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ABSTRACT
Summary: Independent of the platform and the analysis methods
used, the result of a microarray experiment is, in most cases, a
list of differentially expressed genes. An automatic ontological ana-
lysis approach has been recently proposed to help with the biological
interpretation of such results. Currently, this approach is the de facto
standard for the secondary analysis of high throughput experiments
and a large number of tools have been developed for this purpose.
We present a detailed comparison of 14 such tools using the follow-
ing criteria: scope of the analysis, visualization capabilities, statistical
model(s) used, correction for multiple comparisons, reference microar-
rays available, installation issues and sources of annotation data. This
detailed analysis of the capabilities of these tools will help researchers
choose the most appropriate tool for a given type of analysis. More
importantly, in spite of the fact that this type of analysis has been gener-
ally adopted, this approach has several important intrinsic drawbacks.
These drawbacks are associated with all tools discussed and repres-
ent conceptual limitations of the current state-of-the-art in ontological
analysis. We propose these as challenges for the next generation of
secondary data analysis tools.
Contact: sod@cs.wayne.edu

1 INTRODUCTION
Microarrays are at the center of a revolution in biotechnology, allow-
ing researchers to simultaneously monitor the expression of tens of
thousands of genes. Independent of the platform and the analysis
methods used, the result of a microarray experiment is, in most cases,
a list of genes found to be differentially expressed. The common
challenge faced by the researchers is to translate such lists of differ-
entially regulated genes into a better understanding of the underlying
biological phenomena. A first step in this direction can be the trans-
lation of the list of differentially expressed genes into a functional
profile able to offer insight into the cellular mechanisms relevant in
the given condition. As recently as 2002, an automatic ontological
analysis approach using Gene Ontology (GO) has been proposed to
help with this task (Khatriet al., 2002). From 2003 to 2005, 13 other
tools have been proposed for this type of analysis and more tools
continue to appear every day (Fig. 1). Currently, this approach is
thede facto standard for the secondary analysis of high throughput
experiments and a large number of tools have been developed for this
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Fig. 1. Evolution history of GO-based functional analysis software. The tool
marked with a star has not been published in a peer-reviewed journal.

purpose. Although these tools use the same general approach, they
differ greatly in many respects that influence in an essential way the
results of the analysis. In most cases, researchers using such tools
are either unaware of, or are confused about certain crucial features.
There is no unified analysis of this field available in the literature.

This paper presents a comparison of 14 current tools in this area.
A detailed analysis of the capabilities of these tools, of the statistical
models deployed as well as of their back-end annotation databases
(if applicable), is included here in order to help researchers choose
the most appropriate tool for a given type of analysis.

More importantly, we include a discussion of some of the issues
associated with the current ontological analysis approach. Since all
existing tools implement the same approach, these drawbacks are
also associated with all tools discussed and represent conceptual
limitations of the current state-of-the-art in ontological analysis. We
propose these as the challenges for the next generation of secondary
data analysis tools.

2 A COMPARISON OF EXISTING FUNCTIONAL
PROFILING TOOLS

The comparison between the tools currently available for the onto-
logical analysis of high throughput gene expression experiments is
summarized in Tables 1 and 2. The criteria used in these tables are
described in detail in the following.

2.1 The statistical model
The ontological analysis can be performed with a number of statist-
ical models including hypergeometric (Choet al., 2001), binomial,
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Table 1. A comparison of the tools reviewed. Scope of the analysis refers to the number of GO categories that can be analyzed simultaneously. Level of
abstraction refers to the depth in GO at which genes are associated with annotations. Note that some tools (e.g. GoMiner) allow the user to expand and collapse
nodes in the results, but the analysis is only performed once, without reassigning the genes as nodes are collapsed or expanded by the user. This is described
as a static global analysis. The other columns are self-explanatory

Tool Scope of the
analysis

Level of
abstraction

User interface Application
type

Platform Supported input IDs

Onto-Express All GO categories Fully flexible; different
levels of abstractions in
different GO subtrees

Java GUI Web-based Any GenBank, UniGene, Entrez Gene,
Affymetrix, Gene symbol

GoMiner All GO categories Static global analysis Java GUI Stand-alone Windows
only

Organism specific IDs
in GO

DAVID All GO categories Only lowest level of GO HTML GUI Web-based Any GenBank, UniGene, Entrez Gene,
Affymetrix, RefSeq, UniProt,
PIR

EASEonline All GO categories User-selected, fixed level HTML GUI Both Any Affymetrix, GenBank, UniGene,
Entrez Gene

GeneMerge One category Only lowest level of GO HTML GUI Both Any Only supports organism specific
IDs used in GO

FuncAssociate All GO categories Only lowest level of GO HTML GUI Web-based Any MODB gene products
GOTM All GO categories Only lowest level of GO HTML GUI Web-based Any Affymetrix, UniGene,

ENSEMBL, Swiss-Prot,
Entrez Gene

FatiGO One category User-selected, fixed level
and static global
analysis

HTML GUI Web-based Any Affymetrix, GenBank

CLENCH All GO categories Static global analysis Command-line
input,
HTML output

Stand-alone Windows only A.thaliana MIPS IDs

GOstat All GO categories User-selected, fixed level HTML GUI Web-based Any GenBank, UniGene, Gene
symbol, Organism specific IDs
in GO

GOToolBox All GO categories User-selected, fixed level HTML GUI Web-based Any Only organism specific IDs in GO
GoSurfer All GO categories Only lowest level of GO C/C++ GUI Stand-alone Windows

only
Affymetrix, UniGene, Entrez

Gene
Ontology
Traverser

One category Only lowest level of GO HTML GUI Web-based Any Affymetrix

eGOn One category Only lowest level of GO HTML GUI Web-based Any GenBank, UniGene, Clone

χ2 (chi-square) (Fisher and van Belle, 1993), and Fisher’s exact
test (Man et al., 2000). The probability that a certain category
occursx times just by chance in the list of differentially regulated
genes is appropriately modeled by a hypergeometric distribution.
However, the hypergeometric distribution can be more difficult to cal-
culate when large arrays (e.g. Affymetrix HGU133A) are involved.
However, the hypergeometric distribution tends to the binomial dis-
tribution when the number of genes is large. Therefore, the binomial
model is perfectly usable when larger arrays are used. Alternative
approaches include aχ2 test for equality of proportions and Fisher’s
Exact test. In most cases, the differences between the models will
not be dramatic. These tests are discussed in detail in the literat-
ure (Dr̆aghici, 2003; Dr̆aghiciet al., 2003a,b). FatiGO does not use a
statistical model as such but does calculate percentages with respect
to the genes annotated with GO terms or all known genes in an organ-
ism. GoMiner, EASEonline, GeneMerge, FuncAssociate, GOTree
Machine (GOTM), GOSurfer, Ontology Traverser, and eGOn only
support one statistical test. GOstat allows the user to choose between
two tests (χ2, and Fisher’s exact test), CLENCH and GOToolBox

allow a choice between three tests (χ2, hypergeometric, and bino-
mial for CLENCH and hypergeometric, binomial, and Fisher’s exact
test for GOToolBox), while Onto-Express implements all four tests
(χ2, hypergeometric, binomial, and Fisher’s exact test).

2.2 The set of reference genes
An important consideration when identifying statistically significant
GO terms is the choice of the reference list of genes against which
theP -values for each GO term in the results are calculated. Several
tools such as GOToolBox, GOstat, GoMiner, FatiGO, and GOTM1

use the total set of genes in a genome as the reference (Beissbarth and
Speed, 2004; Martinet al., 2004; Zeeberget al., 2003; Zhanget al.,
2004) or the set of genes with GO annotations (Al-Shahrouret al.,
2004). Either of these may be an inappropriate choice when the input
list of genes to these tools is a list of differentially expressed genes
obtained from a microarray experiment, since the genes that are not

1GOTM also allows the users to upload their own list of genes or use one of
37 Affymetrix arrays as the set of reference genes.
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Table 2. In the GO visualization column, ‘flat’ indicates that the tool does not represent the hierarchical structure of the GO when displaying the results, ‘tree’
indicates that the tool displays the GO hierarchy as a tree, whereas ‘DAG’ indicates that the tool displays the GO as a directed acyclic graph. The othercolumns
are self-explanatory

Tool Statistical model Correction for multiple
experiments

GO
Visualization

Microarrays supported Time to
process 200
genes (s)

Onto-Express χ2, binomial,
hypergeometric,
Fisher’s exact test

Šidák, Holm, Bonferroni,
FDR

Flat, Tree 172 commercial arrays
(Affymetrix, SuperArray,
Sigma-Genonsys,
ClonTech, PerkinElmer,
Operon, Takara, NIA); can
also upload a user-defined
list

7, 8, 16, 28

GoMiner Fisher’s exact test Relative enrichment Tree, DAG uploads from user 77, 123, 223, 340
DAVID None None Not available Not applicable 15, 17, 27, 54
EASEonline Fisher’s exact test Bonferroni Not available 27 arrays (Affymetrix only);

can also upload a
user-defined list

15, 19, 34, 74

GeneMerge Hypergeometric Bonferroni Flat, no
hierarchical
structure

Uploads from user 6, 6, 6, 8

FuncAssociate Fisher’s exact test Not available Uploads from user 22, 27, 29, 50
GOTM Hypergeometric None Tree 37 arrays (Affymetrix only);

uploads from user
59, 60, 157,

FatiGO Percentage Step-down minP, FDR
(Benjamini and Hochberg,
1995), FDR (Benjamini
and Yekutieli, 2001)

Flat, Tree Uploads from user 15, 49, 69, 105

CLENCH Hypergeometric,χ2,
binomial

None DAG Uploads from user NA

GOstat χ2, Fisher’s exact test FDR, Holm Not available Uploads from user 12, 20, 46, 80
GOToolBox Hypergeometric, binomial,

Fisher’s exact test
Bonferroni, Holm, Hochberg,

Hommel, FDR
Not available Uploads from user 22, 81, 145, 270

GoSurfer χ2 q-value DAG 22 arrays (Affymetrix only);
uploads from user

2, 2, 2, 3

Ontology Traverser Hypergeometric FDR Not available 5 arrays (Affymetrix);
uploads from user

NA

eGOn Binomial None Tree Uploads from user 20, 45, 80, 95

present on a microarray do not ever have a chance of being selected
as differentially regulated. The fundamental idea is to assign signi-
ficance to various functional categories by comparing the observed
number of genes in a specific category with the number of genes that
might appear in the same category if a selection performed from the
same pool were completely random. If the whole genome is con-
sidered as the reference, the pool considered when calculating the
random choice includes all genes in the genome. At the same time,
the pool available when actually selecting differentially regulated
genes includes only the genes represented on the array used, since a
gene that is not on the array can never be found to be differentially
regulated. This represents a flagrant contradiction of the assumptions
of the statistical models used.

2.3 Correction for multiple experiments
Another crucial factor in the assessment of a functional category is
the correction for multiple experiments [see for instance Chapter 9

in Drăghici (2003)]. This type of correction must be performed in all
situations in which the functional category is not selecteda priori and
many such categories are considered at the same time. The import-
ance of this step cannot be overstated and has been well recognized
in the literature (Al-Shahrouret al., 2004; Beissbarth and Speed,
2004; Berrizet al., 2003; Castillo-Davis and Hartl, 2002; Drăghici,
2003; Shah and Fedoroff, 2004; Zeeberget al., 2003). In spite of this,
several of the tools reviewed here do not perform such a correction:
GoMiner, DAVID, GOTM, CLENCH, and eGOn. GoMiner provides
a ‘relative enrichment’ statistic calculated asRe = (nf /n)/(Nf /N),
wheren andN are the numbers of genes in the selected and refer-
ence sets, respectively, andnf andNf are the number of genes in
the functional category of interest in the selected and reference sets,
respectively (Zeeberget al., 2003). However, this relative enrichment
cannot be used in any way as a correction for multiple experiments2

2Note that this statistic does not take into consideration the number of
experiments performed in parallel.
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but rather as another indication of the significance of the given cat-
egory, somewhat redundant to, but less informative than theP -value.
This statistic can be misleading because the user will be tempted to
assign biological meanings to all those categories that are enriched. In
reality, any particular relative enrichment value can actually appear
with a non-zero probability just by chance. It is the magnitude of
the probability that should be used to decide whether a category is
significant or not, rather than the relative enrichment.

All remaining tools deal with the problem of multiple comparisons
in some way. EASEonline, and GeneMerge support the Bonferroni
correction. Bonferroni and Šidák are perfectly suitable in many situ-
ations, in particular, when not very many functional categories are
involved (e.g. fewer than 50). However, these corrections are known
to be overly conservative if more categories are involved (Drăghici,
2003). A family of methods that allow less conservative adjustments
of theP -values is the Holm step-down group of methods (Hochberg
and Tamhane, 1987; Holland and Copenhaver, 1987; Holm, 1979;
Shaffer, 1986).

Bonferroni, Šidák, and Holm’s step-down adjustment are statist-
ical procedures that assume the variables are independent, which
is known to be false for this type of analysis.3 When it is known
that dependencies exist, methods such as false discovery rate (FDR)
are more appropriate (Benjamini and Hochberg, 1995; Benjamini
and Yekutieli, 2001; Dr̆aghici, 2003). Another suitable approach is
that of bootstrapping which actually calculates the null distribution
by performing many resamplings from the same data, thus taking
into consideration all existing dependencies. Great care should be
taken in those situations in which only few categories are involved
because the number of distinct resamplings may be insufficient for
a reliable conclusion [see Chap. 9 in Drăghici (2003)]. In those
instances, even Bonferroni or Šidák may be a better choice instead of
bootstrapping.

The tools offering more than one correction method effectively
allow the researcher to adapt the analysis to the number of categories
and degree of known dependencies between them. Bonferroni and
Šidák are suitable if few, not directly related categories are involved.
If more unrelated categories are involved, Holm’s may be a good
compromise. If there are several functional categories that are clearly
related, FDR is probably the best choice. If the dependencies are
very strong (e.g. several sub-processes of the same larger process), a
bootstrap or Monte-Carlo simulation approach may be better able to
capture these dependencies, but only if enough categories are present
to make the simulation meaningful.

The one tool standing out regarding this criterion is FuncAssociate
which uses a more original Monte-Carlo simulation. FatiGO and
GOstat implement Holm’s and FDR corrections. Onto-Express offers
Bonferroni, Šidák, Holm’s and FDR, whereas GOToolBox offers
FDR, Bonferroni, Holm, Hochberg, and Hommel corrections.

2.4 The scope of the analysis
An important factor in assessing the usefulness of a tool is its ability
to provide a complete picture of the phenomenon studied. In terms of
functional profiling using GO, a complete analysis should include all
three primary GO categories: molecular function, biological process,

3The very hierarchy of the GO on which this type of analysis relies, shows that
many biological categories are very closely related, sometimes as children of
the same node on the next level up.
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Fig. 2. A speed comparison of the tools reviewed here. Four sets of 100, 200,
500 and 1000 human genes were submitted to each tool. The three fastest
tools, GoSurfer, GeneMerge and Onto-Express, are all able to perform the
analysis of up to 200 genes in under 8 seconds. Note that GOTM allows
upload of only up to 500 genes.

and cellular component as well as other information if available.
Among the tools reviewed, eGOn, FatiGO, GeneMerge, and Onto-
logy Traverser only analyze one category at a time. The other tools
allow the user to analyze all three categories simultaneously. Extra
features are present in GeneMerge and Onto-Express. GeneMerge
shows KEGG metabolic and signaling pathways for yeast and fruit
fly, and deletion viability data for yeast. Onto-Express also shows
KEGG signaling pathway data, as well as a chromosome location
of differentially regulated genes (linked to NCBI’s Mapviewer for
further analysis).

2.5 Performance issues
We compared the speed of the tools by submitting four sets of
100, 200, 500, and 1000 human genes, respectively, to each of
the tools (Fig. 2). We started with a list of genes containing gene
symbols because this type of ID is accepted by most tools (four
tools). Since several tools work only with specific types of IDs, we
had to translate these lists of genes into the appropriate type. This
was done with Onto-Translate (Drăghiciet al., 2003a; Khatriet al.,
2004). We translated the lists into Entrez gene IDs for three tools,
TrEMBL IDs for three tools and GeneBank accessions for two other
tools. The times shown here do not include such translations. We
do not report response times for CLENCH and OntologyTraverser
because CLENCH only supportsArabidopsis thaliana, and Onto-
logyTraverser was unavailable in spite of our numerous attempts
over several weeks.4 The three fastest tools, GoSurfer, GeneMerge
and Onto-Express, perform the analysis of 200 genes in 2, 6
and 8 s, respectively. Interestingly, two of these top three tools
(GeneMerge and Onto-Express) are web-based which is somewhat
counter-intuitive since one would have expected the stand-alone tools
to be faster.

2.6 Visualization capabilities
The GO is organized as a directed acyclic graph (DAG), which is a
hierarchical structure similar to a tree. Unlike a tree, a DAG allows

4Every attempt produced: “Error unmarshaling return header; nested excep-
tion is: java.io.EOFException.”
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Fig. 3. Levels of abstraction. The analysis can be performed at a lowest level of abstraction (dash-and-dot line), at a fixed level of abstraction chosen by the
user (dashed line) or at a custom level of abstraction that can go to different depths in various sub-trees of the GO (continuous line).

a node to have several parents. However, the DAG structure may
not be the best choice for navigational purposes in GO since it tends
to clutter the display (Zeeberget al., 2003). An alternative way to
visualize the DAG structure of the GO is to represent and visualize
it as a tree structure in which a node with several parents is repres-
ented in the tree multiple times, once under each parent. Any tool
using GO for functional profiling of a list of genes should be able to
represent the hierarchical relationships between various functional
categories. A graphical representation of the analysis results in the
hierarchical context of GO allows the user to better understand the
phenomenon studied. Furthermore, the functional analysis can be
continued and refined by exploring certain interesting sub-graphs of
the GO hierarchy.

Among the tools reviewed, DAVID, EASEonline, FuncAssociate,
GOstat, GOToolBox and OntologyTraverser do not show the res-
ults in the context of the hierarchical structure of GO. Onto-Express,
eGOn, FatiGO, CLENCH, GoMiner and GOTM represent the res-
ults in their GO context. Onto-Express, GOMiner. GOTM and
eGOn allow the user to manually collapse/expand nodes. Onto-
Express also allows sorting and searching operations in the hierarchy,
automatically expanding and/or collapsing nodes if necessary.

2.7 Custom level of abstraction
In the hierarchical structure of the GO, the genes are annotated at
various levels of abstraction (Fig. 3). For instance, ‘induction of
apoptosis by hormones’ is a type of ‘induction of apoptosis’ which
in turn is a part of ‘apoptosis’. Apoptosis represents a higher level
of abstraction, more general, whereas induction of apoptosis by hor-
mones represents a lower level of abstraction, more specific. When
annotating the genes with the GO terms, efforts are made to annotate
the genes with the highest level of details possible which corresponds

to the lowest level of abstraction. For example, if a gene is known
to induce apoptosis in response to hormones, it will be annotated
with the term ‘induction of apoptosis by hormones’ and not merely
with one of the higher level terms such as ‘induction of apoptosis’
or ‘apoptosis’. A very valuable capability of a functional profiling
tool is to let the user select a custom level of abstraction. From this
point of view, the tools reviewed fall into one of the following three
categories. The first category includes the tools able to perform the
analysis only with the specific terms associated with each gene. This
corresponds to an analysis undertaken at the lowest possible level of
abstraction or the highest level of specificity (see the dash-and-dot
line in Fig. 3). This type of analysis is essentially a one-shot look-up
into the annotation database used. Each dataset can only be analyzed
once, since any further analysis can only provide exactly the same
results. The analysis cannot be directed to answer specific biological
questions and cannot be refined in any way.

The second category of the tools include those tools which allow
the user to select a predetermined depth, or level of abstraction in
GO. Once this level is selected, these tools will consider any genes
below the chosen level associated with the corresponding category
at the chosen level. This is illustrated by the dashed line in Figure 3.
Care should be taken here in order to make sure that each category is
propagated up through all its parents, by following the DAG struc-
ture and not the tree structure that may be used for visualization.
The capability of choosing a pre-determined depth allows the user to
refine this analysis by performing it repeatedly, at various levels of
abstraction, thus forcing various very specific terms to be grouped
into more general, and perhaps more informative categories. When
this is done, several genes that are associated with very specific
categories (e.g. induction of apoptosis byX, Y and Z) are now
grouped together under a more general category such as ‘positive
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regulation of apoptosis’. It is often the case that each specific category
does not appear to be significant because there are only few genes
associated with it, while the more general category becomes highly
significant once all genes associated with specific sub-categories are
analyzed together as representing the more general category. Tools
having this capability allow a more complex and detailed analysis
that can be directed to ask specific biological questions.

Finally, the third category includes tools that allow a completely
custom cut through the GO, at different levels of abstraction in dif-
ferent directions. If the analysis is performed at a fixed depth of 9
for instance, the analysis can distinguish between the various sub-
types of apoptosis induction: by hormones, by extracellular signals,
by intra-cellular signals, etc. (Fig. 3). However, for a fixed depth,
the same analysis will also be performed on several other thousands
of functional categories situated at the same level. If the results are
presented in a bar graph, the interesting categories will be cluttered
by all the extra categories that just happened to be at the same depth in
GO, even though they may not be interesting to the researcher. At the
same time, other phenomena may be missed because the chosen level
may be too specific for those GO categories. A tool that allows full
customization is most powerful since it will allow the user to perform
the analysis at different depths in various parts of the GO hierarchy,
as required by the specific biological hypothesis investigated. This
is illustrated by the continuous red line in Figure 3.

Most of the existing tools only perform the analysis at the lowest
level in GO, with the specific categories that genes have been annot-
ated with, and do not allow any further refinement. Among the tools
reviewed, FatiGO, EASEonline, GOToolBox, and GOstat allow the
user to select a specific level of abstraction before submitting the
input list of genes. FatiGo, CLENCH and GOMiner also calculate
a P -value for all nodes throughout the GO. This corresponds to a
global static analysis in which all genes under a certain node are
considered to be associated with that node. Onto-Express is, at this
time, the only tool that allows a fully customized analysis by allow-
ing any node to be collapsed or expanded in the GO. Collapsing a
node is equivalent to re-assigning to this node all genes associated
with any of its descendants. TheP -value calculated for a collapsed
node in Onto-Express corresponds to theP -value calculated in the
global static analysis performed by GoMiner and FatiGo. Expanding
a node will distinguish between genes associated with the node itself
and the genes associated to any of it descendants. TheP -value of an
expanded node will be based only on the genes directly associated
with it. This P -value is not provided by any other tool from those
reviewed here. A current drawback in Onto-Express is that if a user
wishes to perform the analysis at a fixed depth throughout GO, the
user is required to manually expand the nodes up to this level.

2.8 Prerequisites and installation issues
Another important factor is the amount of effort necessary in order
to install and use a tool. The web-based services provide the exper-
imental biologists a convenient solution by avoiding the problems
usually associated with a local installation of a program (Zhanget al.,
2004). On the other hand, tools available over the web may be initially
obstructed by security issues. For instance, if the tool uses a specific
TCP/IP port and the researcher is behind a firewall, the required port
must be open on the firewall before the tool can be used.

Stand-alone tools such as CLENCH, GoMiner and GoSurfer force
the user to understand the complexities of a software installation. For
example, prerequisites for CLENCH include the prior installation

of perl modules for: (1) HTTP request handling, (2) file and console
access, (3) common gateway interface, (4) database access, (5) stat-
istical computation and (6) graphical display (http://www.personal.
psu.edu/faculty/n/h / nhs109/Clench / Clench_2.0 / Prerequisites.txt).
As another example, GoMiner requires the user to install the Adobe
scalable vector graphics plug-in in order to view the results as
a DAG, and the NCBI Cn3D browser plug-in in order to view
molecular structures from the Entrez structure database (http://
discover.nci.nih.gov/gominer/requirements.jsp). However, the core
GoMiner application works without the plug-ins. In principle,
web-based tools such as Onto-Express, EASEonline, DAVID, Gene-
Merge, Ontology Traverser, GOTM, FuncAssociate, FatiGO only
require that the user has a web-browser with an Internet connec-
tion. In practice though, even the web-based tools suffer from some
platform compatibility issues. For instance, the Microsoft Virtual
Machine included in the Internet Explorer browser does not fully
implement the Java standard (Lindholm and Yellin, 1999). In con-
sequence, some Java-based tools such as Onto-Express, will require
the installation of the Sun Java Runtime Environment.

Another issue is related to the availability of the tool and the
requirement for an Internet connection. Web-based tools can be used
from any computer, but they cannot be used without an Internet con-
nection. Stand-alone tools require local installations on all computers
from which they are to be used, but in principle, they can be used
without network access. In practice though, among the stand-alone
tools in Table 1 GoSurfer is the only tool that allows the user to actu-
ally analyze data without network access, after the initial download
of the application and the required data files. The other stand-alone
tools in Table 1, either use a local database server (GoMiner, EASE,
DAVID) or actually retrieve annotation data at runtime (CLENCH).
Unless both the client and the database are on the same computer,
these stand-alone tools are essentially the same as web-based tools
inasmuch as the client tool requires some network access to connect
to the database server. The specific requirements of an application as
well as the user preferences will probably be the determining factors
from this perspective.

The most important problem in this category is the version con-
trol. From this point of view, the web-based tools are far superior
because the researcher can always be assured that they are using the
very latest version of the software. The software or database updates
are always done on the server, by the team who initially wrote the
tool. For stand-alone tools, the burden of version control usually
rests upon the user who is required to check periodically for new
releases and updates. Once such an update becomes available, the
burden of software or data update rests again with the user who has
to go over the installation process again. In many cases, the updated
version works worse than the older version due to issues related
to the local environment. In principle, stand-alone tools can try to
address this issue by providing automatic software updates. How-
ever, this approach means that the updating software must correctly
identify, and appropriately deal with, various local software envir-
onment issues that tend to be slightly different over the potential
hundreds or thousands of different installations.

2.9 Data sources
Most of the available tools use annotation data from a single public
database. This has the advantage that the data is always as up to date as
the database used. The disadvantage is that no single database offers
a complete picture. For primary GO annotation data, the GO database
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is a comprehensive and up-to-date source since the contributing data-
bases commit their data directly there. Other sources such as Entrez
Gene derive their data from the GO database, so there is little advant-
age from the point of view of GO annotations to derive this data from
several sources. However, the secondary analysis discussed here is
more powerful if more types of data are integrated in a coherent way.
A dedicated annotation database that integrates various types of data
from various sources (e.g. KEGG pathways) is potentially more use-
ful than any single database. The drawback is that such a database
is: (1) difficult to design and (2) will need to be updated every time
any one of its source databases is. This places a heavy burden on
the shoulders of the team maintaining it. Given this, it is under-
standable that most tools use only one of the available annotation
databases and most of them use only GO annotations. EASEonline,
GOSurfer, eGOn and GOTM use Entrez Gene, whereas GeneMerge,
GoMiner, and GOToolBox use the GO database. Onto-Express uses
its own Onto-Tools database which is currently the only attempt
to integrate resources from several annotation databases. Currently,
Onto-Tools uses data from, and is linked to: GenBank, dbEST, Uni-
Gene, Entrez Gene, RefSeq, GO and KEGG. Onto-Tools also uses
data from NetAffx and Wormbase without being linked to them.

2.10 Supported input IDs
Each probe on a microarray identifies a specific nucleotide sequence,
which in turn identifies a specific gene. The annotation databases typ-
ically use genes to provide functional annotations. Hence, in order to
create a functional profile for a list of differentially expressed genes,
one first needs to convert the list of probe IDs into a list of genes.
A similar condition also exists when the functional annotations are
provided using proteins, where one needs to further map genes to
proteins. An ontological analysis tool that supports more than one
type of IDs as input will be more useful since it will relieve the
user from translating one type of IDs (e.g. Affymetrix probe IDs) to
appropriate IDs (e.g. gene IDs).

Onto-Express, GoMiner and GeneMerge provide separate tools
(Onto-Translate, MatchMiner and the Gene Name Converter,
respectively) that allow the user to convert from other ID types (e.g.
GenBank accession number, RefSeq IDs, etc.) to the type(s) of ID
used by the application. Although in principle, these tools support
more types of IDs as input, this design adds a separate step to the ana-
lysis pipeline since the user has to manually take the results from the
conversion tool and submit them to the ontological analysis tool. For
the purpose of this comparison, we only considered the capabilities
of the ontological analysis tool itself.

GoMiner, GeneMerge, and GOToolBox only allow the user to
submit organism specific IDs used in the GO database as input.
FuncAssociate, Ontology Traverser, and CLENCH only allow one
type of ID as input. These tools support MODB gene products, Affy-
metrix probe IDs, andA.thaliana MIPS IDs, respectively. FatiGO
supports Affymetrix probe IDs and GenBank accession numbers,
and GOToolBox supports GenBank accession numbers and gene
symbols. Onto-Express, DAVID, EASEonline and GOTM support
the most different types of IDs: Affymetrix probe IDs, GenBank
accession numbers, UniGene cluster IDs and Entrez Gene IDs.
In addition, Onto-Express and GOTM also support gene symbols,
whereas DAVID supports GenPept, PIR and UniProt protein IDs,
and RefSeq IDs.

A tool supporting more than one type of ID must use an appropri-
ate and correct type of identifiers to create functional profiles. For

instance, the analysis performed by eGOn is centered around Uni-
Gene clusters which assumes that each UniGene cluster corresponds
to distinct genes. However, this assumption may not always be accur-
ate. UniGene has been created by comparing expressed sequence
tags (ESTs) in the dbEST database (Schuler, 1997). However, due
to the alternative splicing of the mRNA, it is entirely possible that
ESTs from the same gene cluster in different groups, which will
result in several UniGene clusters being associated with the same
gene. As an example, theSET8 gene (SET8: PR/SET domain con-
taining protein 8, Entrez Gene ID: 387893) is associated to UniGene
clusters Hs.443735 and Hs.536369. If a study includes any such
genes, treating each UniGene cluster as a distinct gene may not
always be appropriate. In such circumstances, the results can be
skewed towards those GO terms that are associated to genes from
which more than one UniGene cluster is derived. This may become
particularly important if further research will confirm the current
estimates that more than half of the human genes may have alternative
splice variants.

3 DRAWBACKS AND LIMITATIONS OF THE
CURRENT APPROACH

Each of these tools uses one or more annotation databases and
creates a list of function categories in which the genes from the input
list are known to be involved in. The functional categories that are
overly represented in a statistically significant way in the list of dif-
ferentially regulated genes are inferred to be meaningfully related to
the condition under study. However, this approach of translating a list
of differentially expressed genes into a list of functional categories
using annotation databases suffers from a few important limitations.
Since these limitations are related to the approach itself, all current
tools exhibit them.

Firstly, the existing annotations databases are incomplete. For
virtually all sequenced organisms only a subset of known genes
are functionally annotated (Kinget al., 2003). Furthermore, most
annotation databases are built by curators who manually review
the existing literature. Although unlikely, it is possible that cer-
tain known facts might get temporarily overlooked. For instance,
we found references in literature published in the early 90s, for
65 functional annotations that are yet not included in the current
functional annotation databases. As an example, the geneHMOX2
was shown to be involved in the process of pigment biosynthesis in
1992 (McCoubreyet al., 1992) and is still not annotated as such
today. More commonly, recent annotations are not in the data-
bases yet because of the time lag necessary for the manual curation
process.

Secondly, certain pieces of information may also be imprecise or
incorrect. In the GO, out of 19 490 total biological process annota-
tions available forHomo sapiens, 11 434 associations are inferred
exclusively from electronic annotations (i.e. without any expert
human involvement) (http://www.geneontology.org/GO.current.
annotations.shtml). The vast majority of such electronic annotations
are reasonably accurate (Camonet al., 2005). However, many such
annotations are often made at very high-level GO terms which limits
their usefulness. Furthermore, some of these inferences are incor-
rect (King et al., 2003; Wanget al., 2004). Even though in some
cases the error is very conspicuous to a human expert, currently,
there are no automated techniques that could analyze, discover and
correct such erroneous assignments. At the present time, none of the
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tools allows any type of weighting by the type of evidence which
is a limitation since experimentally derived annotations are more
trustworthy than electronically inferred ones.

The current approach used for ontological analysis is limited
to looking up existing annotations and performing a significance
analysis for the categories found. This approach cannot discover
previously unknown functions for known genes even if there is
data justifying such inferences. For example, the geneSLC13A2
[solute carrier family 13 (sodium-dependent dicarboxylate trans-
porter), member 2 (H.sapiens)] encodes the human Na(+)-coupled
citrate transporter and is annotated in GO for the molecular func-
tion organic anion transporter activity. However, it is not annotated
for the corresponding biological process, organic anion transport.
This is not a problem for the curator, and the human expert query-
ing GO for this specific gene. For them, it is obvious that a gene
that has organic anion transporter activity will be involved in the
organic anion transport. However, a query that tries to find all
genes involved in the process of organic anion transport will fail
to retrieve this gene. Similarly, any ontological analysis software
trying to find out what underlying processes are represented by a
given list of genes containing this gene, will either fail to con-
sider the organic anion transport if no other genes are involved in
it, or will calculate its statistical significance incorrectly by ignoring
this gene.

Another limitation is related to those genes that are involved in
several biological processes. For such genes, all current tools weight
all the biological processes equally. At the moment, it is not possible
to single out the more relevant one by using the context of the other
genes differentially expressed in the current experiment. BRCA1 for
instance, is a well known tumor suppressor but is also known to be
involved in carbohydrate metabolism. If most other genes found to be
changed in the current experiment are involved in processes such as
DNA damage response, apoptosis, induction of apoptosis, and signal
transduction, it is perhaps more likely that in this experiment BRCA1
is playing its usual tumor suppressor role. However, if most other
genes are involved in carbohydrate mediated signaling, carbohydrate
transport and metabolism, etc., then it is perhaps more likely that
BRCA1’s role in the carbohydrate metabolism is more relevant.

The existing GO based functional profiling approaches are cur-
rently decoupled from the gene expression data obtained from the
microarray experiment in the previous step. In any given biological
phenomenon, different genes are regulated to different extents. The
data providing information about different amount of regulation for
one gene versus another gene can be useful in assigning different
weights to the corresponding biological processes they are involved
in and hence, can help in inferring if one biological process is more
relevant than the other(s).

The usefulness of the existing functional profiling approaches is
impacted by the annotation bias present in the ontological annotation
databases. Some biological processes are studied in more detail than
the others (e.g. apoptosis), thus generating more data. If more data
about a specific biological process is available, more of the genes
associated with it will be known and hence, the process is more
likely to appear as significant than the others.

An important issue related to the ontological analysis is the name–
space mapping from one resource to another. At the moment, the
existing knowledge about known genes is spread out over a number
of databases and other resources. Different databases are maintained
by various independent groups that many times have very different

interest and research foci. Each such resource often uses its own
type of identifiers. For instance, GenBank uses accession numbers,
UniGene uses cluster identifiers (IDs), Entrez Gene uses gene IDs,
SWISSPROT uses protein IDs, TrEMBL accession numbers, etc.
Furthermore, genes are also represented by various company-specific
gene IDs. A typical example would be Affymetrix which uses its
own probe IDs to represent various genes. Various resources try to
address the problem by maintaining other types of IDs together with
their own and by providingad hoc tools able to map from one type
of ID to another. For instance, besides its own gene names, Entrez-
Gene database also contains UniGene cluster IDs, and Affymetrix’s
NetAffyx provides RefSeq and GenBank accession numbers, besides
its own array specific probe IDs. For example, the gene beta actin
in mouse is referred to as MGI:87904 in Mouse Genome Inform-
atics (MGI), Actb (Gene ID: 11461) in Entrez Gene, Mm.297 in
UniGene, ACTB_MOUSE (primary accession number: P60710) in
UniProt, and TC1242885 in the TIGR gene index. In addition, the
beta actin gene in mouse is referred to by 29 mRNA sequences and
4552 ESTs in dbEST, 5 secondary accession numbers in UniProt, 4
other accession IDs in MGI, and 5 probe IDs on 4 different Affymet-
rix mouse arrays. The burden of mapping various types of ID on each
other is left entirely on the shoulders of the researchers, who often
have to revert to cutting-and-pasting lists of IDs from one database
to another.

The name–space issue becomes crucial when trying to translate
from lists of differentially regulated genes to functional profiles
because the mapping from one type of identifier to another is not
one-to-one. In consequence, the type of IDs used to specify the list
of differentially regulated genes can potentially affect the results of
the analysis (Dr̆aghici, 2003; Khatriet al., 2004). While GO rep-
resents a viable, long term solution to the problem of inconsistent
vocabulary, the name–space problem is yet to be solved.

Novel ideas have started to appear in this area addressing some
of the issues above. Onto-Semantics has been proposed as a tool
able to analyze the semantic content of annotation databases and
find incomplete and incorrect annotations (Khatriet al., 2005b).
GoToolBox offers a different tool (GO-Proxy) to identify clusters
of related terms. MAPPFinder (Donigeret al., 2003), Pathway-
Express (Khatriet al., 2005a), Cytoscape (Shannonet al., 2003),
Pathway Tools (Karpet al., 2002) and Pathway Processor (Grosu
et al., 2002) are only a few of the tools trying to expand the secondary
analysis by including metabolic or regulatory pathway informa-
tion. Other related tools can be found on the tools page of the GO
(http://www.geneontology.org/GO.tools.shtml).

4 CONCLUSIONS
This paper presents a comparison of several ontological analysis
tools. This comparison emphasizes characteristics of each tool as
well as a number of limitations and drawbacks of the approach as
a whole. Currently, there is a large number of tools implementing a
very similar approach. At the same time, this approach is severely
limited in certain regards. It would be more beneficial if future tools
expand the current approach by trying to address some of these
limitations rather than providing endless variations of the same idea.
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