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ABSTRACT

Motivation: Microarray data typically have small numbers of obser-

vations per gene, which can result in low power for statistical tests.

Test statistics that borrow information from data across all of the genes

can improvepower, but thesestatisticshavenon-standarddistributions,

and their significance must be assessed using permutation analysis.

When sample sizes are small, the number of distinct permutations can

be severely limited, and pooling the permutation-derived test statistics

across all genes has been proposed. However, the null distribution

of the test statistics under permutation is not the same for equally

and differentially expressed genes. This can have a negative impact

on both p-value estimation and the power of information borrowing

statistics.

Results:We investigate permutation based methods for estimating p-

values. One of methods that uses pooling from a selected subset of the

data are shown to have the correct type I error rate and to provide

accurate estimates of the false discovery rate (FDR). We provide

guidelines to select an appropriate subset. We also demonstrate that

information borrowing statistics have substantially increased power

compared to the t-test in small experiments.

Contact: garyc@jax.org

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Microarray technology has made possible the simultaneous expres-

sion profiling of thousands of genes but cost and other considera-

tions often limit the number of replicated samples in an experiment.

Testing for the differential expression of many genes on small

numbers of samples is problematic. However it is possible to lever-

age the multiplicity of genes to our advantage.

The most widely used statistical method for comparing two

groups is the t-test and, not surprisingly, it is common in microarray

data analysis. However, problems with the t-test are known to arise

when the number of observations per gene is small due to instability

in the estimation of gene specific variances (Tusher et al., 2001;
Smyth et al., 2003). Microarray data provide information from

thousands of genes, and the combined information can be used

to obtain stable variance estimates. Test statistics that utilize across-

gene information, such as Fs(Cui et al., 2005) and B (Lonnstedt and

Speed, 2002; Smyth, 2004), have been developed but the null

distributions of these statistics are not known. Permutation analysis

is the best available method to obtain p-values.

To estimate a p-value for gene g (g¼ 1, . . . ,G) using permutation

analysis, one first calculates the observed test statistic Tg. Then
one redistributes the observations among the test and control groups

and recalculates the test statistic, T*
g1. Depending on the size of the

experiment, one can either enumerate all possible permutations or

generate a random sample of permutations. The p-value is estimated

by counting the number of T*
g ¼ fT*

gi : i ¼ 1‚ . . . ‚Mg that are

greater than or equal to Tg and dividing by the total number of

permutations, M. When the sample size is 3 per group, there are

20 possible randomizations. There are 10 distinct values of the test

statistic ignoring the sign, and thus the smallest possible p-value is
0.1. Similarly for an experiment with 5 samples per group, there

are 126 distinct values of the test statistic under permutation, and

the smallest possible p-value is 0.008. Thus small sample sizes

can severely restrict the possible p-values that can beobtained in

a permutation analysis. The need for multiple test adjustments

exacerbates the problem.

To overcome this problem, pooling of permutation-derived test

statistics across all genes has been proposed (Storey and Tibshirani,

2003). We let T* ¼ [G
g¼1 T*

g and use entire set of test statistics

across all genes as a null distribution to estimate p-values for

each gene. As noted by Storey and Tibshirani (2003), the null

distribution of each differentially expressed gene might be differ-

ent, and thus the distribution of the pooled sample distribution

represents a mixture. Differential expression tends to increase the

variance of the null distribution. The pooled null distribution from

experiments with many differentially expressed genes will have

heavier tails, and the p-values estimated from this distribution

will tend to be conservative. Storey and Tibshirani argued that

the mixture distribution should not be a problem for false discovery

rate (FDR) estimation, however our simulation study shows that it

can be problematic in small experiments where pooling is essential.

Xie et al. (2005) and Fan et al. (2005) noted problems with the

permutation test and proposed a modification that involves pooling

p-values over a selected subset of the data. Fan et al. (2005) use
individual gene tests based on the t-distribution to obtain the subset.
Xie et al. (2005) select a subset by removing the same number of

genes as are estimated to be differentially expressed (DE) genes.

However estimating the number of DE genes is a challenging

problem. We have adopted these ideas and develop them further.

We propose several strategies for obtaining subsets of genes for

pooling.

To assess the validity of the resulting p-values we consider three
properties. The first is the type I error rate. For any a in (0,1),

we require that the test of a true null hypothesis will yield a

p-value less than a with probability no larger than a. This is an

essential condition to be met. The second property is the accuracy�To whom correspondence should be addressed.
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of the estimated FDR obtained from the p-value distribution. This is
important due to the widespread use of FDR to correct for multiple

testing in microarray experiments. Finally, on the condition that a

method yields the right type I error rate, we prefer a method with

good power.

In this paper, we study two-condition comparisons but we note

that the proposed methods are readily extended to multiple condi-

tions. We demonstrate the performance of the different p-value
estimation methods using the t-statistic and two information bor-

rowing statistics. We define the ts statistic to be the two-condition

comparison form of the Fs statistic, and tb is the moderated t-statistic
(Smyth, 2004). These modified forms of the t-statistic ‘borrow

information’ from other genes, but they differ in the methods

used to estimate error variances.

2 METHODS

2.1 Test statistics for two condition experiments

The t-statistic is used to test whether a gene is DE or equally expressed (EE)

between two conditions. The estimated variance in the denominator of the

t-statistic is based only on data from one gene. It can be unstable and

may result in poor overall performance of the t-test. It would be desirable

to pool variance estimates across all genes but simple averaging does not

allow for gene specific variances (Cui et al., 2005).

Each gene in a microarray experiment can have its own unique variance.

This may be a consequence of biological or technical factors but it is clear

from our experience that variances are variable across genes to a greater

extent than expected due to statistical errors of estimation. To derive stable

gene specific variance estimates, we can borrow information across genes

by shrinking the variance estimates toward a prior value or toward their

bias-corrected geometric mean. When the true variances are highly variable

it is desirable to shrink less. When the true variances are similar we should

shrink more. In this way the new variance estimates adapt to the degree of

heterogeneity of variances.

The statistics t, ts and tb differ in how each estimates the variance. Let St,

Ss and Sb be the variance estimates used to compute the t, ts and tb statistics,

respectively. Sb and St have a simple linear relationship Sb ¼ aþ bSt, where

a ¼ d0s
2
0/ðd0 þ dgÞ and b ¼ dg/ðd0 þ dgÞ when s20 is a prior estimator of

variance, and d0 and dg are degrees of freedom of s20 and St, respectively

(Smyth, 2004). Ss is derived as a James–Stein estimator of variance on the

log scale, and log(Ss) and log(St) have a linear relationship (Cui et al., 2005).
Sb and Ss both are empirical Bayes estimators.

2.2 Estimation of p-values

Permutation p-values were proposed by Fisher (1935) as a measure of

‘strength of evidence’ against a simple null hypothesis. For small sample

experiments, one can list all possible arrangements of the data into treatment

groups and measure the extent to which the observed configuration is

extreme. In microarray experiments, permutation of observations from a

single gene can yield exact and unbiased p-value estimates for that gene.

However, since the null distributions from each gene might be different,

pooling the permuted data test statistics across genes cannot be guaranteed

to yield correct p-values. Xie et al. (2005) have observed that permutation

test statistics can overestimate the tails of the null distribution resulting

in conservative inference. The problem arises because the permutation

distribution of DE genes will have a larger variance than that of EE genes.

Ideally we would derive null distributions individually for each gene and

circumvent this problem. However, when the number of samples is small, the

resulting p-values are too sparse, and the smallest attainable p-value can

be too big. Thus there is a need to obtain a sufficient number of permuted test

statistics to obtain an accurate estimation of the null distribution.

Follow the suggestion of Xie et al. (2005) and Fan et al. (2005), we

consider using a selected subset of the data for the permutation analysis.

We will address the subset selection procedure further in section 3.2, and

first investigate the p-value estimation methods. We propose two strategies.

� Subset selection before permutation: for each gene g calculate the

t-statistic and remove the gene if the absolute value is bigger than the

a-level critical value of the t-distribution. Using remaining genes

( j � f1‚ . . . ‚Gg), conduct a permutation analysis and pool the resulting

test statistics toobtainT*
j ¼ fT*

j1‚T
*
j2‚ . . . ‚T

*
jMg. Thencomputeestimated

p-values for all genes g ¼ {1, . . . ,G} based on the set T*
j .

� Subset selection after permutation: for all genes (g ¼ f1‚ . . . ‚Gg)
conduct a permutation analysis to obtain test statistics

T*
g ¼ fT*

g1‚T
*
g2‚ . . . ‚T

*
gMg, and form a pool using only the T*

j from

genes whose absolute t-statistics are bigger than the a-level critical

value of the t-distribution. Compute estimated p-values for all genes

from this set.

The test statistic T need not be the t-statistic, and in this paper t, ts and

tb statistics are studied. Both methods use the standard t-statistic to define

the subset, but they differ in the stage at which we select the subset. This

difference is only relevant to the information borrowing statistics. If a

test statistic is calculated based on data from each individual gene, as is

the case with the standard t-test, the two subset selection methods are

identical.

One advantage of using the t-distribution to define a subset is that the

criteria for selecting a subset will be sensitive to the number of true DE genes

in the data. Optimal subset selection should depend on the number of DE

genes; when there are many (few) DE genes, we should remove many (few)

genes from the set to be pooled. Removing too many or too few genes can

alter the estimated null distribution as we illustrate below. The choice of an

appropriate percentile of the t-distribution is investigated in our simulations,

and here we use the a ¼ 0.10 (two tailed) critical value. Another advantage

is that it provides a reasonably robust selection criteria that does not rely on

permutation analysis.

2.3 Simulation design

We conducted a simulation to compare the performance of the different test

statistics and p-value estimation methods. We focus on small sample size

experiments having two conditions, test versus control, and sample sizes of

3.5 or 10 per condition. We generated data from 10 000 genes and varied the

proportion of DE genes as 0.01, 0.1 or 0.5. Control group data and test group

data for EE genes were drawn from a N(0, s2
g) distribution, where s

2
g could

be constant, moderately variable or highly variable. For the constant variance

case, we set s2
g ¼ 1, otherwise we sampled random variances for each gene

from an inverse Gamma distribution. Note that when s2
g � 1/Gamma(a,a),

the mean is E(s2
gÞ ¼ a/ða�1Þ and the variance is

Var(s2
gÞ ¼ a2/ðða�1Þða�2ÞÞ. For moderately variable variances we used

a ¼ 30, and for highly variable variances we used a ¼ 5. Test group data for

DE genes were drawn from a N(mg, s
2
g) distribution, where mgwere sampled

from a Gamma(a,b) distribution. To allow the variance of mg( ¼ a
b2
) to

increase with the mean of mg( ¼ a
b), and mean of mg to be 0.5, 1,

2 and 4, respectively, we sampled mg � Gamma(4, 8), mg � Gamma(4, 4),

mg � Gamma(8, 4) and mg � Gamma(17.5, 3.5). Supplementary Figure 1

illustrates the distributions of s2
g and mg under each parameter setting. In

total we consider 108 different parameter settings using three sample sizes,

three proportions of DE genes, three degrees of variance heterogeneity and

four average fold changes, in all combinations. We discuss only the most

interesting cases below.

3 RESULTS

3.1 Simulation results

We generated data as described in Methods and computed p-values
using 15 different methods. Five methods were used to estimate

p-values from t-statistics: the t-distribution (tab.t), permutation of
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individual genes with no pooling (ind.t), permutation of EE genes

with pooling (null.t), permutation of all genes with pooling (pool.t)
and permutation with a subset of genes selected for pooling

(poolb.t). As we noted earlier, subset selection before or after

permutation are identical for the t test, which does not share

information across genes. The permutation of EE genes (null.t)
is only possible in simulations as, in practice, the EE or DE

status of a gene is not known. It provides a truth standard in the

simulation. We also used five different methods to derive p-values
from each of the ts and tb statistics. We denote the ts methods

as null.ts, ind.ts, pool.ts, poolb.ts, poola.ts and similarly for tb.

The t-distribution is not appropriate for information borrowing

statistics and subsetting before (poolb.ts) or subsetting after

(poola.ts) are distinct.

To assess performance, we considered the true type I error rate,

the accuracy of FDR estimation and the power of each method.

Because the p-values null.t, null.ts or null.tb are obtained on the

correct null distribution, we used these asa reference.

Type I error rate We compared the number of false positives

obtained in each simulation to its expectation which is the number

of EE genes times the significance level a. For example, when the

number of EE genes is 1000, we expect 10 false positives at the

a level .01. If the observed number of false positive results is greater

than 10, the estimated p-values are liberal and if it is smaller, the

p-values are conservative. A conservative test may be acceptable,

but there is likely to be a corresponding loss in power. Liberal test

are regarded as unacceptable.

Figure 1A–C illustrates the case of an experiment with sample

size of 3 per group, 5000 DE genes with a mean log2 fold change

of 4, and highly variable variances. We observed that pooled

p-values (pool.t, pool.ts and pool.tb) result in conservative tests.

Selection of genes for pooling after permutation (poola.ts and

poola.tb) results in under-estimation of p-values and thus the test

is liberal. Selecting the subset before permutation (poolb.ts and

poolb.tb) results in the expected type I error rate. We note that

ts and tb showed similar performance. Similar results were obtained

under the other parameter settings. However, when the number of

DE genes and the mean level of differential expression decreased or

the experiment size increased, the differences among the p-values
from different procedures were less apparent.

False discovery rate FDR has become the standard method for

establishing significance in the multiple testing context of microar-

ray data. FDR relies on properties of the p-value distribution and is

estimated under the assumptions that p-values of EE genes follow

a uniform distribution and those of DE genes are stochastically

smaller (Storey, 2002). We examined our p-value estimation meth-

ods from the perspective of obtaining accurate FDR estimates.

Figure 2 shows histograms of p-values from four of these methods

obtained under the same conditions as the simulations in Figure 1.

Histograms of pooled p-values (pool.t and pool.ts) show a slightly

U-shaped density with too few moderate (0.25 to 0.75) p-values.
The poolb.t and poolb.ts estimates (as well as null.t and null.ts)
are uniform across the entire right half of the histogram (P > 0.25).

This suggests that FDR estimates obtained from pooled p-values

Fig. 1. Comparisons of 15 different p-value estimation procedures. p-values were obtained for simulated data from an experiment with sample size three per

group, 5000 DE genes with mean log2 fold change of 4, and 5000 EE genes. (A–C) show the numbers of false positives. (D–F) show true FDR versus estimated

FDR using the qvalue function and (G–I) show the numbers of true positives. (A, D andG) and (B, E and H) compare results using t and ts statistics, respectively.

(C, F and I) compare thets and tb statistics.
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may not be as reliable as those obtained with subset selection before

permutation. Results using the tb statistic look identical to those

from the ts statistic.

In order to validate this expectation we calculated the true FDR

and the estimated FDR using the qvalue function (Storey, 2002)

written in R language (Ihaka and Gentleman, 1996). It is desirable

that the true and estimated FDR should agree. Figure 1D–F indicates

that FDR is overestimated by pooled p-values, consistent with the

findings of Xie et al. (2005). With selection after permutation, FDR

is under-estimated. The selection before permutation procedures

provide accurate FDR estimates and again ts and tb show similar

performance.

We also examined the standard deviations of FDR estimates for

each parameter setting to assess the precision of the simulation

study. We generated 200 independent datasets from a parameter

setting, calculated p-values, q-values and then standard deviations

of q-value corresponding to the a = 0.20, 0.10, 0.05, 0.01 two-tailed

critical values of the t distribution. The standard deviation of each

q-value at each percentile was surprisingly small (<10�6), confirm-

ing the consistency of the previous result.

Power to detect DE Here we consider the true positive rate

(power) of each method. Figure 1G–I shows the numbers of true

positives. We found that subset selection after permutation yielded

the greatest power, but because these tests were liberal we did not

consider this to be relevant. The pooled p-values are conservative

and have low power. For each of the three test statistics, t, ts and tb,

the number of positive results obtained with subset selection before

permutation agrees well with tests based on the true null distri-

bution. The information borrowing statistics ts and tb provide the

best power.

Based on these simulations, we can conclude that the pooled

p-value is conservative, that tests based on a subset of genes selected
before permutation perform best consistently and that the informa-

tion borrowing statistics provide the best power.

3.2 Thresholds for subset selection

In the preceding simulations, we compared p-value estimation

methods and used the a ¼ 0.10 critical value of the t-distribution
to define the selected subsets. We have determined that subset

selection before permutation provides the most appropriate

p-value estimates but did not examine the effect of the criteria

for subset selection. To address this question, we reanalyzed the

simulated data using the a = 0.20, 0.15, 0.10, 0.05, 0.01, 0.001

critical values of the t-distribution as threshold values for subset

selection. For each parameter setting, we computed p-values using
different thresholds for subset selection. Table 1 shows the numbers

of genes retained in the selected subsets from two simulated data

sets each having 5000 DE genes with mean log2 fold changes

of 4 and 0.5, respectively.

More genes are removed from the pool when the data have more

DE genes or higher mean log2 fold change. Thus the subsetting

is adaptive to these features of the data. We fit LOWESS curves to

the difference between null.ts and poolb.ts p-values (Figure 3A

and E). We can see that using a¼ 0.001 or 0.01 critical value of

the t-distribution as a threshold yields p-values that are different

from the true null distribution. This is a consequence of failure to

remove DE genes. We see that using the a ¼ 0.20 critical value of

the t-distribution as a threshold also yields a conservative result.

This can be explained by the behavior of the ts statistic. Supple-

mentary Figure 2 shows that genes removed tend to have larger

variance than those that are not removed. Thus, as we remove more

genes, greater homogeneity of variances among the remaining

genes leads to a greater shrinkage and to a conservative result.

In summary, trimming too many genes or trimming too few both

perturb the null distribution and can result in conservative tests.

To identify an optimal threshold, we fit LOWESS (Cleveland,

1979) curves to the ts statistic versus�log(p-value) (Fig. 3B and F).

Here we only used pool.ts and null.ts. Note that�log(p-value) from
null.ts exponentially increases as ts increases. This is the pattern that
we expect when the correct threshold is used. �log(p-value) from
pool.ts also increases as ts increases, but there is an inflection at ts �
2. When ts < 2, the pool.ts and null.ts are quite similar, but ts >2 the
pool.ts p-values tend to be bigger than null.ts p-values. We marked

the critical values of the t-distribution along the LOWESS curves in

Figure 3B and F using vertical lines. The a¼ 0.10 critical values of

the t-distribution is quite close to the inflection point, suggesting

that this is a reasonable threshold for subset selection.

The numbers of true and false positives obtained using poolb.ts at
each critical value are showing in Figure 3C and G, D and H,

respectively. Again we see that p-values obtained from threshold

below the a ¼ 0.05 critical values are too conservative, and that

thresholds above the a ¼ 0.15 critical value are also slightly con-

servative. When the mean log2 fold change of DE genes is 0.5,

p-values obtained using a ¼ 0.20 critical value of the t-distribution
as a threshold shows the largest deviation from the null. Although

the difference is not large compared to the data in which the mean

log2 fold change of DE genes is 4, this indicates that removing too

many genes is not desirable.

Fig. 2. Histograms of p-values obtained using estimation procedures pool.t, poolb.t, pool.ts and poolb.ts on simulated data from an experiment with sample size

3 per group, 5000 DE genes with mean log2 fold change 4, and 5000 EE genes. Histograms are truncated to 300.

Table 1. Numbers of genes remaining after the subset selection from two

data sets; each has 5000 DE genes with a mean log2 fold change of 4 (Data 1)

and 0.5 (Data 2). Six critical values, a ¼ 0.20, 0.15, 0.10, 0.05, 0.01 and

0.001, were used to select the subsets

a 0.20 0.15 0.10 0.05 0.01 0.001

Data 1 4148 4454 4818 5399 6963 9124

Data 2 7659 8218 8748 9318 9856 9988
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We compared different thresholds for other simulation parame-

ters and found that the a ¼ 0.10 critical value of the t-distribution
works well in all cases that we considered in this simulation study.

Thus, we recommend a ¼ 0.10 critical value of the t-distribution
as a threshold, however it may be desirable to fit the LOWESS curve

to the pooled p-value estimates obtained from a given dataset and

check for the location of the inflection point.

In summary, simulation studies show that p-values based on

subset selection before permutation with the a ¼ 0.10 critical

value of the t-distribution as a threshold performs better than

other p-value estimation methods considered here.

3.3 Applications to Real Data

In this section we consider the behavior of p-values obtained with

pooling and with the subset selection before permutation procedures

using real data. Data from Affymetrix MOE430v2 arrays, run in the

gene expression facility at The Jackson Laboratory, are available at

http://www.jax.org/staff/churchill/labsite/datasets. We chose three

microarray experiments to represent cases with many, moderate

numbers, and few DE genes, respectively. In each case we com-

puted five p-values, tab.t, pool.t, pool.ts, poolb.t and poolb.ts, using
the a ¼ 0.10 critical value of the t-distribution as a threshold for the
subset selection. Table 1 shows the numbers of genes remaining

after subset selection. For data with more DE genes, the selected

subset is smaller but in all cases the numbers are more than adequate

to obtain precise estimation.

Histograms of p-values from each dataset and each of five

methods are provided in Supplementary Figure 3. Compared

with the pooled p-value, the selected subset p-values have a sharper
peak, a wider uniform area and a higher estimated proportion of EE

genes (p0).

Figure 4 shows the number of genes declared DE as a function of

the q-value. We can see that the number of detected genes using the

pooled p-value is quite small for small q-values and that it abruptly

increases as the q-value is raised. The number of detected genes

using the subset selection before permutation method increases

smoothly. The subset selection before permutation method always

yields the greatest number of detected genes compared with other

methods. Table 2 shows number of genes declared as DE using

p-value ¼ 0.001, q-value ¼ 0.01 and q-value ¼ 0.05 as critical

values for detection.

4 DISCUSSION

We have demonstrated that p-values computed by pooling test

statistics across genes tend to have a heavier tail than the true

Fig. 4. Numbers of detected genes as a function of the q-value from three real microarray data havingmany,moderate numbers, and fewDEgenes. Five different

p-value estimation procedures (tab.t, pool.t, pool.ts, poolb.t and poolb.ts) were applied to datasets and the a¼ 0.10 critical value of the t-distribution was used to

create the subset.

Fig. 3. Comparisons of different thresholds for subset selection: (A–D) show results from simulated data in which the mean log2 fold change of DE genes is 4.

(E–H) show result from simulated data in which the mean log2 fold change of DE genes is 0.5. A and E show LOWESS curve fitting to null.ts p-value versus the
difference between poolb.ts and null.ts p-value. Six different thresholds (a ¼ 0.20,0.15,0.10,0.05,0.01,0.001 critical values of the t-distribution) were

used to obtain poolb.ts p-value. B and F show LOWESS curve fitting to the ts statistic versus �log(p-value). null.ts and poolb.ts were used to obtain p-value.

(C and G, D and H) show the numbers of false positives and true positives, respectively.
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null distribution computed by permuting EE genes, and thus result

in conservative inference. This is a consequence of the fact that

the null distribution represents a mixture from EE and DE genes.

Following Xie et al. (2005) and Fan et al. (2005), we proposed

pooling using a subset of genes and demonstrated that such p-values
can provide correct type I error, unbiased FDR estimates and good

power. We recommend using the standard t-test to define the subset
for pooling, but LOWESS curve fitting to the pooled p-values could
be used to determine a threshold for subset selection. Our simulation

study shows that a ¼ 0.10 critical value of the t-distribution serves

well as a threshold in the situations studied here. The effects of the

subset selection before permutation method are less pronounced

when there are fewer DE genes, when the mean effect size is

small and when the sample size is large (10 or more per group).

For small experiments we found that complete enumeration of the

permutation distribution was desirable and for larger experiments

that no fewer than 1000 permutations should be used to obtain stable

p-values.
The information borrowing statistics, ts and tb can be substantially

more powerful than the standard t-test in small experiments. These

two statistics show very similar performance. Selection of the subset

for pooling should be done before computing these test statistics on

the permuted data.

We have restricted attention to two condition comparisons using

t, ts and tb statistics. However the method of subset selection and

pooling extends directly to the case of multiple group comparisons.

In this case we recommend using the standard F-test to select a

subset and an information borrowing statistics such as Fs (Cui et al.,
2005) or B statistics (Lonnstedt and Speed, 2002; Smyth, 2004) to

carry out analysis. In the case of experiments with multiple sources

of variation (random or mixed effects ANOVA) the Fs statistic

allows fitting and shrinkage of multiple variance components.

The subsetting before permutation method with Fs statistic is imple-

mented in latest release of R/mannova (version 1.2.1 : http://www.

jax.org/staff/churchill/labsite/software).
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(number of genes), estimated EE gene proportion (p̂p0) and number of

detected genes using p-value ¼ 0.001, q-value ¼ 0.01 and q-value ¼ 0.05

from three microarray datasets having many (Data 1), moderate numbers

of (Data 2) and few (Data 3) DE genes. (� out of 45101 total genes)

Data Number

of genes�
Procedure p̂p0 p-value q-value

0.001 0.01 0.05

Data 1 29401 tab.t 0.44 1528 4983 11 105

pool.t 0.47 409 3398 11 069

pool.ts 0.47 441 3994 12 563

poolb.t 0.48 1551 5707 12 655

poolb.ts 0.48 3073 7308 13 663

Data 2 36904 tab.t 0.69 360 1573 4831

pool.t 0.75 244 1612 5403

pool.ts 0.74 281 1665 5350

poolb.t 0.77 489 2176 6153

poolb.ts 0.76 571 2253 6099

Data 3 38029 tab.t 0.78 110 865 3863

pool.t 0.80 113 916 4098

pool.ts 0.81 105 847 3927

poolb.t 0.83 203 1368 4798

poolb.ts 0.84 205 1283 4564

Estimating p-values in microarray experiments

43

http://www

