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ABSTRACT

Motivation: The field of microarray data analysis is shifting emphasis

from methods for identifying differentially expressed genes to

methods for identifying differentially expressed gene categories.

The latter approaches utilize a priori information about genes to

group genes into categories and enhance the interpretation of

experiments aimed at identifying expression differences across

treatments. While almost all of the existing approaches for identifying

differentially expressed gene categories are practically useful, they

suffer from a variety of drawbacks. Perhaps most notably, many

popular tools are based exclusively on gene-specific statistics that

cannot detect many types of multivariate expression change.

Results: We have developed a nonparametric multivariate method

for identifying gene categories whose multivariate expression

distribution differs across two or more conditions. We illustrate our

approach and compare its performance to several existing proce-

dures via the analysis of a real data set and a unique data-based

simulation study designed to capture the challenges and complex-

ities of practical data analysis. We show that our method has good

power for differentiating between differentially expressed and non-

differentially expressed gene categories, and we utilize a resampling

based strategy for controling the false discovery rate when testing

multiple categories.

Availability: R code (www.r-project.org) for implementing our

approach is available from the first author by request.

Contact: dnett@iastate.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Microarray technology has enabled researchers to simulta-

neously measure the transcriptional expression levels of tens of

thousands of genes in each of multiple biological samples. This

information provided by microarray experiments is often used

to identify genes that differ in expression across two or more

treatments. Identification of such genes can provide clues about

gene function and provide insight into the molecular genetic

mechanisms underlying biological processes.
Deriving biological understanding from a list of genes

that have been declared to be differentially expressed (DDE)

is a challenging enterprise. Researchers typically use pre-

existing information about the functions of genes to interpret

the impact of varying treatments on gene expression. Pre-

existing information about gene function can be derived from a

variety of sources (Boeckmann et al., 2003; The Gene Ontology

Consortium, 2000; Sonnhammer et al., 1997; Kanehisa and

Goto, 2000). Regardless of the information source, the genes

represented on a microarray slide can usually grouped into

several categories, including a large category for genes with

unknown function. The proportional representation of each

category among the DDE genes can be compared to the

proportional representation of each category on the micro-

array. Gene categories that are in some sense overrepresented

or underrepresented among the DDE genes are then judged to

play an important role for understanding how treatments affect

the transcriptional program of the organism under study.
Many authors have proposed statistical methods for

identifying gene categories that are over or underrepresented

among DDE genes, and several software packages are available

for scientists wishing to implement such analysis. References to

much of the work in the area can be found in review articles by

Khatri and Drǎgichi (2005) and Allison et al. (2006). The most

popular approaches use variations of Fisher’s exact test to

identify categories whose representation among the DDE genes

differs significantly from the expected representation under an

often unstated null hypothesis. Basically, such procedures test

whether the number of DDE genes from a certain category is

significantly more or less than would have been expected if the

DDE genes had been randomly and independently drawn

without replacement from the collection of all genes repre-

sented on the microarray.
While such tests are intuitively appealing to many scientists

as a natural way to focus attention on categories with many (or

few) DDE genes, the methods have been criticized on statistical

grounds by Allison et al. (2006), Barry et al. (2005),

Subramanian et al. (2005), and Goeman and Bühlmann

(2007) among others. We review some of these criticisms and*To whom correspondence should be addressed.
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add a few of our own in Section 3. Partly in response to the

drawbacks associated with these methods, Subramanian et al.

(2005) and Barry et al. (2005) derived new methods for

identifying gene categories of interest. Although the methods

differ considerably in approach, they share the common goal of

attempting to identify gene categories that consist of genes that

are in some sense significantly more differentially expressed

than all other genes.
Rather than pitting groups of genes against each other to

compete for attention based on gene-specific assessments of

differential expression, we propose a nonparametric multi-

variate method for identifying gene categories whose joint

expression distribution differs across treatments. We view our

approach as a more powerful and more natural method for

identifying gene categories of special interest. As simple

motivation for our multivariate approach, consider Figure 1

which shows—for each of two treatments—the multivariate

expression distribution for a category consisting of two genes.

Although the multivariate expression distribution of the

category clearly depends on the treatment, the distribution

of each individual gene is identical for both treatments.

Thus, regardless of sample size, the treatment effect illustrated

in Figure 1 would be invisible to the existing methods

that are based on measuring differences across treatments

separately for each gene. In contrast, the method we propose

would easily identify the depicted two-gene category as a

category of interest with sufficiently large samples for each

treatment group.
Although the example in Figure 1 is completely hypothetical,

we find that our method exhibits greater levels of discovery for

real data relative to comparable methods based on gene-specific

tests. We illustrate this behavior using one example in Section 4.

Our example involves a microarray experiment aimed at

understanding expression differences between wild type mice

and mutant mice lacking a functional copy of the Myostatin

gene, an inhibitor of skeletal muscle growth. The mutant mice

develop muscles that weigh 2–3 times those of the wild

type mice. We show how to use our methodology to identify

groups of genes involved in creating this dramatic phenotype.

The full details of our method are described in Section 2.

Section 3 contrasts our method with existing approaches. A

simulation study is described in Section 5. Concluding remarks

are provided in Section 6.

2 MODEL

2.1 Testing a single gene category for differential

expression across two or more treatments

Let T denote the number of treatments, ni denote the number of

independent replications of treatment i (i¼ 1, . . . ,T), and G

denote the number of genes in a category of interest. For

i¼ 1, . . . ,T and j¼ 1, . . . , ni; let Yij¼ (Yij1, . . . ,YijG)
0 denote a

vector of expression measurements, where Yijk represents

the expression measurement associated with treatment i,

replication j, and gene k. We assume that all Yij vectors are

independent and that Yij has a continuous multivariate

distribution Fi. We wish to test

H0 : F1 ¼ � � � ¼ FT ð1Þ

against all alternatives. When this null hypothesis is false, the

multivariate distribution of the genes in the category of interest

is not the same for all treatments. For a completely randomized

experimental design, violation of H0 implies that at least one

treatment caused a change in the category’s multivariate

expression distribution. Thus, categories for which H0 is false

are of potential scientific interest.
To test H0 against all alternatives, we propose to use the

multiresponse permutation procedure (MRPP) described by

Mielke and Berry (2001). The MRPP test statistic is given by

�D ¼
XT
i¼1

ni
N
Di; ð2Þ

where N ¼
PT

i¼1 ni and Di is the average of all the Euclidean

distances between pairs of data vectors from the ith treatment

group, i.e.

Di ¼

Pni�1
j¼1

Pni
j0¼jþ1 jjYij � Yij 0 jj

niðni � 1Þ=2
: ð3Þ

The MRPP test uses a standard permutation approach to assess

the significance of the observed value of �D. The permutation

p-value is given by

1

M

XM
m¼1

1ð �D � �DmÞ; ð4Þ

where �Dm denotes the value of the test statistic computed for

the mth of M ¼ N!=
QT

i¼1 ni! possible assignments of treatment

labels to the observed data vectors, and 1(�) denotes the

indicator function that takes the value 1 if its argument is

satisfied and 0 otherwise. As with any permutation test, if the

number of data permutations M is too large for timely

computation, a randomly selected subset of permutations can

be used to obtain an approximate permutation P-value.
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Fig. 1. Distinct joint and non-distinguishable marginal expression

distributions for two treatments and a hypothetical gene category

consisting of two genes.
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Extensive justification of the MRPP test is provided by

Mielke and Berry (2001). Here we briefly note that, conditional

on the observed data vectors, �D will be relatively small when

the data vectors associated with different treatments are well

separated in G-dimensional space. Thus, the testing procedure

can detect location shifts in the multivariate expression

distribution caused by treatment effects. However, the MRPP

tests also has power to detect departures from H0 other

than location shifts. For example, the MRPP test yielded an

average P-value of 0.035 over 100 simulations of samples of size

30 from the distributions depicted in Figure 1. Thus, the MRPP

test can detect evidence against H0 even when both treatment

distributions have identical means, substantial overlap, and

differences that are invisible to marginal approaches. Of course,

it is possible to devise other test statistics that have greater

power for detecting the departure to H0 depicted in Figure 1

(e.g. the difference between correlation coefficients), but the

strength of the MRPP test lies in its ability to detect a wide

variety of departures from H0 using a single, relatively simple

procedure.

2.2 Accounting for Variance Differences Among Genes

It is well known that different genes exhibit different levels of

variation. If this heterogeneity of variance is not accounted for,

genes with larger variability can dominate the results of our

proposed MRPP test. This situation is depicted in Figure 2(A).
The plot shows bivariate expression observations for 10

experimental units from each of two treatment groups. Data

were simulated so that the within-treatment SD of gene 1 was

10-fold less than the within-treatment SD of gene 2. The

bivariate means were chosen so that the treatments have

identical means with respect to gene 2 but different means with

respect to gene 1. Thus, the null hypothesis in (1) is false.

However, the average distance between data vectors within a

treatment group is quite high because these distances are

dominated by variation in gene 2. As a consequence, the

permutation P-value for our test of H0 is approximately 0.28,

and we would fail to detect what appears to be an obvious

departure from H0.
Mielke and Berry (2001) proposed an approach referred to as

Euclidean commensuration for adjusting for heterogeneity of

variance like that depicted in Figure 2(A). In our context, the

data from the kth gene are scaled by

XT
i¼1

XT
i0¼i

Xni
j¼1

Xni0
j0¼j

ðYijk � Yi0 j0kÞ
2

( )�1=2

ð5Þ

prior to analysis, which is equivalent to standardizing that data

for each gene to a common variance. After scaling, the sum of

the squares of all possible pairwise within-gene differences is

identical for all genes. Figure 2(B) shows the example data after

commensuration. The MRPP P-value is approximately 0.0001

when working with the scaled data. Thus, the departure from

H0 is easily detected following commensuration. Note that

commensuration will not remove heterogeniety of variance

across treatments within a gene. Thus, potentially interesting

changes in variance across treatments may still be detected

following commensuration.
In the example presented here, commensuration aided in

the identification of multivariate differential expression.

However, in other circumstances, power for detecting multi-

variate differential expression may be greater for non-

commensurated data. It is well known that variation of

expression differs substantially from gene to gene. When using

non-commensurated data, the MRPP test statistic effectively

gives greater weight to genes with higher variation. If the higher

variation genes happen to contain the essential information

about treatment differences, emphasis on high variation genes

will be well placed, and power for detecting differences will be

greater when using non-commensurated as opposed to com-

mensurated data. Goeman et al. (2004) argue that a strength of

their proposed global test procedure is that genes with large

variance have much more influence on their test statistic than

low-variability genes. We will demonstrate via data analysis and

simulations in Sections 4 and 5, respectively, that the MRPP

approach with non-commensurated data is very similar to the

global test method. Henceforth, we will use MRPPC to denote

the MRPP approach with commensurated data.

2.3 Simultaneous testing of multiple categories

The MRPP approach can also be used to test each of multiple

gene categories for evidence of differential expression across

treatments. The categories cannot be assumed to be indepen-

dent because genes from different categories are not necessarily

independent of one another and because single genes may be

associated with more than one category. GO annotations, for

example, group genes into categories with varying levels of

specificity. The union of several specific categories will form a

subset of the genes in a more general category. Simultaneously

testing several categories of varying levels of specificity can be

useful for pinpointing the nature of treatment effects on the

expression program of an organism. Thus, we need to employ a

multiple testing procedure that remains effective when tests are

dependent.
Following Barry et al. (2005), we will use a version of the

resampling-based false discovery rate (FDR) controling proce-

dure developed and studied by Yekutieli and Benjamini (1999)

and Reiner et al. (2003). To describe this procedure in our

context, some additional notation is required. Let �Dc denote

−20 100 20

−2
0

0
20

10

x

x

x
x

x x

x

x

x
x

o

o

o

o
o

o

o

o

o

o

A

Gene 1 Expression

G
en

e 
2 

E
xp

re
ss

io
n

0.005 0.005

0.
00

5
0.

00
5

x

x

x
x

x x

x

x

x
x

o

o

o

o
o

o

o

o

o

o

B

Commensurated

C
om

m
en

su
ra

te
d

Gene 1 Expression

G
en

e 
2 

E
xp

re
ss

io
n

Fig. 2. Bivariate expression data for two treatments before and after

Euclidean commensuration. Treatment 1 (2) observations are marked

with x (o). Within-treatment SD of gene 1 is 10-fold less than within-

treatment SD of gene 2 prior to commensuration.
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the MRPP statistic �D in (2) computed for the cth of C

categories. Let �Dc
m denote the value of �Dc computed using the

mth permutation of the treatment labels relative to the

experimental units. We adopt the convention that permutation

1 represents the original assignment of treatment labels to the

experimental units; thus, �Dc ¼ �Dc
1 for all c¼ 1, . . . , C. Now for

any c¼ 1, . . . , C and m¼ 1, . . . , M; we define

pcm ¼
1

M

XM
m0¼1

1ð �Dc
m � �Dc

m0 Þ:

Note that pc1 is the permutation P-value for testing for

treatment effects on the multivariate expression distribution

of genes in category c as presented in (4) in Section 2.1. For a

given threshold for significance p, we declare all categories with

pc1 � p to be differentially expressed. The estimate of

FDR associated with the selected threshold for significance is

given by

dFDRð pÞ ¼ min
p0 :p0�p

1

M� 1

XM
m¼2

Rmð p
0Þ

Rmð p0Þ þ Sð p0Þ

 !
; ð6Þ

where

Rmð p
0Þ ¼

XC
c¼1

1ð pcm � p0Þ

and

Sð p0Þ ¼ R1ð p
0Þ �

1

M� 1

XM
m¼2

Rmð p
0Þ:

Reiner et al. (2003) refer to dFDRðpÞ as the ‘resampling-based

point estimator’ of FDR. Yekutieli and Benjamini (1999)

developed this estimator for controlling FDR when conducting

multiple dependent tests. Simulations in Yekutieli and

Benjamini (1999) and Reiner et al. (2003) establish good

power and FDR control characteristics even when test statistics

are highly correlated. We illustrate the use of this procedure in

Section 4 and investigate its performance in the gene category

testing context via simulation in Section 5.

3 COMPARISON WITH EXISTING APPROACHES

Our proposed procedure is an alternative to approaches that

compare the categorical composition of a list of DDE genes to

the categorical composition of genes on a microarray using

testing procedures like Fisher’s exact test (e.g. Berriz et al.,

2003; Drǎghici et al., 2003; Doniger et al., 2003; Al-Shahrour

et al., 2004; Beibarth and Speed, 2004; Cheng et al., 2004). In

most such methods, a category is considered to be enriched

among DDE genes if the number of DDE genes in the category

is larger than would have been expected had the DDE genes

been a simple random sample from all genes on the microarray.

Of course, prior to conducting such a test for enrichment, it is

well known the that DDE genes differ from a simple random

sample of genes on a microarray. In particular, genes are not

independent of one another, so simple random sampling

provides a poor probability model for the selection of DDE

genes. What appears to be an unusually large (or small) number
of genes from a given category under an assumption of simple
random sampling might be easily explained by positive

correlation among genes in a category rather than ‘enrichment’.
Goeman and Bühlmann (2007) refer to such methods for
computing P-values as gene sampling methods and use

simulation to show that such approaches can be quite liberal
when genes are dependent.
Beyond the question of statistical validity, several authors

(Barry et al., 2005; Subramanian et al., 2005; Allison et al.,

2006) have pointed out that information is lost when
continuous gene-specific measures of differential expression
(e.g. P-values) are dichotomized to produce DDE and non

DDE genes. The rank order of the evidence for differential
expression within DDE and non-DDE gene lists is lost.
Furthermore, the results of such enrichment analyses can be

sensitive to the threshold for significance used to produce the
DDE genes. In some cases, all genes in a given category may
exhibit small changes that, when considered together, provide

strong evidence of a treatment effect. However, such categories
will go undetected if many of the individual changes fail to
reach the chosen threshold for significant differential expres-

sion. Newton et al. (2007) have developed methods for
addressing this criticism; however, their approach uses a gene
sampling probability model and is thus suspect when genes are

dependent.
Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,

2005) and Significance Analysis of Function and Expression

(SAFE) (Barry et al., 2005) are two approaches that address
many of the deficiencies of previous methods. Both GSEA and
SAFE begin by computing a measure of differential expression

for each gene. GSEA and SAFE each use a different measure of
differential expression, but we will simply refer to either
measure generically as a gene statistic. Next, the gene statistics

for a given category are compared to the gene statistics from all
genes outside the given category. The comparison is summar-
ized with a category statistic. Again, the computational details

differ between the methods, but the main point is that a
category statistic is produced (one for each category of interest)
that measures the extent to which the genes in a given category

are more differentially expressed than genes outside the given
category. Both methods then identify significant categories
by comparing the observed category statistics from the

data at hand to the distribution of category statistics that is
obtained by permuting the treatment labels relative to the
observed data vectors. Goeman and Bühlmann (2007) call this

a subject sampling approach for determining significance as
opposed to the problematic gene sampling approach discussed
previously.

Neither Subramanian et al. (2005) nor Barry et al. (2005)
explicitly state the null hypothesis tested for each gene category
when using GSEA or SAFE, respectively. Based on the

construction of the GSEA and SAFE category statistics, it
might be natural to assume that these methods are testing a
null hypothesis of ‘no enrichment’ for each category. However,

their permutation testing procedures are not justified under
these null hypotheses because they permute treatment labels
relative to data vectors (subject sampling) rather than permuting

gene labels relative to gene statistics (gene sampling).

Differentially expressed gene categories
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Furthermore, it would be quite difficult to develop testing

procedures of the ‘no enrichment null’ because of correlation

among genes (Efron and Tibshirani (2007): Goeman and

Bühlmann (2007) for excellent additional discussion of this

issue). The validity of the GSEA and SAFE permutation testing

procedures is most easily justified under the complete null

hypothesis that the joint expression distribution of all genes is

identical for all treatments. Such a null is of limited interest,

however, and it would more desirable and natural to consider

separate category-specific nulls of the form

H
ðcÞ
0 : F

ðcÞ
1 ¼ � � � ¼ F

ðcÞ
T

where F ðcÞ
i denotes the joint expression distribution of genes in

category c under treatment i. These are exactly the null

hypotheses that we consider in our proposed approach; i.e. we

consider simultaneously testing H
ð1Þ
0 ; . . . ;H ðC Þ

0 for c¼ 1, . . . , C.
To obtain strong control of error rates in this multiple testing

problem (i.e. control regardless of which subset of the tested

null hypotheses are true), the subset pivotality condition

introduced by Westfall and Young (1993) and assumed by

Yekutieli and Benjamini (1999) is required. However, this

condition does not hold for either the GSEA or SAFE

approaches. To clarify this point, let Pc denote, for any

method, the P-value for testing H ðcÞ
0 . Subset pivotality dictates

that the joint distribution of {Pc: c 2 S} for any subset of

categories S is the same under
T

c2S H
ðcÞ
0 as under

TC
c¼1 H

ðcÞ
0 .

Because each category statistic in the GSEA and SAFE

approaches is obtained by comparing the gene statistics in a

given category to the gene statistics for all genes outside the

category, the subset pivotality condition is clearly violated. We

do not encounter this difficulty with our approach because our

statistic for a given category is a function of only the genes in

the given category. In the terminology of Goeman and

Bühlmann (2007), our test is self contained as opposed to

competitive.
Comparison of gene statistics within a category to gene

statistics outside a category (competitive testing) can also be

problematic for less technical reasons. The presence of

categories with many substantially differentially expressed

genes will make it more difficult for GSEA and SAFE

approaches to detect other categories whose expression patterns

have been affected by treatment. This is potentially a desirable

characteristic for researchers who wish to focus on only a few

prominent categories. However, researchers wishing to under-

stand the full impact of treatments on the expression pattern of

an organism might gain greater insight from our approach.

Because categories do not compete with each other for

attention, more extensive discovery of differentially expressed

categories is possible.
As previously noted, a strength of our approach is the ability

to detect treatment effects on the multivariate expression

distribution of genes in a category. In contrast, the SAFE

approach, the GSEA approach, and the improvements to the

GSEA approach proposed recently by Efron and Tibshirani

(2007) can detect only treatment effects on gene-specific

marginal distributions. Tomfohr et al. (2005), Goeman et al.

(2004), and Liu et al. (2007) have proposed methods that can

detect multivariate changes in joint expression distributions

that may not be easily detected when focusing only on marginal
distributions. The methods are similar in spirit to our approach,
but the category statistics used to detect changes in the

expression distribution are quite different.
The Pathway Level Analysis of Gene Expression (PLAGE)

method of Tomfohr et al. (2005) involves the computation of

the ‘activity level’ of the genes in a given category as a linear
combination of the expression measures of genes in the
category. The coefficients of the linear combination are the
components of the leading eigenvector in the singular decom-

position of the expression sub-matrix corresponding to the
genes in the category of interest. This is equivalent to
computing the first principal component scores for each

experimental unit, separately within each category. Two-
sample t-statistics using these activity levels as data are
proposed as category statistics in the two-sample problem.

We expect this to be a useful method for testing H
ðcÞ
0 in most

cases. However, the first principal component will not always
be a good summary of the data for detecting differences across

treatments. For the data in Figure 1, for example, the mean of
the first principal component will be nearly identical for both
treatments. Thus, a two-sample t-test will fail to detect a

treatment effect. We compare the performance of PLAGE with
our MRPP approach for the analysis of a real data set in
Section 4 and in a simulation study in Section 5.

Liu et al. (2007) recently proposed Domain Enhance
Analysis (DEA) strategies that include DEA principal compo-
nent analysis (DEA-PCA) and DEA partial least squares

analysis (DEA-PLS). DEA-PCA is equivalent to the PLAGE
approach of Tomfohr et al. (2005). The DEA-PLS method is a
new and promising approach that may share many of the

benefits of our multivariate method. There are, however, some
drawbacks to the current implementation that we note below.
Rather than summarizing the expression vectors with the first

principal component, the first partial least squares component
is used. In this case, the first partial least squares component is
the linear combination of the expression values within a

category that has maximum covariance with numerically
coded treatment labels. For the two-treatment case, Liu et al.
use a 0/1 coding but acknowledge that different codings

(e.g. 1/�1) result in different test statistics with different
properties. Alternative approaches that explicitly account for
the categorical nature of the treatment labels were mentioned

by the authors, but to our knowledge, none of these strategies
have been implemented. Once the first PLS component has
been computed for the 0/1 coding, a standard two-sample t-test

with Benjamini and Hochberg’s (1995) adjustment for multiple
testing is used to identify differentially expressed categories.
Unfortunately, this testing procedure is not valid because, as

noted by Liu et al. the null distribution of the t-test statistic
will have heavier tails that the usual t distribution due to
construction of the first PLS component as the linear

combination that has maximum covariance with the numeri-
cally coded treatment labels. This leads to type I error rates and
false discovery rates that are higher than nominal. To address

this problem, it may be necessary to develop a permutation
strategy as described in Section 2.3. However, such a strategy
would be considerably more computationally intensive than the

corresponding strategy for the PLAGE method because, unlike

D.Nettleton et al.
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the first principal component that remains unchanged across

permutations of the treatment labels, the first partial least

squares component must be recomputed for each permutation.
The Global Test (GT) method of Goeman et al. (2004)

addresses the slightly different problem of identifying gene

categories whose expression can be used to predict a clinical

outcome (e.g. cancer versus no cancer). The clinical outcome is

modeled as the response variable in a generalized linear mixed

model. The expression of genes in a category of interest are

used as explanatory variables in the generalized linear mixed

model, and the coefficients on these explanatory variables

are assumed to be normally distributed with mean 0 and

variance �2. A test ofH0 : �
2
¼ 0 is conducted separately for each

category. If H0 is rejected for a given category, there is evidence

that the clinical outcome depends on expression of genes in the

category. The method could be applied to the two-treatment

problem that we consider in this article by viewing treatment

levels as the ‘clinical outcome.’ The method could also be

extended to handle the case of more than two treatments. We

investigate the performance of this approach on a real dataset

in the next section and in simulation in Section 5.

4 APPLICATION TO A MYOSTATIN KNOCKOUT
EXPERIMENT

Myostatin is a protein that inhibits the rate of muscular cell

growth and differentiation. Cattle with mutations in the gene

responsible for myostatin production, such as the Belgian Blue

and Piedmontese, have increased quantities of muscle mass.

Understanding what other proteins are affected by the

suppression of myostatin can provide insight into the molecular

mechanisms underlying muscle. Mutant mice that had their

myostatin gene knocked out were studied in a recent experi-

ment by Steelman et al. (2006) to understand differences in gene

expression caused by myostatin production. The experiment

compared the expression levels of the mutant mice to that of

wild-type mice at three time points. The time points were

selected to test the impact of myostatin at both the primary and

secondary stages of muscular tissue formation along with a

time of fast muscular growth. At each time point, five

experimental units per genotype where each measured using

the Affymetrix GeneChip Mouse Expression Set 430.
One of the interests of the study was to find gene categories

defined by GO terms which exhibited expression differences

between the mutant and wild-type mice at the time of fast

muscular growth. For this investigation, the GO molecular

function terms associated with each Affymetrix probe set were

obtained from the Bioconductor moe430a package. Of the

22 690 probe sets included in the Affymetrix GeneChip Mouse

Expression Set 430 A Chip, 18 565 were assigned to at least one

of the GO molecular function categories tested. A total of 353

molecular function categories included 40 or more probe sets.

Following Barry et al. (2005), we tested only these 353

categories (though our method is applicable to categories of

any size).

With five experimental units for each of the two genotypes at

the time point of interest, there are 10
5

� �
¼ 252 possible

permutations. For a two-sided permutation test, the smallest

possible P-value is 1/126. A total of 77 of the 353 categories

tested had the minimum P-value of 1/126 when applying

MRPPC approach. The null hypothesis was rejected for these

categories at a false discovery rate of � 2.5%, which was

estimated using the approach proposed by Yekutieli and

Benjamini (1999) as described in Section 2.3. When using

non-commensurated data, 22 categories were detected by the

MRPP method as significantly differentially expressed with a

P-value of 1/126 and an estimated FDR of � 8.1%.

The same 353 GO molecular function categories were also

tested using the GSEA, SAFE, PLAGE and GT methods

described in Section 3. To allow for comparison of the methods

on equal terms, permutation P-values were computed for these

other methods as described above for the MRPP approach.

Table 1 displays the number of categories having permutation

P-values equal to 1/126 for each method along with the number

of categories meeting that criterion for both methods. The

MRPP approach with commensuration declared the most

categories to be differentially expressed and typically offered far

more unique discoveries than any single competing method. In

fact, MRPPC identified 36 categories as differentially expressed

that were not detected by any other method.
Note that GSEA and SAFE discovered far fewer categories

than PLAGE, GT and either MRPP procedure. This is not

surprising because MRPP, PLAGE and GT are multivariate

procedures that use self-contained testing with subject sampling

to assess significance as recommended by Goeman and

Bülmann (2007). In contrast, the GSEA and SAFE procedures

are neither multivariate nor self contained and—as noted by

Goeman and Bülmann (2007)—are almost invariably less

powerful than self-contained testing procedures. Although

SAFE identified no categories as significant at the significance

level 1/126 compared to 12 found by GSEA, we have examined

other data sets not presented here where SAFE declared more

categories to be differentially expressed than GSEA. Thus,

performance of GSEA and SAFE on this data set is not

indicative of the general performance of these two procedures.
Also of note is the close agreement between the MRPP

approach without commensuration and the GT method. These

approaches identified 19 categories in common among the

23 categories identified by one or both methods. The rank

Table 1. Number of categories declared to be differentially expressed

for each method (diagonal entries) and number of categories declared to

be differentially expressed by both of two methods (off-diagonal

entries) for the myostatin data set

Method MRPPC MRPP PLAGE GT SAFE GSEA

MRPPC 77 7 35 6 0 4

MRPP – 22 7 19 0 0

PLAGE – – 55 7 0 1

GT – – – 20 0 0

SAFE – – – – 0 0

GSEA – – – – – 12
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correlation between the P-values of the two methods across

the 353 categories was 0.970. Thus, although these testing

procedures appear quite different on the surface, they captured

nearly the same information about differential expression in

this data set.

The MRPP approach with commensuration identified

77 categories compared to 22 categories detected by the

MRPP approach with non-commensurated data. Thus, in this

case, commensuration appears to have aided the discovery of

differential expression substantially. Of course, this is an

analysis of a single data set for which the truth about

differential expression is unknown. Therefore, we cannot rule

out the possibility of false discovery. However, we will

demonstrate in the next section that our FDR estimation

method tends to work well for both versions of the MRPP

approach which suggests that the results presented here are

trustworthy.
To gain some insight into the strong performance of the

MRPP approach with commensuration, we will focus on the

category associated with the GO molecular function term

‘nucleotidyltransferase activity.’ This category consisting of 174

probe sets was detected as differentially expressed only when

using MRRPC. Conducting a two-sample t-test for each gene

and applying the method of Nettleton et al. (2006) suggests that

approximately 15 of the 174 nucleotidyltransferase activity

genes were differentially expressed between mutant and wild-

type mice. However, none of the gene-specific changes were

particularly dramatic (minimum P-value>0.001). The MRPP

approach, however, can identify differences in the multivariate

distribution that are invisible to the t-test approach.

Examination of a scatter plot of the first two principal

components of the commensurated data reveals that the

mutant and wild-type mice are well separated in this two-

dimensional space (see Supplementary Figure 1). If Fisher’s

linear discriminant is computed using this two dimensional

data, we obtain a linear combination of the standardized data

that dramatically separates the mutant and wild-type mice

(linear combination values of 10.4, 11.8, 1.9, 6.9, and 6.7 for

mutant mice compared to �13.7, �8.7, �6.2, �5.4, and �3.6

for wild-type mice). This linear combination tends to place

positive (negative) weight on genes for which mutant mice

exhibited higher (lower) levels of expression than wild-type

mice. The rank correlation between the t-statistics and the

weights in the linear combination was 0.938.
The first principal component utilized by PLAGE does not

show separation between mutant and wild-type mice, so it is

not surprising that PLAGE failed to detect a difference for this

category (PLAGE P-value� 0.111). The GT method and the

MRPP approach without commensuration yielded P-values of

0.325 and 0.349, respectively. Examination of the principal

components for non-commensurated (or, equivalently, non-

standardized) data shows that the mutant and wild-type mice

are not well separated by any linear combination of the first

two principal components. Thus, information about differential

expression is masked when data are not commensurated in this

case. However, our simulation study discussed in the next

section shows that commensuration will not always aid in the

identification of multivariate differential expression.

5 SIMULATION STUDY

While the performance of the MRPP approach on the

myostatin data set is encouraging, the results in Section 4 do

not prove the superiority of our method because the true

differential expression status of the gene categories is unknown

in the myostatin experiment. In this section, we examine the

performance of the MRPP approach in a unique data-based

simulation study that allows us to assess the power and

error control properties of our procedure and to further

compare its performance with the other multivariate methods

PLAGE and GT.
We based our simulation on the B- and T-cell Acute

Lymphocytic Leukemia (ALL) data set described in part by

Chiaretti et al. (2004) and analyzed in gene category testing

studies by Liu et al. (2007) and Jiang and Gentleman (2007).

The data set is publicly available in the Bioconductor

ALL package at www.bioconductor.org. The data consist of

12 625-dimensional expression profiles from the Affymetrix

HGU95aV2 GeneChip for each of 128 ALL patients. Of the

128 patients, 95 suffer from B-cell ALL while 33 have T-cell

ALL. Using version 1.16.0 of the hgu95av2 Bioconductor

package, we were able to map 10 467 of the Affymetrix probe

sets to at least one GO term from the biological processes

ontology, and 4153 terms from the biological processes

ontology were each associated with at least one probe set.
Liu et al. (2007) analyzed the ALL data to identify the most

significantly differentially expressed categories (defined by

biological processes ontology terms) for their DEA-PLS

method and the Fisher’s exact test approach. The top 10

categories for each method are described in Tables 4 and 5 of

Liu et al. (2007). We chose 15 categories from the union of these

two top ten lists to serve as differentially expressed categories in

our simulation study. These 15 categories involve 1274 of the

12 625 probe sets in the ALL data. Additional information

about the selected categories is provided in Supplementary

Table 1.
The following procedure was used to generate each of 100

simulated data sets.

(1) Randomly select (without replacement) 2n of the 95

B-cell samples and randomly divide the selected samples

into two ‘treatment’ groups of n samples each.

(2) Create two 12 635 by n data matrices (one for each group)

from the 12 625-dimensional expression vectors asso-

ciated with the selected B-cell samples.

(3) For each of n T-cell samples randomly selected without

replacement from the 33 T-cell samples, extract the 1274-

dimensional expression sub-vector corresponding to the

probe sets associated with the differentially expressed

categories in Supplementary Table 1.

(4) For each column of one of the matrices created in step 2,

replace the 1274-dimensional expression sub-vector

corresponding to the probe sets associated with the

differentially expressed categories with one of the T-cell

expression sub-vectors randomly selected in step 3.

Provided that the categories in Supplementary Table 1 are

indeed differentially expressed between B- and T-cell samples
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(a safe assumption given the results in Liu et al.), the simulation

procedure generates differential expression between the two

treatments for each category in Supplementary Table 1, and no

differential expression between treatments for each category

that does not involve the 1274 probe sets associated with

the Supplementary Table 1 categories. There are 1848 such

categories among the 4153 categories that we considered. The

other 2290 (¼4153-15-1848) categories each involve one or

more genes from the 1274 probe sets associated with

Supplementary Table 1 categories. Note that these categories

may or may not be differentially expressed in our simulation

procedure because not all of the 1274 probe sets associated with

Supplementary Table 1 categories are necessarily differentially

expressed. Thus, we focused on the ability of the MRPP

approach to correctly distinguish the differentially expressed

categories in Supplementary Table 1 from subsets of the 1,848

categories that are guaranteed to be non-differentially

expressed based on our simulation procedure. In particular,

for each simulated data set, we applied PLAGE, GT and both

MRPP approaches to the 15 categories in Supplementary

Table 1 and 85 categories randomly selected from the 1848

categories that are guaranteed to be null by our simulation

design. We chose to randomly select 85 null categories for each

simulated data set—rather than analyzing all 1848 null

categories—to ease the computational burden in our simulation

and to match our belief that 15 differentially expressed

categories out of 100 is a more realistic differential expression

fraction than 15 of 1863.

Note that we could have searched for differentially expressed

categories other than those identified by Liu et al. (2007) by

analyzing the full ALL data set using our MRPP approach.

However, that could have biased our simulation study to favor

our MRPP approach because the types of differentially

expressed categories identified would have been those whose

differential expression characteristics made them relatively easy

to detect with the MRPP approach. To avoid this potential

bias, we chose to analyze categories selected by methods

distinct from those considered in our simulation study.

Furthermore, we focused only on the very most significant

categories identified by Liu et al. (2007) to avoid the possibility

of including categories that are not truly differentially expressed

between B- and T-cell ALL samples.
Of course, the purpose of our data-based simulation strategy

is to mimic, as closely as possible, the types of multivariate

differential expression that can occur in an actual microarray

data set. Traditional simulation strategies would require the

complete specification of multivariate distributions for each

treatment. Such specifications may not realistically represent

actual multivariate expression distributions, correlations

among genes and gene categories, the nature of multivariate

differential expression across treatments, etc. Thus, we have

used random sampling within a real data set to create a

simulation study that should have greater practical relevance

than traditional studies that are farther from real data

structures. Note that, as is often the case with real data sets,

there is likely to be substantial heterogeneity within the B- and

T-cell classes (Yeoh et al., 2002). Thus, methods that work

well in our simulation need to be relatively robust to

within-treatment heterogeneity that is common in large

microarray data sets.
We considered two sample sizes (n¼ 5 and 15) and three

thresholds for significance (P-value ¼ 0.01, 1/126 and 5/126).

For the sample size n¼ 15 case, 999 randomly selected data

permutations along with the observed sample were utilized to

compute permutation P-values for the methods. All 252 data

permutation were analyzed for the n¼ 5 case. 100 simulated

data sets were generated for each scenario. The results for

n¼ 15 and significance threshold 0.01 are reported in Table 2.

Results for other scenarios are qualitatively identical and are

reported in Supplementary Tables 2 and 3.
The MRPP procedure without commensuration was the top

performing method in the simulation study. MRPP had the

greatest number of discoveries on average and the lowest

average false positive fraction among all the competing

methods. The GT method performed nearly as well as

MRPP. Although not evident from the means and standard

errors in the Table 2, the performance of the MRPP procedure

was significantly better than GT. For example, the two

procedures correctly identified precisely the same differentially

expressed categories for 59 of the 100 simulation replications.

For the other 41 replications where there was some disagree-

ment between the methods, the MRPP approach identified

more true positives than GT 35 times, GT identified more true

positives than MRPP 5 times, and the methods identified the

same number of true positives (though not the same categories)

once. A paired-data sign test (McNemar’s test) yields sig-

nificance at well below the 0.0001 level. Though statistically

significant, the differences between the MRPP and GT

procedures were small, and as would be expected given the

results in Section 4, the rank correlation between their P-values

across all simulated data sets was quite high (0.944).
MRPPC and PLAGE trailed MRPP and GT in this

simulation. Unlike MRPP and GT, both MRPPC and

PLAGE operate on standardized data. In contrast to the

myostatin data analyzed in Section 4, standardization seems to

hamper the ability to detect differential expression in the ALL

data set. If principal components are computed for the 1274

Table 2. Mean and SEM across 100 simulated data sets for the

quantities V¼ number of false positives, R¼ number of rejected null

hypotheses, V
R_1 ¼ observed false positive fraction, and dFDR ¼ the

estimated false discovery rate computed using the method described in

Section 2.3 for n¼ 15 observations per treatment and significance

threshold P-value � 0.01

Method V R V
R_1

dFDR

MRPPC mean 1.32 8.77 0.078 0.087

SEM 0.53 0.64 0.016 0.005

MRPP mean 0.77 9.94 0.058 0.075

SEM 0.18 0.23 0.011 0.001

GT mean 0.78 9.61 0.062 0.078

SEM 0.18 0.23 0.011 0.001

PLAGE mean 0.73 1.63 0.147 0.559

SEM 0.28 0.35 0.032 0.035
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probe sets associated with the Supplementary Table 1

categories using non-standardized data, there is a dramatic

separation between B- and T-cell samples in a plot of second

versus first principal components (see Supplementary Figure 2).

On the other hand, if data are standardized (a typical practice

when computing principal components), the B- and T-cell

samples are well mixed in the analogous principal component

plot (see Supplementary Figure 3). This illustrates that much of

the information about differential expression in the ALL data

set is contained in higher variation genes. Hence, the methods

that use standardized data (MRPPC and PLAGE) were

outperformed by the methods that use non-standardized data

(MRPP and GT). Note that among the methods using

standardized data, MRPPC was substantially better than

PLAGE. Though the mean number of false discoveries was

slightly higher for MRPPC, the number of true positives

(R�V) was much greater for the MRPPC method.

Consequently, the average observed false positive fraction—

which serves as an empirical estimate of FDR—was much

lower for the MRPPC approach.
Note that for all methods, the estimated FDR levels were, on

average, greater than the empirical estimates, indicating that

FDR estimation procedure discussed in Section 2.3 performed

conservatively in this study. The results reported in Table 2 are

specific to the 0.01 threshold for significance and sample size of

n¼ 15 per treatment, but as mentioned previously and

illustrated in Supplementary Tables 2 and 3, the same basic

conclusions can be drawn when considering different thresholds

for significance (P-value � 1/126, 5/126) and smaller sample

sizes (n¼ 5).

6 EXTENSIONS

We have restricted our presentation to completely randomized

designs where an overall test of distributional equality as in (1)

is of interest. Many microarray experiments have factorial

treatment structures and/or multiple sources of variation that

should be accounted for in analysis. Several books discuss the

use of permutation testing methods in such circumstances.

Mielke and Berry (2001) cover MRPP methods for factorial

experiments and experiments that include multiple sources of

variability (e.g. split-plot designs). However, their discussion of

complex designs is confined mostly to the univariate case.

Pesarin (2001) presents multivariate permutation testing

methods with an emphasis on combining univariate tests.

Edgington (1995) presents extensive material on the analysis of

factorial experiments, multivariate analysis and multivariate

analysis of factorial experiments in the context of randomiza-

tion tests. Much of this material is directly relevant to our

approach and can be used as a guide for conducting MRPP

tests for experimental designs that are more complex than we

have considered here. For example, randomized complete block

designs are easily handled by ignoring blocks in the comp-

utation of the MRPP statistic and computing the permutation

P-value using only those data permutations that involve

exchanging treatment labels among experimental units within

blocks. Testing for the effects of a single factor in a

factorial experiment can be accomplished in a similar manner.

See chapters 6 through 8 of Edgington (1995) for more details

and additional discussion of other complex designs.

7 CONCLUSION

We have proposed a non-parametric multivariate method for

identifying differentially expressed gene categories. Rather

than testing for differences in enrichment between categories,

we have focused on testing for treatment differences within

categories. The strength of our method is the ability to detect

general changes in each category’s multivariate expression

distribution that would be invisible to the many popular

methods that rely on functions of gene-specific statistics. We

cannot claim that the MRPP test upon which our method is

based is the best of all possible multivariate tests for identifying

differentially expressed gene categories, but it has clearly

performed very well in our studies. In particular, MRPP

performed as well or better than leading multivariate proce-

dures when multivariate treatment distributions differed for

high-variation genes, and MRPPC appeared to perform the best

of all the competing procedures when data standardization

aided in identifying multivariate differential expression.

Although’ no one multivariate testing procedure will be

superior to all others for all scenarios, we believe the MRPP

testing strategy will provide excellent performance across a

wide range of practical situations. Our simulation work shows

that our method can distinguish differentially expressed from

non-differentially expressed categories while providing esti-

mates of the false discovery rate that are not overly optimistic.

Reducing the apparent conservativeness of our FDR estimates

is a topic worthy of future research.
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