
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
A comparative review of estimates of the proportion unchanged 
genes and the false discovery rate
Per Broberg*

Address: Biological Sciences, AstraZeneca R&D Lund, S-221 87 Lund, Sweden

Email: Per Broberg* - per.broberg@astrazeneca.com

* Corresponding author    

Abstract
Background: In the analysis of microarray data one generally produces a vector of p-values that
for each gene give the likelihood of obtaining equally strong evidence of change by pure chance.
The distribution of these p-values is a mixture of two components corresponding to the changed
genes and the unchanged ones. The focus of this article is how to estimate the proportion
unchanged and the false discovery rate (FDR) and how to make inferences based on these
concepts. Six published methods for estimating the proportion unchanged genes are reviewed, two
alternatives are presented, and all are tested on both simulated and real data. All estimates but one
make do without any parametric assumptions concerning the distributions of the p-values.
Furthermore, the estimation and use of the FDR and the closely related q-value is illustrated with
examples. Five published estimates of the FDR and one new are presented and tested.
Implementations in R code are available.

Results: A simulation model based on the distribution of real microarray data plus two real data
sets were used to assess the methods. The proposed alternative methods for estimating the
proportion unchanged fared very well, and gave evidence of low bias and very low variance.
Different methods perform well depending upon whether there are few or many regulated genes.
Furthermore, the methods for estimating FDR showed a varying performance, and were
sometimes misleading. The new method had a very low error.

Conclusion: The concept of the q-value or false discovery rate is useful in practical research,
despite some theoretical and practical shortcomings. However, it seems possible to challenge the
performance of the published methods, and there is likely scope for further developing the
estimates of the FDR. The new methods provide the scientist with more options to choose a
suitable method for any particular experiment. The article advocates the use of the conjoint
information regarding false positive and negative rates as well as the proportion unchanged when
identifying changed genes.

Background
The microarray technology permits the simultaneous
measurement of the transcription of thousands of genes.
The analysis of such data has however turned out to be

quite a challenge. In drug discovery, one would like to
know what genes are involved in certain pathological
processes, or what genes are affected by the intervention
of a particular compound. A more basic question is 'How
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many genes are affected or changed?' It turns out that the
answer to this basic question has a bearing on the other
questions.

The proportion unchanged
In the two-component model for the distribution of the
test statistic the mixing parameter p0, which represents the
proportion unchanged genes, is not estimable without
strong distributional assumptions, see [1]. Assuming this
model the probability density function (pdf) ft of a test
statistic t may be written as the weighted sum of the null

distribution pdf  and the alternative distribution pdf

If, on the other hand, we know the value of p0 we can esti-

mate  e.g. through a bootstrap procedure as described

in [1], and thus obtain also .

The mixing parameter p0 has attracted a lot of interest
lately. Indeed it is interesting for a number of applica-
tions. Here follow four examples.

1) Knowing the proportion changed genes in a microarray
experiment is of interest in its own right. It gives an impor-
tant global measure of the extent of the changes studied.

2) The next example concerns FDR. Suppose we reject null
hypothesis j, and call gene j significantly regulated, when
the corresponding p-value pj falls below some cutpoint α.
The question that motivates the FDR concept, which orig-
inates from [2], is: "What proportion of false positives is
expected among the selected genes?" A goal would then be
to quantify this proportion, and one possible estimate is

where '^' above a quantity (here and henceforth) means
that it is a parameter estimate, P(L) is the largest p-value not
exceeding α and p(α) is the proportion significantly regu-
lated genes which equals the proportion of the p-values
not exceeding α, see also [3]. In practice P(L) will be very
close to α, and may be replaced by the latter. We thus
obtain an estimate of p0 × α/p(α), which verbally trans-
lates into "the number of true null cases (Np0) multiplied
by their probability of ending up on the top list (α)
divided by the number of selected cases (Np(α))". Putting
p0 ≡ 1 above and rejecting hypotheses j with the estimated
FDR(pj) less than or equal to β, will give a test procedure
controlling the FDR at the level β, i.e. we may expect that
the FDR is no more than β [2-4]. By finding good esti-

mates of p0 (and FDR) we may increase the power to detect
more true positives at a given FDR bound.

3) Knowing p0, we may calculate the posterior probability
of a gene being a Differentially Expressed Gene (a DEG) as

see [1]. Also, (3) equals one minus the local false discov-
ery rate: 1 - p1(x) = LFDR(x) = p0 ft0(x) / ft(x) [1].

4) Knowing p0, it is also possible to estimate the number
of false positives and false negatives at a given cutpoint α
as a proportion of the total number of genes. Call these
proportions the false-positive and false-negative rates, and
denote them by FP(α) and FN(α), respectively. In the
samroc methodology [5] one calculates estimates of these
quantities as

and

One may choose a p-value threshold αmin, which mini-
mises the amount of errors FP(α) + FN(α). Alternatively,
one may want to fine-tune the test statistic such that it will
minimise the errors at a given threshold. Or, one may try
to do both, as suggested in [5], see also [6].

Earlier research providing estimates of p0 include [1,3,7-
13]. Articles that compare methods for estimating p0 and
FDR include [12,14]. I will focus on the FDR as the main
use of p0.

In this article, the formulation of the theory is in terms of
p-values rather than in terms of test statistics. Two basic
assumptions are made concerning their distribution. First,
it is assumed that test statistics corresponding to true null
hypotheses will generate p-values that follow a uniform
distribution on the unit interval, e.g. [15]. Thus, under the
null distribution, the probability that a p-value falls below
some cutpoint α equals α. Second, p-values are, unless
stated otherwise, assumed to be independent. Empirical
investigations will assess the effects of deviations from the
second assumption.

The use of p-values means lumping up- and downregu-
lated genes together. However, one may look separately at
the two tails of the distribution of the test statistic to assess
differential expression corresponding to up- and
downregulation.
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This article will not concern how p-values are calculated,
but rather how they are used to calculate estimates of p0

and FDR, and draw conclusions based on this evidence. It
is assumed that p-values capture the essence of the
research problem. Neither does the article treat the choice
of an optimal test statistic. For illustration the t-test will be
used repeatedly without regard to whether there are better
methods or not. By the t-test we mean the unequal vari-

ance t-test:  for

sample means mean1 and mean2, sample variances , ,
and sample sizes n1 and n2. We apply the t-test to simu-
lated normally distributed data and a permutation t-test
to real data, where normality may be uncertain. All calcu-
lations were performed in R. The methods presented are
available within packages for the free statistical software R
[16,17] and take a vector of p-values as input and output
an estimate of p0 and of FDR. Emphasis lies on methods
available within R packages downloadable from CRAN
[18] or Bioconductor [19]. Inevitably any review will
exclude interesting work, but time and space limitations
will not permit an all comprehensive review. The new and
highly interesting concept of a local false discovery rate
(LFDR) [1] only receives a cursory treatment.

This article builds on and finds motivation from the expe-
rience of the analysis of microarrays, which typically assay
the expression of 10,000 or more genes. However, the
methods presented apply equally well to other high
dimensional technologies, such as fMRI or Mass
Spectrometry.

False discovery rate
In the analysis of microarray experiments, the traditional
multiple test procedures are often considered too strin-
gent, e.g. [20] and [3]. In the last decade alternatives based
on the concept of an FDR have emerged. For more details
consult e.g. [2,3,9,11,21,22]. There are different defini-
tions proposed, but loosely speaking one would want to
measure the proportion of false positive genes among
those selected or significant. Loosely put the FDR may be
interpreted as the proportion of false positives among
those genes judged significantly regulated. Equation (2) is
the FDR estimate presented in [3].

Denote by E[X] the expectation (or true mean) of any ran-
dom variable X. With V the number of false positives
given a certain cut-off and R the number of rejected null
hypotheses, one may define the FDR as the expectation of
the ratio of these quantities, or

,

where care is taken to avoid division by zero.

In [10] and [11] the FDR is estimated as the ratio of the
expected proportion of false positives given the cut-off to
the expected proportion selected. Viewed as a function of
a cut-off α, such that genes gi with pi less than α are judged
significant in terms of p-values, following the continuous
cumulative distribution function (cdf) F, the FDR esti-
mate is

which is nearly equal to (2) with the exception that the
P(L) has been replaced by its upper bound, and the step-
wise empirical distribution by a smooth version, either a
parametric model or a smoothed version of the empirical
distribution. Thus, the FDR is now a continuous function
instead of piece-wise continuous with jumps at each
observed p-value. This ratio of expected values tries to esti-
mate the expectation of a ratio: In general such an
approach will give an overestimation, but in practice this
will have little effect, see the Additional file.

The related concept of the positive FDR, pFDR = E[V/R|R
> 0], the expectation conditional on at least one rejection,
appears in [2]. Other forms of FDR have been proposed
such as the conditional FDR [2], cFDR, defined as the
expected proportion of false positives conditional on the
event that R = r rejected have been observed : cFDR(r) =
E[V|R = r]/r. This would answer to the question "What
proportion of false positives may I expect in my top list of
r genes?". Under independence and identical distribution
in a Bayesian setting it is proved in [23], that pFDR, cFDR
and the marginal FDR, mFDR = E[V]/E[R] [2], all coincide
with p0α/F(α) at the cutpoint α, cf. (6).

Instead of p-values it has been suggested in to calculate q-
values that verbally have the following meaning for an
individual gene [2,9]:

The q-value for a particular gene is the minimum false discov-
ery rate that can be attained when calling all genes up through
that one significant [9].

These q-values can be used to determine a cut-off similar
to the classic 5% cut-off for univariate tests developed in
statistics long ago. But in many applications one should
not be too rigid about any particular value, since the
emphasis often is on discovery rather than hypothesis
testing: we generate hypotheses worthy of further investi-
gation. Thus the balance between false positives and false
negatives will be crucial: Rather than keeping the risk of
erroneously selecting one individual gene at a fixed level,
it is the decision involving thousands of genes given the
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amount of genes we can follow up on that is the focus,
and where both types of error must be considered. The q-
value does not fully address this problem, but neverthe-
less represents an improvement over the classical multiple
test procedures in these applications.

More mathematically the q-value can be expressed as

Taking minimum in (7) enforces monotonicity in pi, so
that the q-value will be increasing (non-decreasing) in the
observed p-value. If the FDR is non-increasing, as it
should, then q (pi) = FDR (pi).

Additionally, the FDR offers a framework for power and
sample size calculations, see [24] and the new develop-
ments in [25].

Results
Eight estimates of p0 and six of FDR (based on six of the
former) were tested on both simulated data and real data.
The differing numbers are motivated below.

Next follows a list of six p0 estimation methods and the
corresponding R functions. The six were

1. the beta-uniform model (BUM) [10], which fits a mix-
ture of a uniform and a beta distribution to the observed
p-values; function ext.pi.

2. spacing LOESS histogram (SPLOSH) [11], which fits a
non-parametric spline that estimates the logarithm of the
pdf;function splosh.

3. the Lowest SLope estimator (LSL) [12,26] ;function
fdr.estimate.eta0.

4. the smoother [9], which fits a spline to a function of a
cut-off value, namely the proportion of p-values greater
than that cut-off divided by the expected proportion
under the uniform distribution;function qvalue.

5. the bootstrap least squares estimate (bootstrap LSE) [3],
which is related to the previous estimate;function qvalue
or estimatep0.

6. the Successive Elimination Procedure (SEP) [13];selects
a subset which represents the null distribution by behav-
ing like a uniform;function twilight.

7. a new method based on a moment generating function
approach (mgf);function p0.mom.

8. a Poisson regression approach (PRE); an adaptation of
[27,28];function p0.mom.

The bootstrap estimate and mgf did not participate in the
calculation of FDR. The smoother gives the basically same
value as the bootstrap estimate, and mgf is unnecessarily
conservative for lower values of p0, compared to PRE.

The six were

1. BUM FDR (based on BUM;function bum.FDR)

2. BH FDR (based on LSL and function fdr.control).

3. SPLOSH FDR (based SPLOSH;function splosh)

4. smoother FDR or R function qvalue [9] (based on the
smoother)

5. SEP fdr (based on SEP;function twilight)

6. the new method pava FDR (based on PRE;function
pava.fdr)

For brevity mgf, PRE and pava FDR will all be referred to
as new methods. It would be more exhaustive to say that
PRE is a minor modification of an existing method [25]
applied to p-values rather than test statistics and provided
as a new implementation in R; and that pava fdr is based
on [29] with local splines replaced by isotonic regression
and provided as a new R function. On the other hand mgf
seems quite new. More details follow in Methods.

For reference some graphs include an estimate of the SEP
local FDR, defined as LFDR(p) = p0/f(p), estimating the
probability that a gene whose p-value equals p is a false
positive. Furthermore, the ouput from R function locfdr
applied to the real life data (with nulltype = 0, i.e. a stand-
ard normal distribution which has cdf Φ, see Methods)
and the transformed t-test statistics : Z = Φ-1(F(t)), and F
the t-test distribution (details below) gives perspective on
the other methods and opens up an alternative route to
making inferences. This function produces an estimate of
the local FDR as a function of the transformed test statistic
Z [25]. In that same reference the author argues in favour
of the cutpoint LFDR ≤ 0.2, which implies quite high pos-
terior odds in favour of the non-null case : (1-p0)f1/p0f0 ≥
4.

Simulated data
Two simulation models were used: one generating values
independent between genes and the other generating
observations displaying clumpy dependence [14,30].

ˆ( ) min ˆ ( ) ( )q p FDR ti
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Simulated independent data corresponding to two groups
of four samples each were generated 10,000 genes 400
times for each of the true p0 values ranging from 0.5 to
0.99 using the R script from [5]. Normal distributions
were chosen randomly from the ones in Table 1. The cases
of DEGs correspond to the power of 41%, 54% and 97%
given a t-test with a significance level of 5% [12]. Briefly,
the script generated a mixture of normal distributions and
for each run calculated t-tests to obtain p-values.

To generate dependent data the protocol from [14] was
followed. This generates data following clumpy depend-
ence in the sense of [30] such that blocks of genes have
dependent expression. First a logarithmic normal distri-
bution with mean 1.5 and standard deviation 0.3 gener-
ated a profile for each gene. Denoting by N(µ, σ) a normal
distribution with mean µ and standard deviation σ, ran-
dom errors following a standard normal distribution
N(0,1) were added. To create dependencies genes were
partitioned into sets of 50 and for each sample the same
term from a N(0, 1) distribution was added to the expres-
sion of each gene in the set. Finally, genes were randomly
assigned to become DEGs with probability 1-p0 and for
each gene a regulation term following either N(0.5, 0.2)
or N(0.7, 0.2), with equal probabilities, was added to the
expression of one of the groups of samples of size 30. The
power to detect either of these two alternatives with a t-
test at the 5% significance level equals 31% and 50%,
respectively. The procedure generated for each of 400 iter-
ations a set of observations of 10,000 genes. The protocol
gives rise to high correlation within the blocks of 50 (on
average on the order of 0.5). Results for smaller or weakly
dependent datasets appear in the Additional file. Here
weakly dependent means that the clumpy dependence
term follows a N(0,1/20) distribution (correlation within
blocks slumps to 0.003 on an average).

With the simulated independent data all methods for esti-
mating p0 perform rather well, see Table 2 and 3, and Fig-
ure 1.

The new methods mgf and PRE were very competitive on
these data, and had both low bias and variation, excluding
mgf at the 0.5 and 0.6 level. Since mgf tends to overesti-
mate p0 rather much in the lower range, one may prefer
PRE. For practical purposes though overestimation is
desirable and enables control of the error rate (exact con-
trol in the terminology from [31]).

The smoother and the bootstrap had good and quite sim-
ilar performance. They give more or less the same varia-
tion and bias over the whole range. This variation can be
a bit high though, especially when comparing to PRE.

In the higher range BUM gives a crude estimate of the true
p0. In a certain lower range however it underestimates. As
we can see in Figure 1, however, the method considerably
overestimates p0 in the higher range, which brings down
the power to detect DEGs.

SPLOSH has the advantage of fitting the observed distri-
bution quite well, judging from some tests (data not
shown), compare also [11]. This enables a Bayesian anal-
ysis as in (3). However, it does the fitting of the p-values
close to 0 sometimes at the expense of the accuracy con-
cerning the values at the other end, thus misses the pla-
teau and the minimisation in (10) will give a misleading
result. In particular, this tends to happen when there are
few DEGs. As we can see in Figure 1 the method underes-
timates p0 at the higher range (p0 ≥ 0.9), which is worri-
some and may lead to underestimation of the error rate,
which is undesirable for a method of statistical inference.

From Tables 2 and 3 we can see that PRE has the best over-
all performance, followed by the smoother and the boot-
strap. This does not however imply that the other meth-
ods could not be considered. The results vary quite a lot
depending on the value of p0: LSL is quite competitive for
p0 = 0.99, but too conservative for p0 = 0.5.

With simulated data it is possible to calculate the actual
false discovery rate. Figure 3 shows boxplots based on the
simulated independent data. Here qvalue and pava FDR
stand out as most reliable. Especially BUM FDR has severe
problems, often over the whole range of cut-offs, while
SPLOSH FDR does rather well.

The dependent data gave a slightly different picture. Most
importantly, the variation increased considerably. The
results concerning p0 appear in Figure 2. Interestingly
underestimation becomes less of a problem for SPLOSH
this time. Relatively speaking BUM did better this time,
and BH comes out worst. As far as estimation of p0 goes
BUM does quite well, see Tables 4 and 5. The method
manages to overestimate at high p0 by consistently output-
ting 1. At p0 = 0.95 the estimate was nearly always equal to

Table 1: Simulation of independent data. Denote by N(µ, σ) a 
normal distribution with mean µ and standard deviation σ. For 
each DEG one of the above three scenarios was chosen with 
equal probabilities. For the rest both groups follow the same 
distribution chosen randomly from the 'Group 1' column. The 
scenarios are such that the power to detect the regulation with a 
5% two-sided t-test ranges from small to large given two groups 
of size four.

Scenario Group 1 Group 2 Power

1 N(6, 0.1) N(6.1, 0.1) 0.19
2 N(8, 0.2) N(8.5, 0.2) 0.79
3 N(10, 0.4) N(11, 0.7) 0.47
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Boxplots of the results from eight methods for estimating p0 using simulated independent dataFigure 1
Boxplots of the results from eight methods for estimating p0 using simulated independent data. A simulation model of real-life 
microarray data was used to give data where the expected proportion of unchanged genes was set at 50, 60, 70, 80, 90, 95 or 
99%. The central box of the boxplot represents the data between the 25% and 75% percentiles with the median represented 
by a line. Whiskers go out to the extremes of the data, and very extreme data appear as points. The abscissa shows the 
expected proportion unchanged and ordinata the estimate. Legends : A – BUM;B – SPLOSH; C – smoother; D – bootstrap; E – 
SEP; F – LSL; G – mgf; H – PRE. A and B underestimate in the low range and in the high range, respectively; C and D appear 
very similar with a sound overestimation and some high variance; E appears stable and reliable; F gives a stable and quite con-
servative estimate; G overestimates and varies very little; G is stable and gives a small degree of overestimation.
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1. Both qvalue and bootstrap underestimated by a small
amount at p0 = 0.99. SEP emerges as a sharp contender,
but suffers from a small underestimation at p0 = 0.99. In
fact, all methods except BUM give underestimation at p0 =
0.99, and for SPLOSH it amounts to almost 7%.

The results concerning FDR appear in Figure 4. This time
the BUM method captures FDR in a competitive way, with
the lowest median error but at the same time the second
worst mean error. Again the results for pava FDR appear
quite stable and accurate, giving the second lowest
median error and the lowest mean error.

Results for 300, 5,000 and 10,000 simulated weakly
dependent genes appear in the Additional file. Briefly,
they resemble those of the independent case. For 300
genes however the variation is such that the value of using
these methods seems doubtful.

Real data
Data from Golub et al
These data represent a case where there are many DEGs.
The data set concerning two types of leukaemia, ALL and
AML, appeared in [32,33]. Samples of both types were
hybridised to 38 Affymetrix HG6800 arrays, representing

Table 2: Over-all results of simulations of independent data. Data sets with p0 ranging from 0.6 to 0.99 were simulated. The summary 
statistics of the absolute difference between target value and its estimate show a rather varying performance for all methods, with 
PRE having the smallest bias and variation.

BUM SPLOSH smoother bootstrap SEP LSL mgf PRE

Mean 0.039 0.061 0.038 0.036 0.045 0.18 0.072 0.022
Sd 0.048 0.078 0.032 0.034 0.032 0.12 0.048 0.016

Table 3: Detailed statistics on the estimates of p0 based on simulations of independent data. The displays the mean bias (true – 
estimated) and standard deviation of estimates for each level of true p0.

True p0 0.5 0.6 0.7 0.8 0.9 0.95 0.99

BUM mean bias 0.013 0.043 0.038 0.028 -0.090 -0.050 -0.010
Sd 0.0044 0.0074 0.0072 0.0076 0.033 0.0021 0.0010

SPLOSH mean bias -0.083 -0.068 -0.043 -0.012 0.018 0.026 0.14
Sd 0.014 0.020 0.028 0.034 0.040 0.041 0.063

QVALUE mean bias -0.066 -0.057 -0.046 -0.034 -0.019 -0.015 0.0012
Sd 0.022 0.022 0.023 0.027 0.027 0.024 0.0160

Bootstrap 
LSE

mean bias -0.065 -0.054 -0.040 -0.025 -0.0067 -0.0037 0.0057

Sd 0.023 0.023 0.021 0.024 0.026 0.024 0.023

SEP mean bias -0.084 -0.072 -0.059 -0.043 -0.028 -0.020 0.0068
Sd 0.014 0.013 0.014 0.013 0.013 0.012 0.014

LSL Mean bias -0.36 -0.31 -0.25 -0.18 -0.096 -0.049 -0.010
Sd 0.025 0.019 0.014 0.0086 0.0036 0.0022 0.0010

mgf mean bias -0.15 -0.12 -0.095 -0.067 -0.040 -0.027 -0.0095
Sd 0.0052 0.0052 0.0051 0.0056 0.0056 0.01098 0.0018

PRE mean bias -0.036 -0.033 -0.028 -0.018 -0.0078 -0.018 -0.0018
Sd 0.0098 0.010 0.0097 0.012 0.016 0.0080 0.0067
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27 ALL and 11 AML. In reference [32] 50 genes were iden-
tified as DEGs using statistical analysis. The data consisted
of Average Difference values and Absolute Calls, giving for

each gene (probe set), respectively, the abundance and a
categorical assessment of whether the gene was deemed
Absent, Marginal or Present. The Average Difference val-

Boxplots of the results from eight methods for estimating p0 using simulated dependent dataFigure 2
Boxplots of the results from eight methods for estimating p0 using simulated dependent data. Legend as in Figure 1. There is a 
general trend towards greater overestimation compared to the independent case.
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ues were pre-processed as in [5], and the proportion of
samples where each probe set was scored Present was cal-
culated, giving a present rate. A permutation t-test was
used to compare ALL and AML. Figure 5 shows a histo-
gram of t-test statistics revealing a bell-shaped region
around the origin and large tails, indicating that a sub-
stantial part of the genes are DEGs.

Visual inspection of Figure 6 showing the p-value distribu-
tion also suggests that many genes are altered. The
methods tested vindicate this : BUM, SPLOSH, bootstrap,
qvalue, mgf, PRE, SEP, LSL give the estimates 0.57, 0.62,
0.65, 0.65, 0.69, 0.60, 0.64 and 0.86, respectively. Thus,
roughly 35% of the genes are regarded as changed. The

function qvalue finds 873 probe sets with a q-value less
than 5%. The estimated of FDR appear in Figures 7 and 8,
and show a great deal of concordance between methods.
The curves rise to the respective estimate of p0 and and in
doing so slowly diverge. SEP approaches roughly 0.07 in
a vicinity of zero, while the other methods continue the
decline.

The function locfdr applied to Z = Φ-1 (F36(t)) with F36 the
cdf of the t-distribution with 36 degrees of freedom gives
the estimate of p0 0.66 and outputs Figure 9 which bears
witness of the skewness and of the different local false dis-
covery rates in the two tails of the distribution.

Table 4: Over-all results of simulations of dependent data. Data sets with p0 ranging from 0.6 to 0.99 were simulated. The summary 
statistics of the absolute difference between target value and its estimate show a rather varying performance for all methods, with 
BUM now having the smallest bias and variation with PRE in second place.

BUM SPLOSH Smoother Bootstrap SEP LSL Mgf PRE

Mean 0.054 0.075 0.07.3 0.085 0.071 0.125 0.091 0.064
Sd 0.035 0.086 0.062 0.076 0.062 0.124 0.069 0.060

Table 5: Detailed statistics on the estimates of p0based on simulations of dependent data. The table displays the mean bias (true – 
estimated) and standard deviation of estimates for each level of true p0.

True p0 0.5 0.6 0.7 0.8 0.9 0.95 0.99

BUM mean bias -0.09885 -0.0744 -0.0524 -0.0308 -0.0525 -0.0493 -0.0100
Sd 0.01555 0.0167 0.0169 0.0194 0.0520 0.0088 0.0010

SPLOSH mean bias -0.15811 -0.1179 -0.0710 -0.02570 0.0180 0.0318 0.06761
Sd 0.02702 0.0309 0.0338 0.0398 0.0423 0.0379 0.0560

QVALUE mean bias -0.15089 -0.1217 -0.0895 -0.0593 -0.0307 -0.0142 0.0093
Sd 0.02661 0.0306 0.0302 0.0345 0.0368 0.0309 0.0255

Bootstrap 
LSE

mean bias -0.18009 -0.1499 -0.1080 -0.0691 -0.0313 -0.0126 0.0084

Sd 0.04242 0.0382 0.0351 0.0326 0.0299 0.0269 0.0232

SEP mean bias -0.15525 -0.1238 -0.0915 -0.0584 -0.0277 -0.0134 0.0138
Sd 0.02419 0.0239 0.0241 0.0265 0.0269 0.0203 0.0201

LSL Mean Bias -0.2710 -0.2203 -0.1667 -0.1110 -0.0554 -0.0292 0.0017
Sd 0.13333 0.1119 0.0902 0.0671 0.0410 0.0221 0.0165

Mgf mean bias -0.18322 -0.1468 -0.1349 -0.0898 -0.0460 -0.0235 0.0007
Sd 0.04633 0.0401 0.0140 0.0153 0.0160 0.0153 0.0128

PRE mean bias 0.14088 -0.1091 -0.0770 -0.0442 -0.0152 -0.0021 0.0194
Sd 0.02300 0.0239 0.0239 0.0291 0.0310 0.0269 0.0248
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Removing probe sets with less than 20% present rate will
leave us with 2999 probe sets, and qvalue indicates that
there are 977 of them that are significant with a q-value
less than 5% (p0 = 0.47). In general it is wise to remove
probe sets with low presence rate prior to analysis, since
this will make the inference more reliable, compare [20].
Doing so will most likely produce more true positives.

Data from Spira et al
Next let us turn to a case where there are rather few DEGs.
In [34] the results from a microarray experiment where
bronchial epithelial brush biopsies have been hybridised
to Affymetrix U133A arrays are presented. The biopsies
come from three different subject categories: Current
smokers, Never smokers and Former smokers. The cel
intensity files were downloaded from the NCBI Gene
Expression Omnibus (accession no. GSE994) [35]. The
Bioconductor package affy [19] was used to normalise
intensities with the quantile method, and to calculate the
RMA measure of abundance. The function mas5calls in affy
output absolute calls.

Here we will take a brief look at the comparison between
Former smokers and Never smokers. The comparison may

help identify genes that remain changed after smoke ces-
sation. A fuller analysis would include more analyses,
such as the Current smokers vs. Former smokers
comparison, and possibly also adjust for the fact that
Former smokers tend to be older than Never smokers
(Mean Age 45 and 53 years, respectively).

Graphical representations of the results appear in Figures
10 through 14.

Figure 10 suggests that rather few genes are changed. The
methods give the following estimates of p0 : bootstrap
0.92, mgf 0.97, PRE 0.97, LSL 1.00, SEP 0.98, SPLOSH
0.88, BUM 1.00 and smoother 0.92, compare Figure 11.
The estimates of FDR appear in Figures 12 and 13, and
show some separation between methods. The trio BH,
pava and qvalue largely agree. SEP LFDR and FDR stabilise
at a value above 0.8 when the cut-off approaches zero.
This is consistent: If the local FDR levels off, then the Aver-
aging Theorem, see Methods, implies that so will the FDR.
However, this level may seem incompatible with the
assessment of SEP that 2% of the genes are truly changed.
A rough calculation, replacing f by a histogram, would

Simulations of FDR based on dependent dataFigure 4
Simulations of FDR based on dependent data. All methods 
perform worse on dependent data. All except BH perform 
reasonably well. In the case of BH the problem lies mainly in 
the lower range of p0.
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yield the estimate of LFDR(p) = p0/f(p) = 0.22 in a vicinity
of p = 0.00025. Neither does it agree with locfdr, see Figure
14. Most likely the spline function employed by SEP is
playing tricks here. SPLOSH approaches 0.4 in a vicinity
of zero. BUM returns the estimate FDR ≡ 1, which is con-
sistent with its estimate of p0, but does not seem to agree
with Figure 11. The method may display numerical
problems with these data. The function qvalue finds one
gene significant with a q-value less than 5%. However, if
we restrict attention to the probe sets with at least 20%
present rate (9841 genes) there are fifteen genes fulfilling
the criterion.

Figure 14 displays the graphical output from locfdr, where
the LFDR seems to approach zero in the tails,
contradicting SEP, SPLOSH and BUM, but essentially
agreeing with the concordant trio BH, pava and qvalue.

Discussion
Over-all results will lump together performance under dif-
ferent conditions and may thus be less relevant for a par-
ticular application. For instance, in practice the
performance for high p0 will probably matter more than
that for lower values. When many genes are changed the

cutpoint will likely be chosen based on other criteria than
FDR, and hence the difference between methods becomes
less relevant. However, the detailed results presented here
should give the practitioner some guidance as to what
methods could be considered. Looking at the p-value
histogram one can find some decision support in the
choice of method. Comparing the output from several
methods provides further clues.

All the methods performed worse on the dependent data;
both the estimate of p0 and FDR suffered. To some extent
that may be due to the lower mean power of the
alternatives in that simulation model. However, the
methods were derived under the assumption of independ-
ence and the small difference in mean power of 0.08 does
not explain the great deterioration in most methods.
Indeed, for simulated datasets with weak dependencies
the results came close to the independent case, see the
Additional file.

Golub et al. data: p-valuesFigure 6
Golub et al. data: p-values. The blue and red lines represent 
the minimum and maximum estimate of p0 obtained from the 
six methods under investigation. The plateau to the right 
resembles a uniform distribution, and most likely to a large 
degree represents a population of unchanged genes.
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Through all tests PRE and pava FDR proved quite success-
ful. Of the methods for estimating FDR, qvalue has the
advantage of a well-documented and good track record,
and behaves well here. BUM displays a varying
performance, but does handle dependent data well. In
practice it will be difficult to know where on the scale
from independence to strong clumpy dependence a par-
ticular dataset will rate, if indeed it follows clumpy
dependence at all. LSL, and BH, have some problems, but
on the other hand they arise mainly at low p0, where they
probably matter the least. As noted above regarding the
Spira et al. data, SEP LFDR and FDR stabilised at a value
above 0.8 when the cut-off approaches zero. In other tests
SEP performed well, particularly with independent data.
BUM in this case produced the estimate FDR ≡ 1 which
can hardly reflect the truth.

The locfdr method offers the possibility to choose between
three different null type distributions. The choice of the
null type N(0,1) produced p0 estimates similar to those of
the other methods. The need to specify the transform m
may seem like an obstacle. But in many situations a
parametric test statistic with a known null distribution
exists. Alternatively, m could be identified by modelling a
bootstrap distribution [25].

All the described methods assume the p-values were
obtained in a reliable fashion, e.g. by a warranted normal
approximation, a bootstrap or a permutation method.
Reference [10] describes a case when a two-way ANOVA F-
distribution was used when the distributional assump-
tions were not met. The estimate of p0 gave an unrealistic
answer. When permutation p-values were used instead
their method gave a more realistic result. One always has
to bear this caveat in mind. To further complicate matters,
the permutation of sample labels approach is no panacea
if the independence between samples assumption does
not hold true, as detailed in [27]. (Let us follow the usual
convention that genes come in rows of the data matrix,
and samples in columns.) Permuting within columns
provided some remedy there. Misspecifying the null
distribution will jeopardize any simultaneous inference,
whether based on FDR or not. It may pay off to consider
the correlation structure in data, both in view of this find-
ing and in view of the different performance of methods
depending on the strength of correlations.

A blow-up of the region to the left of the dotted line in Fig-ure 7Figure 8
A blow-up of the region to the left of the dotted line in Fig-
ure 7. The SEP estimates of FDR and LFDR join at roughly 
0.07.
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The q-value q(pi) has been criticised for being too optimis-
tic in that it weighs in also genes that are more extreme
than i when calculating the measure. Note that a similar
criticism could be levied against the classical p-value: the
p-value gives the probability under the null hypothesis of
observing a test statistic at least as extreme as the one
observed. Also, there is no clear stable, reliable and tested
alternative. This is not to say that the q-value is
unproblematic, but it still has been studied and used
much more than e.g. the local FDR, which may suffer
from high random variation, see examples in [29]. Other
examples from Results section give evidence of stability.
Contrary to what one may anticipate the FDR is not
always more stable than LFDR [25]. The concept of a local
FDR seems quite interesting and may lead the way
towards improved inference, and it begs a thorough inves-
tigation of the various recently published options.

To avoid pit-falls in the inference one must use the total
information obtained from p0 and the FDR or q-value

curve, see also Storey in the discussion of [31]. There is not
one cut-off in terms of q-value that will suit all problems.
Take the case of Figure 12, where one will have to accept a
high FDR in order to find any DEGs. At the other end of
the spectre, in Figure 7, the cut-off can be much more
restrictive. The choice of cut-off must be made with a view
to one's belief regarding p0, and calculating the sum of (4)
and (5) to assess to total of false positives and false
negatives gives further guidance in this choice. In general
it makes sense to choose a cut-off in the region [0, αmin],
where αmin is the value which minimises the total relative
frequency of errors committed FP(α)+FN(α), see (4) and
(5). However, since false positives and false negatives
have different consequences with possibly different
losses, it is difficult to state an algorithm that would cover
all scenarios.

Conclusion
This article deals in the main with a simple frequentist
framework for the analysis of microarray experiments. The
conclusion is that the concept of the proportion of
unchanged genes and the related concept of a q-value or
false discovery rate are practical for such analysis.
Furthermore, there exists open source code that imple-
ments methods that address the needs of the practitioner

Spira et al. data: Former smokers vsFigure 10
Spira et al. data: Former smokers vs. Never smokers t-test 
statistic. The shape of the histogram indicates that there are 
more genes that are more highly expressed in Former smok-
ers than the other way round, but on the whole there are 
rather few DEGs. Indeed, the estimates of p0 vindicate this 
and suggest that less than 10% of the genes are DEGs. Com-
pare Figure 11.
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in this field. New methods gave evidence of improved per-
formance, allowing better control of the error rate and
thus enabling a more careful identification of DEGs.
Issues still remain and improvements will probably
appear over the next couple of years, but as a provisional
solution these methods have much to offer.

Methods
The current article focuses on the two-component model.
Other points of view exist. In reference [25] the two-com-
ponent model is reshaped into a conceptually attractive
one-group model allowing a continuum of effects.

Denote the pdf of p-values by f, the proportion of
unchanged by p0 and the distribution of the p-values for
the changed genes by f1. Then the pdf of p-values may be
written as

f(x) = p0 × 1 + (1 - p0)f1(x)  (8)

using the fact that p-values for the unchanged genes follow
a uniform distribution over the interval [0,1]. This model
is unidentifiable without further assumptions, e.g. that p-

values in a vicinity of 1 only represent unchanged genes.
From the non-negativity of pdf's, clearly

f(x) ≥ p0  (9)

This leads to the estimate based on the minimum of the
estimated pdf [1]

see also Figure 6. In most cases the minimum in (10) will
occur for some x close to or at 1. Hence (10) will in these
cases agree well with an estimate of f(1). If one has reason
to believe that p0 is close to 1, it may pay off to replace
(10) by the 25% percentile or simply put the estimate
equal to 1, in order to make overestimation more likely.

Spira et al data: Former smokers vsFigure 11
Spira et al data: Former smokers vs. Never smokers p-values. 
The binned densities in the histogram coupled with the ine-
quality (9) points to a value of p0 of more than 0.9. The red 
and blue lines represent the maximum and the minimum esti-
mate obtained from the methods under investigation.
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LSL
Let R(α) = # {i : pi ≤ α}, the number of rejected given the
cut-off α. In [36] the approximation

N - R(α) ≈ E[N - R(α)] ≈ N0(1 - α)

for small α and N0 = Np0 the number of true null hypoth-
eses appears. Consequently, (N - R(p(i))/(1 - p(i)) = (N - i)/
(1 - p(i)) will approximate N0, which lead the pioneering
authors to consider plotting 1 - p(i) against N - i, thus giv-
ing them an estimate of N0. In [26] the Lowest SLope
estimator (LSL) of N0 based on the slopes Si = (1 - p(i))/(N
- i + 1) is presented. Starting from i = 1, the procedure
stops at the first occurrence of Si0 <Si0-1, and outputs the
estimate

In [12] the two above estimates are presented, derived and
compared together with a method called Mean of

Differences Method (MD). MD and LSL are motivated by
assuming independence and approximating the gaps d(i) =
p(i) - p(i-1) (define p(0) = 0 and p(N+1)) ≡ 1) with a Beta(1, N0)
distribution, which has expectation 1/(N0 + 1). This
expectation may be estimated by the inverse of a mean of
the form

MD proceeds downward and chooses i0 equal to the first j
satisfying

Of these three methods LSL and MD give very similar
results, and outperform their predecessor [12].

LSL is available as function fdr.estimate.eta0 in package
GeneTS [18] with the option method= "adaptive".

The smoother
A method here referred to as the smoother appeared in
[9]. This method, like all presented, is based on a compar-
ison of the empirical p-value distribution to that of the
uniform distribution. There will likely be fewer p-values
close to 1 in the empirical than in the null distribution,
which is a uniform. The ratio of the proportion of p-values
greater than some η to the expected proportion under the
uniform distribution, 1-η, will give a measure of the thin-
ning of observed p-values compared to the null
distribution. Thus, with Fe denoting the empirical distri-
bution, the ratio {1-Fe(η)}/{1-η} will often be a good
estimate of p0 for an astutely chosen threshold η. A spline
is fitted to the function p0(η) = {1-Fe(η)}/{1-η}, and the
resulting function is evaluated at η = 1, yielding the
estimate

(tilde '~' above p0 denoting the spline-smoothed version
of p0(η)) which goes into the calculation of the FDR in
(2), see Figure 15. Note the relationship with LSL, p0(p(i))
= (N-i)/{(N-i+1)SiN}. It can be shown that for fixed η this
method offers a conservative point estimate of the FDR:

The q-value is estimated by combining (2), (7) and (11),
and an implementation is provided as the function qvalue
in package qvalue available on CRAN [18].

In [30] the authors go to great lengths to prove that for
fixed η, as above, the conservativeness remains under var-
ious forms of dependency, such as clumpy dependence.

Blow-up of region to the left of dotted line in Figure 12Figure 13
Blow-up of region to the left of dotted line in Figure 12. Leg-
end as in Figure 11A. SEP Local FDR and SEP FDR behave 
similarly in a vicinity of zero. These two methods indicate 
that the relative frequency of false positives stabilises to a 
value above 80% when the cut-off approaches 0. SPLOSH, on 
the other hand, approaches 0.4. Note that BUM does not 
appear in the graph.
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The Bootstrap LSE
Another approach pioneered by Storey in [3] is to use a
bootstrap least squares estimate (LSE), which chooses a
value of η in p0(η), that minimises the variation of the
estimate for random samples of the original p-values. The
bootstrap standard reference [37] provides more
theoretical background. Generate B new samples p-values
p*b (b = 1,..., B) by sampling with replacement from the
observed ones, calculate a measure of the Mean Squared
Error (MSE) of the corresponding estimates p*b

0(η) for a
lattice of values of η and choose the value minimising the
MSE. More formally, the optimal η is obtained through

The version of the bootstrap used in this article uses more
samples B than the version available in qvalue (B = 500
instead of B = 100), and seems to perform better (data not
shown).

Available in functions qvalue [18] and p0.mom (in package
SAGx) [18,38].

SPLOSH
In [11] a spline function estimates the log-transformed
pdf log[f(x)] using a complex algorithm involving splines
called spacings LOESS histogram (SPLOSH). To obtain a
stable estimate of FDR near zero a technique from
mathematical analysis called l'Hospital's rule is used to
approximate the ratio in (5) and to yield

,

where the numerator has been estimated as in (4). An R
package with the same name is available [39].

The FDR estimate (6) is used with F obtained by the non-
parametric estimate of the pdf.

Note that we can now calculate the posterior probability
given its p-value that a gene is a DEG as p1(x) = 1 - p0/f(x),
compare (3).

The method is available in R function splosh [40].

BUM
In [10] the authors assume a beta-uniform (BUM) distri-
bution, i.e. in (1) they replace f1 by a beta distribution,

f(x) = λ + (1 - λ)axa-1  (12)

where in addition to λ which corresponds to p0 the shape
parameter a has to be estimated. Thanks to the simple
form of the distribution it is possible to estimate parame-
ters through the maximum likelihood principle, i.e. by
choosing values that maximise the likelihood of
observing the p-values that were actually observed. How-
ever, due to problem in identifying p0 with λ, the authors
instead use an upper bound

which corresponds to f(1).

The FDR estimate (5) is used with F the cdf corresponding
to (12).

The authors provide R code for the application of their
method [39].

A more intricate Hierarchical Bayes model based on the
beta-uniform concept allowing for different parameter
values in different intervals appears in [41]. The R

The smoother estimate of p0Figure 15
The smoother estimate of p0. This is based on the ratio p0(η) 
= (1 - Fe(η))/(1 - η), the observed ratio proportion of p-val-
ues greater than η to the proportion expected from the uni-
form distribution. The data were simulated with p0 = 0.6. The 
red line represents the true value, while the blue gives a 
smooth curve representation of p0(η) approaching a limit 
close to the true value.
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function localFDR provides an implementation of the
method [42].

Poisson regression
In [28] it is suggested to estimate any empirical distribu-
tion by dividing the real axis into intervals and regarding
the number of hits in each interval as the result of an inho-
mogeneous Poisson process, much like counting the
number of cars arriving at a crossing during different time
intervals. This method was used in [27] to model the dis-
tribution of a transformed test statistic, it also appears in
function locfdr which estimates a local FDR as a function
of a test statistic. In our case, of course, the support of the
distribution is the unit interval [0,1]. Then the expected
number of hits in each subinterval of [0,1] can be
modelled as a polynomial in the midpoints of the subin-
tervals by a technique called Poisson regression (PRE).
The approach taken here is to choose a polynomial of low
degree so that the plateau representing the uniform distri-
bution is well captured. In doing so the ability the capture
the distribution at low p-values is sacrificed.

A more mathematical description now follows. The PRE
method assumes that the counts Sk follow a Poisson dis-
tribution whose intensity is determined by the midpoint
tk of the interval Ik, see [28]. To be specific: in the current
application it is assumed that the expected frequency of
observations in an interval is given by

where µo
k are the smoothed observed frequencies in each

interval Ik. In statistical jargon this is a Poisson regression
model with µo

k as offset. This assumes independence
between counts in different intervals. Although this does
not hold true the model succeeds to capture the essential
features of distributions. Standard functions in e.g. R can
fit this model. Normalising the curve by the total number
of p-values we get an estimate of the pdf. Finally, smooth
the pdf f(x) with a spline to obtain a more stable result,
and use the estimate (10). An implementation of PRE is
provided through R function p0.mom in package SAGx
[18,38].

SEP
The Successive Elimination Procedure (SEP) excludes and
includes pi successively such that the similarity of the dis-
tribution of the included tends to behave increasingly like
a uniform [13]. Finally, an index set Jfinal will map to a set
of p-values that represent the true null hypotheses. This
yields the point estimate

with NJ = # J, the cardinality of the set J. The identification
of Jfinal proceeds by an intricate optimisation algorithm
where the objective function consists of two terms : one
Kolmogorov-Smirnov score

for the empirical cdf FJ (based on J), to measure the dis-
tance to a uniform, and one penalty term to guard against
overfitting

for some tuning parameter λ.

A local FDR is obtained from smoothed histogram esti-
mates based on equidistant bins

,

where the function h0 refers to the Jfinal set and h to the
total set of p-values.

The function twilight in package twilight provides an
implementation of SEP [19].

Moment generating function approach
The next approach is based on the moment generating
function (mgf), which is a transform of a random distri-
bution, which yields a function M(s) characteristic of the
distribution, cf. Fourier or Laplace transforms, e.g. [43].
Knowing the transform means knowing the distribution.
It is defined as the expectation (or the true mean) of the
antilog transform of s times a random variable X, i.e. the
expectation of esXor in mathematical notation:

M(s) = ∫esx f(x)dx.

To calculate the mgf for p-values, we use the fact that the
pdf is a mixture of pdf's (8). This yields the weighted sum
of two transformed distributions:

,

where we have used the fact that the mgf of a uniform dis-
tribution over [0,1] equals g(s) = (es - 1)/s. Denoting the
second transform by M1(s) we finally have

M(s) = p0g(s) + (1 - p0)M1(s).  (13)
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Now, the idea is to estimate these mgf's and to solve for
p0. In the above equation M(s) can be estimated based on
an observed vector of p-values and g(s) can be calculated
exactly, respectively, while p0 and M1(s) cannot be esti-
mated independently. The estimable transform is, given
the observed p-values p = p1,..., pn, estimated by

Then, one can solve (13) for p0:

Let us do so for sn > sn-1, equate the two ratios defined by
the right hand side in (14) and solve for M1(sn). This gives
the recursion

If we can find a suitable start for this recursion we should
be in a position to approximate the increasing function

M1(s) for s = s1 <s2 < ... <sm in (0, 1]. Now, note that 1 ≤
M(s), for any mgf, with close to equality for small values
of s. It makes sense to start the recursion with some M1(s1)
in I = [1, M(s1)]. In general, it will hold true that 1 ≤ M1(s)
<M(s) <g(s), since f1 puts weight to the lower range of the
p-values at the expense of the higher range, the uniform
puts equal weight, and f being a mixture lies somewhere
in between. We can calculate g, M and M1 for an increasing
series of values in [0,1], e.g. for s = (0.01, 0.0101, 0.0102,
..., 1). The output from one data set appears in Figure 16.
Since all ratios (14) should be equal, a good choice of
M1(s1) will be one that minimises the variation of the
ratios. Standard one-dimensional optimisation will find
the value in I that minimises the coefficient of variation
(CV, standard deviation divided by mean)

where s = (s1, ..., sn). The CV will in contrast to the variance
put both small and high values of the ratios on an equal
footing and enable comparison.

Finally, these essentially equal ratios provide an estimate
of p0.

A heuristic convexity argument suggests that mgf over-
estimates p0, see the Additional file. Furthermore, the bias
seems to decrease as p0 grows.

An implementation of mgf appears as function p0.mom in
package SAGx [18,38].

Local FDR and FDR
The concept of a local false discovery rate originates from
[1]. Let the (true) local FDR at t be defined as the
probability that gene i is unchanged conditional upon
that its p-value equals t, or in formulas : LFDR(t) = Pr(gene
i unchanged | pi = t) = p0/f(t). The Averaging Theorem of [4]
states that integrating the local FDR over the rejection
region R, such as R = [0, 0.01], yields the FDR : FDR(R) =
E[LFDR(y) | y ∈ R]. In [29] it is noted that the estimated q-
value equals the mean of a local FDR

where the local FDR at the ith ordered p-value p(i) equals

,

where N denotes the total number of genes. This rephrases
the theorem in terms of estimators. The local FDR is
meant as an approximation of the probability that an
individual gene i is a DEG. As remarked in [29] the q-

Estimated moment generating functions (mgf's)Figure 16
Estimated moment generating functions (mgf's). Given an 
observed vector of p-values it is possible to calculate mgf's 
for the observed distribution f (M) and the unobserved dis-
tribution f1 (M1), and without any observations we can calcu-
late the mgf for the uniform (g).
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value does not estimate the probability that a gene is a
false positive. Indeed, the theorem shows that it is the
mean of that probability for all genes at least as extreme as
i. Thus the q-value will tend to give a lower value than
LFDR(i).

Under a wide range of models, where f(x) is non-increas-
ing, e.g. the BUM model, the expected local LFDR(i) will
be non-increasing, and hence the differences above
should tend to increase, see the Additional file. Hence
there is a need for enforcing monotonicity as in (7). One
tool for enforcing monotonicity is the Pooling of Adjacent
Violators (PAVA) algorithm [44]. This algorithm has an
intuitive appeal, is less ad-hoc than the local spline
approach presented in [29], and is the non-parametric
maximum likelihood estimate under the assumption of
monotonicity. As an example of how it works, consider
the series (1,2,4,3,5), which PAVA turns into the non-
decreasing series (1, 2, 3.5, 3.5, 5) by pooling the violators
of monotonicity (4, 3) and replacing them by their mean.
Though not equivalent to the q-value from (2) and (7),
the results from applying PAVA to the terms in (15) agreed
rather well with the values obtained from function qvalue.
In the Results section this approach combined with the
PRE estimate of p0 is referred to as pava FDR. We could

have used mgf for calculating FDR, but it was excluded
due to the better over-all performance of PRE.

The bootstrap LSE gives a very similar result to the
smoother and thus was excluded in comparison of FDR
estimates.

The R function pava.fdr in package SAGx provides an
implementation of pava FDR, and returns a list of esti-
mates of FDR, LFDR and p0 [18,38].

The reference [25] presents the theory behind the estima-
tion of local false discovery rates provided by R package
locfdr [18,25]. The method procedes by transforming the
test statistic t into Z = Φ-1(m(t)), where Φ is the cdf corre-
sponding to N(0,1) and m is a transform that for the
uninteresting/null class renders the distribution of Z into
a N(0,1). Typically, m could equal the cdf of the t-distribu-
tion. Assuming the model (1) the method estimates the
mixture density ft using Poisson regression, and fits either
a theoretical null sub density (from now on suppressing
superscript t and denoting the pdf corresponding to Φ by
φ) f+

0(z) = p0 φ(z) around z = 0, or fits an empirical null dis-
tribution. Then the procedure estimates the local false dis-
covery rate fdr(z) = f+

0(z)/f(z).
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