTC analyses of the serum induced expression 
response. A) A heat map of the A values for the correspond-
ing ICA components. Components C3, C9, C7, C15, C14, 
C16, and C13 organized according to temporal appearance. 
B) A heat map of the median expression values for the corre-
sponding QTC clusters. QTC clusters organized according 
to temporal appearance.
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variance in. In spite of this the number of dimensions was
reduced to 60 (56%) and 35 (66%) in the AML and
HNSCC data sets, respectively. A similar dimension reduc-
tion was not applied in the Chang data due to the few
original number of measurements. Several cluster validity
indices have been described [15] and Himberg et al. [10]
suggests the cluster quality index, Iq to be used in connec-
tion with iterated FastICA. The Iq index is a measure of the
compactness of the cluster of component estimates and is
consequently an estimate of centrotype variance. How-
ever, this index was not informative in our hands and as
an alternative, we systematically investigated the loading
distributions of all extracted components, the distribu-
tions of A values across the samples, and the biological
coherence of the formed gene clusters.

Scatter plots produced by combining components
revealed a decrease in component information, as deter-
mined by scatter structure, with decreasing rank. As a
result rank may by itself be used as a selection criterion.
However, a closer inspection revealed some high ranking
components with one or two very high loading genes i.e.,
outliers. As we do not know the underlying structure of
the data we cannot exclude the significance of such com-
ponents. However, we believe it is reasonable to assume
that changes in cellular states are associated with specific
biological processes and that such proceses generally
involve large sets of genes. Hence, components with one
or two very high loading genes may be hard to interpret in
a biological context. The distributions of the A values gave
further information on the possible significance of com-
ponents. Given that the experimenter has covered the
space of investigation with a relevant number of measure-
ments i.e., cases, narrow A distributions with outliers indi-
cates that the component may identify a very rare

condition, or even an artifact, and hence may be of lesser
importance. The analysis of the time series data exempli-
fied both the presence of sources with distinct outliers as
well as A distributions hard to fit in to the biological proc-
ess under study. The time series data describes gene
expression changes induced by serum and accordingly
involves an a priori continuous change from one state to
another, given that measurements have been made
densely enough. Of the 16 components extracted eight
showed either component loading patterns or A value dis-
tributions hard to fit a model of a continuous change in
gene expression. Notably, six of these C1, C2, C4, C5, C6,
and C8, were among the eight top ranking components
with respect to departure from normality as well as with
respect to Iq. All in all only seven components could, at
the present level of investigation, be associated with
serum induced gene expression, and the majority of these
components were low ranking. We conclude that at
present, and with the algorithms used, the most reliable
way to select components is to manually inspect and eval-
uate these in light of their component loading and A dis-
tribution as well as by their biological coherence.

To associate genes with specific components Leiber-
meister [5] selected genes that had loadings on the com-
ponents larger than four standard deviations. Lee and
Batzoglou [6] applied standard deviation thresholds
adjusted to the data by evaluating different thresholds
using GO-term analysis. In this way the biological coher-
ence of the components were used to determine the gene
members. We made use of the assumption that Gaussian
distributions represent noise and that FastICA specifically
selects non-Gaussian distributions. We reasoned that by
removing the genes with the largest loadings in an itera-
tive way and by testing the remaining distribution for nor-

Table 3: Correlations between component A values and the median expression levels of QTC gene clusters1

QTC9 QTC5 QTC1 QTC8 QTC4 QTC7 QTC3 QTC6 QTC2

C3 0.88 0.97 0.49 0.00 -0.45 -0.44 -0.99 -0.66 -0.20
C9 0.43 0.42 -0.45 -0.62 -0.99 -0.81 -0.47 0.26 0.39
C7 0.88 0.79 0.49 -0.02 -0.39 -0.28 -0.82 -0.57 -0.39
C16 0.61 0.90 0.63 0.35 -0.10 -0.35 -0.86 -0.74 -0.08
C15 0.52 0.65 0.87 0.76 0.24 -0.10 -0.62 -0.80 -0.45
C14 0.71 0.82 0.81 0.44 0.07 -0.09 -0.81 -0.86 -0.40
C12 -0.73 -0.76 -0.42 0.19 0.20 -0.03 0.76 0.67 0.25
C13 -0.58 -0.41 -0.87 -0.46 -0.44 -0.53 0.43 0.82 0.94
C1 0.14 0.10 0.22 0.04 0.06 0.15 -0.16 -0.27 -0.30
C2 -0.19 -0.24 0.19 0.34 0.52 0.33 0.23 -0.18 -0.16
C14 0.01 0.21 -0.03 0.05 -0.08 -0.08 -0.19 -0.08 0.28
C15 0.22 0.06 -0.00 -0.23 -0.08 -0.03 -0.10 -0.11 -0.01
C6 0.49 0.56 0.06 -0.20 -0.37 -0.37 -0.50 -0.28 0.28
C8 0.35 0.47 -0.11 -0.32 -0.53 -0.52 -0.46 -0.03 0.26
C10 0.20 0.49 0.46 0.30 0.17 -0.15 -0.42 -0.44 0.08
C11 0.25 0.44 0.54 0.51 0.21 -0.12 -0.41 -0.53 -0.20

1 Significant (p < 0.01) Pearson correlations in bold.
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mality at each step until convergence was obtained, the
most important genes in the ICA component would be
extracted. The remaining genes would represent noise sig-
nals. In addition, with a specified threshold value for con-
vergence the number of genes associated with a given
component is determined by characteristics of the loading
distributions only. This approach is similar to the one
applied by Lee and Batzoglou [6] in as much as it is tuna-
ble, through the p value in the Kolmogorov-Smirnov test,
but differs in that fewer genes will be retrieved when the
original distribution approaches normality. We encoun-
tered a few instances when convergence was not obtained.
However, the few non-converging components showed a
high proportion of genes with loadings equal to zero, sug-
gesting these components to be extracted by over-learning
[16].

I contrast to other gene grouping methods ICA allow
genes to be present in more than one gene cluster i.e.,
component. This feature is attractive as specific genes may
participate in different types of cellular responses or sign-
aling/metabolic pathways. We found a large proportion,

~50%, of the genes to participate in more than one com-
ponent. This proportion is, however, partly dependent on
the convergence threshold value, which influences the
number of genes assigned to each component. We could
not find any patterns or common characteristics of the
genes most frequently occurring in components. One
could have anticipated that highly linked genes such as
KRAS2 and TP53 that are involved in several signaling
pathways would participate in more than one compo-
nent. On the other hand, genes representing lower hierar-
chical levels of signaling pathways are frequently shared
by more than one pathway and would thus be as likely
candidates. Hence, the biological significance of genes
present in more than one source needs further investiga-
tion.

We used GO term analyses to investigate the biological
coherence of the genes associated with each component
and 8 of 55 AML and 17 out of 35 HNSCC components
showed significant EASE scores. These numbers increased
to 15 and 18, respectively, when genes with negative or
positive loadings on the components were treated sepa-

Table 4: GO analyses of genes assigned to ICA components and to QTC clusters in the HNSCC data set.

All genes in component Genes with positive 
loading

Genes with negative loading

Gene 
cluster

GO category ES1 GO category ES GO category ES

C1 muscle fiber 6.0 10-14 muscle fiber 1.1 10-16

C4 cell communication 3.8 10-3 cell communication 1.0 10-2

C6 immune response 5.7 10-32 defense response 4.1 10-39

C7 xenobiotic metabolism 9.7 10-5 xenobiotic 
metabolism

9.2 10-5

C8 extracellular 2.8 10-2

C9 extracellular matrix 2.3 10-28 extracellular 2.4 10-2 extracellular matrix 6.5 10-31

C12 extracellular 4.8 10-2

C13 extracellular 1.1 10-2

C15 extracellular 6.0 10-4

C17 membrane 2.5 10-2 membrane 4.3 10-3

C18 extracellular 4.9 10-2 extracellular 4.7 10-3

C20 morphogenesis 1.5 10-2 morphogenesis 1.1 10-2

C26 extracellular 8.9 10-3

C29 extracellular 4.5 10-5 extracellular 2.9 10-5

C30 defense response 5.8 10-17 extracellular 3.4 10-2 defense response 5.8 10-17

C33 ectoderm development 5.7 10-6 ectoderm development 1.74 10-6

C34 response to biotic stimulus 3.6 10-3 response to biotic stimulus 2.83 10-2

C35 extracellular 3.3 10-5 extracellular 1.9 10-3 epidermal differentiation 2.83 10-3

QTC3 defense respons 5 × 10-7

QTC4 ribonucleoprotein complex/ribosome 2.5 × 10-8/5.1 × 10-6

QTC5 extracellular 1.8 × 10-9

QTC8 defense respons/immune respons 1.1 × 10-14/3.9 × 10-14

QTC9 muscle fiber 7.5 × 10-21

QTC10 mitotic cell cycle 9.6 × 10-8

QTC13 mitochondrion 4.7 × 10-8

1ES; Step down Bonferroni corrected Ease scores
Page 9 of 12
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:290 http://www.biomedcentral.com/1471-2105/7/290
rately. Notably, several low ranking components such as
C45, C49, C51, and C52 in the AML data and C30, C33,
C34, and C35 in the HNSCC data showed enrichment for
GO categories with highly significant EASE scores. This
further emphasizes the disparity between significances as
determined by component rank and/or the Iq index and
biological significance.

The GO term analysis also revealed that ICA grouped
genes at a higher level of resolution than clustering based
on correlated expression. Fifteen biologically coherent
groups of genes were identified by ICA in the AML data set
and 18 in the HNSCC dataset, whereas the corresponding
number of coherent clusters formed by correlation was
seven in both cases. In addition, six different groups of
genes related to the GO category "extracellular" was iden-
tified by ICA in HNSCC whereas only one cluster of genes
was related to the category "extracellular" after QTC clus-
tering. Similarly, the single cluster of "defense response"
detected in the AML set by the QTC algorithm was
extended to four clusters using FastICA. This shows that
ICA may distinguish between different modifications of
the "extracellular" and "defense response" profiles not
distinguished by standard approaches. That these differ-
ences may be of importance for the behavior of the tumor
was shown by the association of the "extracellular" com-
ponents C9, C15, C30, and C33 with specific molecular
subtypes of HNSCC.

Latent variables may, from a biological point of view,
appear elusive and merely correspond to algorithmic tools
used for describing complex data. It is therefore important
to find possible biological correlates to ICA components.
A first step in this process has been accomplished by GO
term analyses which convincingly have shown that ICA
components correspond to groups of biologically coher-
ent genes (Lee and Batzoglou [6], and the present investi-
gation). A further hint to the component nature is the
present finding that latent variables (components) may
surface as highly correlated genes. This was particularly
evident in the times series data in which all components
that had been judged as informative by the component
loadings and A distributions, also showed strong correla-
tions with identified QTC gene clusters. In addition, the
"muscle fiber" component (C1) in the HNSCC data
showed an almost identical behavior, as determined by
the A values, as the QTC cluster 9, also characterized by
"muscle fiber" genes. Taken together, these findings fur-
ther emphasize the biological relevance of latent variables
identified by ICA.

Conclusion
We have shown that independent component analysis
may contribute to a deeper understanding of gene expres-
sion data. Particularly, ICA resolves expression data at a

higher resolution than is achieved by approaches based
on correlations alone. In addition, we have further eluci-
dated the biological significance of latent variables identi-
fied by ICA. Even though the aim of the present
investigation was not to evaluate specific ICA algorithms
and procedures, we note that several aspects of the proce-
dure, e.g., indices for reliable components and alternative
contrast functions, needs to be evaluated further in the
context of micro array data.

Methods
Data sets
The AML dataset described by Bullinger et al., [11] was
downloaded from the Gene expression Omnibus [19]
(accession number GSE425) to contain 6283 genes/
reporters. Eleven cases showed a high frequency of miss-
ing values (> 1800 missing values) and were excluded
from further analyses. Reporters for identical genes were
merged and genes with at least 80% values were selected
and corrected for missing values by KNN imputation
using with K = 12 [17]. The final data set included 4651
genes and 108 cases. The Head and Neck Squamous Cell
Carcinoma data set described by Chung et al. [13] was
downloaded from the Gene expression Omnibus [19]
(accession number GSE686). The data was downloaded
excluding expression profiles obtained from duplicate
biopsies. Reporters for identical genes were merged and
genes with at least 80% values were selected and corrected
for missing values by KNN imputation using with K = 12.
This produced a data set comprising 8620 genes and 53
cases.

The Time series data described by Chang et al. [12] was
downloaded from the Stanford Microarray Database [20].
Reporters for identical genes were merged and genes with
at least 80% values were selected and corrected for missing
values by KNN imputation using with K = 12 resulting in
a dataset of 568 genes and 16 time points. Expression val-
ues for t = 0 was obtained by the mean expression values
of all experiments designated t = 0.

Iterated FastICA
We assume that our gene expression (microarray) data is
in the form of a matrix X with rows corresponding to sam-
ples and columns corresponding to genes and that it is
produced through the linear mixture of independent
components C. The relative contribution of each compo-
nent to the expression profile for a given sample is deter-
mined by the coefficients of A, in a matrix form X = A × C,
of the form (genes × samples) = (samples × component)
× (component × genes). The starting point for ICA is the
very simple assumption that the components are statisti-
cally independent and have non-normal distributions.
After estimating the matrix A, we can compute its inverse,
W, and obtain the independent components by: W × S.
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We performed the ICA using the FastICA-algorithm devel-
oped by Hyvärinen A and Oja E. [4]. We used the contrast
function g(u) = u3 (pow3), a variation on the commonly
used kurtosis, to identify non-normal components. As the
FastICA algorithm relies on random initializations for its
maximization of non-normality it will produce slightly
different results each time applied. To alleviate this insta-
bility we iterated FastICA 50 times (the limitation being
set by computation time). The final components were
then estimated as the centrotypes of the iterated estimates
of each component and evaluated by the IQ index as
implemented in the Icasso software [10].

Identification of significant genes in the components
To identify those genes that have significant loadings in
each component we assumed that normally distributed
loadings represent noise, whereas genes contributing to
non-normality were considered significant. We employed
an iterative procedure to identify significant genes by
removing the gene with the largest absolute loading and
then test for normality using Lilliefors' test, a variant of
Kolmogorov-Smirnoffs test with unknown mean and var-
iance. Genes were removed one by one until the remain-
ing genes could be considered to be normally distributed.
In this manner the number of significant genes in every
component depends on the quality of the components,
i.e. departure from normality. The p-value in the Lilliefors'
test was adjusted for the different data sets in order to
retain a suitable number of genes in each component.

Clustering procedures
We applied two way hierarchical clustering using Eucli-
dean distances and the Ward algorithm for cluster forma-
tion to analyze expression data. To find genes with similar
expression-profiles we used QT Clust (Quality Cluster
algorithm) modified from Heyer et al. [18]. QT Clust pro-
ceeds by forming a candidate cluster of the first gene and
grouping genes with the highest correlation iteratively in
a way that minimizes the cluster diameter d, until no fur-
ther genes may be added without exceeding a predeter-
mined d-value. This procedure is performed with all genes
in the data set as a seed. The largest cluster is then retrieved
and the procedure repeated excluding the genes selected
for the clusters formed. This makes sure that the largest
and most coherent clusters of genes are formed. We used
a diameter of 0.3 and a minimal cluster size of 15 mem-
bers for the AML data and HNSCC data, and a diameter of
0.2 and a minimal cluster size of 10 members for time
series data.

Go-term analyses
We used the EASE software [21] to identify statistically
enriched GO term categories. EASE identifies significant
enrichment of specific gene ontology (GO) categories in a
given list of genes compared to the total list of genes. Step-

down Bonferroni multiplicity corrected p-values < 0.05
calculated using EASE statistics were considered signifi-
cant.
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