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ABSTRACT
Motivation: Genetic networks are often described statistically using
graphical models (e.g. Bayesian networks). However, inferring the
network structure offers a serious challenge in microarray analysis
where the sample size is small compared to the number of considered
genes. This renders many standard algorithms for graphical models
inapplicable, and inferring genetic networks an ‘ill-posed’ inverse
problem.
Methods: We introduce a novel framework for small-sample infer-
ence of graphical models from gene expression data. Specifically, we
focus on the so-called graphical Gaussian models (GGMs) that are
now frequently used to describe gene association networks and to
detect conditionally dependent genes. Our new approach is based on
(1) improved (regularized) small-sample point estimates of partial cor-
relation, (2) an exact test of edge inclusion with adaptive estimation
of the degree of freedom and (3) a heuristic network search based on
false discovery rate multiple testing. Steps (2) and (3) correspond to
an empirical Bayes estimate of the network topology.
Results: Using computer simulations, we investigate the sensitivity
(power) and specificity (true negative rate) of the proposed framework
to estimate GGMs from microarray data. This shows that it is pos-
sible to recover the true network topology with high accuracy even for
small-sample datasets. Subsequently, we analyze gene expression
data from a breast cancer tumor study and illustrate our approach
by inferring a corresponding large-scale gene association network for
3883 genes.
Availability: The authors have implemented the approach in the
R package ‘GeneTS’ that is freely available from http://www.stat.
uni-muenchen.de/∼strimmer/genets/, from the R archive (CRAN) and
from the Bioconductor website.
Contact: korbinian.strimmer@lmu.de

INTRODUCTION
Biological processes in the cell such as biochemical interactions and
regulatory activities lead to complicated interaction patterns among
genes and gene products. It is one of the aims of systems biology
to provide suitable mathematical models for these networks. In this
regard, graphical models (Whittaker, 1990; Lauritzen, 1996) have
emerged as useful tools because they allow the stochastic descrip-
tion of net-like association and dependence structures in complex
high-dimensional data. At the same time, graphical models offer an
advanced statistical framework for inference.

∗To whom correspondence should be addressed.

Consequently, many in part very complicated graphical models
such as Bayesian networks (e.g. Friedman et al., 2000; Segal et al.,
2003; Friedman, 2004), auto-regressive models (e.g. Yeung et al.,
2002; De Hoon et al., 2003) state-space models (e.g. Murphy, 2002;
Rangel et al., 2004) and graphical Gaussian models (GGMs) (e.g.
Kishino and Waddell, 2000; Toh and Horimoto, 2002a; Wu et al.,
2003; Dobra et al., 2004) have already been applied to genomic
data, and put to use in expression analysis.

Unfortunately, although graphical models are promising for the
analysis of gene interaction, their practical application is currently
strongly limited by the amount of available experimental data. At
first, this may seem paradoxical with the current high-throughput
facilities. Note however, while these tools now allow the user to
investigate experimentally a greatly increased number of features
(genes), the number of available samples has not, and cannot, sim-
ilarly been expanded. As a result, in a typical microarray dataset
the number of genes G will exceed by far the number of sample
points N . This poses a serious challenge to any statistical inference,
and also renders the estimation of genetic networks as an extremely
hard problem. This is corroborated by a recent study on the popular
Bayesian network method, in which Husmeier (2003) demonstrated
that this approach tends to perform poorly on sparse microarray
data.

Motivated by these challenges, great efforts are now being under-
taken to further extend the theory of graphical models to allow their
large-scale application on small-sample data (e.g. Wong et al., 2003;
Dobra et al., 2004). In this paper, we would also like to contribute
to this development by proposing a practical empirical Bayes frame-
work for inferring graphical models from sparse microarray data.
More specifically, we focus here on improving the inference of one of
the simplest classes of graphical models, the so-called GGMs. These
are similar to the most widely known Bayesian networks in that they
allow to distinguish direct from indirect interactions (i.e. whether
gene A acts on gene B directly or through a third agent C). As any
graphical model, they also provide a notion of conditional independ-
ence of two genes. However, in contrast to Bayesian networks GGMs
contain only undirected rather than directed edges. This makes graph-
ical Gaussian interaction modeling on the one hand conceptually
more simple, and on the other hand also potentially more widely
applicable (e.g. there are no problems with feedback loops as in
Bayesian networks).

GGMs have first been proposed as a model for the association
structure among genes by Kishino and Waddell (2000). However,
a number of difficulties arise when the graphical Gaussian modeling
concept is applied to the analysis of microarray data. First, standard
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GGM theory (Whittaker, 1990) can only be applied when N > G,
because otherwise the sample covariance and correlation matrices are
not positive definite, which in turn prevents the computation of partial
correlations. Moreover, there are often additional linear dependences
among the variables, which lead to the problem of multicollinearity.
This, again, renders standard theory of graphical Gaussian modeling
inapplicable to microarray data. Second, the statistical tests widely
used in the literature for selecting an appropriate GGM (e.g. deviance
tests) are valid only for large sample sizes, and hence are inappro-
priate for the very small sample sizes present in microarray datasets.
In this case, instead of asymptotic tests an exact model selection
procedure is required.

Therefore, to avoid these dimensionality problems, graphical
Gaussian modeling has so far been restricted to assess relation-
ships among either a rather small number of genes (Waddell and
Kishino, 2000; Bay et al., 2002; Wang et al., 2003) or among a
small number of clusters of genes (Toh and Horimoto, 2002a,b;
Wu et al., 2003). However, the resulting partial correlation coeffi-
cients for the clusters and the corresponding conditional dependence
properties are difficult to interpret. For instance, not all the genes
of one cluster will interact with all the genes of another cluster.
Furthermore, information regarding quality and strength of the asso-
ciation on the gene level is lost when only clusters of genes are
considered.

A novel small-sample framework for inferring
graphical Gaussian models
To resolve these issues, we propose here a novel framework for
inferring GGMs from small samples. This centers around three new
small sample point estimates of partial correlation. A second key ele-
ment of this framework is a small-sample edge inclusion test where
the degree of freedom of the null distribution is estimated adapt-
ively from the data. This procedure exploits the parallel structure of
microarray data in a similar fashion as an empirical Bayes approach
suggested by Efron et al. (2001) to identify differentially expressed
genes. Finally, multiple testing using the false discovery rate (FDR)
method is employed for heuristic but computationally efficient model
selection.

The rest of the paper is organized as follows. In the next section, we
introduce the mathematical and statistical background of GGMs and
present all details of the new small-sample framework for inferring an
appropriate model. Subsequently, in the Results section we invest-
igate using extensive computer simulations the question of model
validity and the accuracy and power of network selection using the
proposed approach. As an example, we then illustrate our framework
by applying it to a large-scale breast cancer dataset (West et al., 2001)
with 3883 genes and 49 samples. Finally, we discuss the advantages
as well as potential drawbacks of our framework and point out further
directions of research.

METHODS

Graphical Gaussian models
GGMs, also known as covariance selection models, are undirected graph-
ical models (Dempster, 1972; Whittaker, 1990; Edwards, 1995). Under this
approach, the observed data matrixX withN rows (=samples) andG columns
(=genes) is considered to be drawn from a multivariate normal distribution
NG(µ, �) with some mean vector µ = (µ1, . . . , µG)T and positive definite
covariance matrix � = (σij ), where 1 ≤ i, j ≤ G. Via σij = ρij σiσj , the

covariance matrix � can be further decomposed into variance components
σ 2

i and the Bravais–Pearson correlation matrix P = (ρij ).
A high correlation coefficient between any two genes may be indicative of

either (1) direct interaction, or (2) indirect interaction or (3) regulation by a
common gene. However, for the construction of a gene association network
only the direct interactions are of interest as only these correspond to edges
between two nodes (genes) in the resulting graph.

In the GGM framework, the strength of direct pairwise correlation is char-
acterized by the partial correlation matrix � = (πij ). These coefficients
describe the correlation between any two genes i and j conditioned on all
the remainder of the genes. For instance, the partial correlation π12 between
genes 1 and 2 is simply the correlation cor(ε1, ε2) of the residuals ε1 and
ε2 resulting from linearly regressing gene 1 and gene 2 against genes 3–G,
respectively. Standard graphical model theory (e.g. Edwards, 1995) shows
that the matrix � is related to the inverse of the standard correlation coef-
ficients P . This leads to a straightforward procedure to compute � via the
relations

� = P −1 = (ωij ) (1)

and
πij = −ωij /

√
ωiiωjj . (2)

Note that in the inversion step Equation (1), it is equally valid to use the
covariance matrix � instead of the correlation matrix P .

The partial correlation coefficients allow for a number of further interpreta-
tions. As the multivariate normal distribution is closed under marginalization
and conditioning, the partial correlation πij is the correlation coefficient of the
conditional bivariate distribution for genes i and j . Furthermore, assuming
normality it can be shown that two variables are conditionally independent
given the remaining variables if and only if the corresponding partial correla-
tion vanishes. Equivalently, the conditional independence graph of a jointly
normal set of random variables is determined by the location of zeros in the
inverse correlation matrix � (Whittaker, 1990).

In order to reconstruct a GGM network from a given dataset the follow-
ing procedure is typically employed. First, an estimate of the correlation
matrix P is obtained, usually via the unbiased sample covariance matrix
�̂ = (σ̂ij ) = 1

N−1 (X − X̄)T(X − X̄) followed by standardization. Second,
estimates of partial correlation coefficients are computed from the sample
correlation matrix using Equations (1) and (2). Third, statistical tests are
employed to determine which entries in the estimated partial correlation mat-
rix �̂ are significantly different from zero. Finally, the inferred correlation
structure is visualized by a graph, with edges corresponding to non-zero
partial correlation coefficients.

However, this algorithm is only applicable if the sample size N is larger
than the number of variables G. Otherwise, the sample covariance matrix is
not positive definite and cannot be inverted (e.g. Friedman, 1989; Hastie and
Tibshirani, 2004). This in turn prevents the direct computation of the partial
correlation coefficients. Unfortunately, this is the case for typical microarray
data where one has a data situation with N � G. In addition, the small
sample size also renders most standard statistical tests for GGMs invalid, as
these usually rely on a large sample size N for asymptotic validity.

Estimating partial correlation from small samples
In order to obtain reliable small-sample point estimates of partial correlation
coefficients, we propose two conceptually simple but effective variations of
the standard graphical Gaussian modeling framework. First, when inverting
the estimated correlation matrix P̂ we employ the Moore–Penrose pseudo-
inverse. Second, we use bootstrap aggregation (bagging) to stabilize the
estimator.

The Moore–Penrose pseudoinverse (Penrose, 1955) is a generalization of
the standard matrix inverse that can also be applied to singular matrices and
that is based on the singular value decomposition (SVD). The correlation
matrix P can be decomposed into P = U D V T where D is a square diagonal
matrix of rank m ≤ min(N , G) containing all non-vanishing singular values.
The pseudoinverse P + is then defined as P + = V D−1 UT and requires only
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the trivial inversion of D. It can be shown that the pseudoinverse P + is the
shortest length least-squares solution of PP + = I , and hence reduces to the
standard matrix inverse where possible.

Bootstrap aggregation (Breiman, 1996) is a simple and very general
approach to improve upon an unstable estimator θ̂ (y) for a given set of
data y. The algorithm proceeds as follows:

(1) Generate a bootstrap sample y∗b with replacement from the original
data. Repeat this process for each b = 1, . . . , B independently (e.g.
with B = 1000).

(2) For each data sample y∗b calculate the estimate θ̂∗b .

(3) Compute the bootstrap mean (1/B)
∑B

b=1 θ̂∗b to obtain the bagged
estimate.

In a nutshell, bagging is essentially a variance reduction method. Another
interpretation of the bagged estimate is as an approximate Bayesian posterior
mean estimate (Hastie et al., 2001).

Both these techniques combined allow us to construct a small-sample
estimator of the partial correlation matrix � = (πij ). In particular, in this
paper we consider the following three possibilities:

�̂1: Use the pseudoinverse for inverting the sample correlation matrix P̂ to
obtain an estimate of �, without performing any form of bagging
(= ‘observed partial correlation’).

�̂2: Use bagging to estimate the correlation matrix P , then invert the bagged
correlation matrix with the pseudoinverse to obtain an estimate of �

(= ‘partial bagged correlation’).

�̂3: Apply bagging to the estimator �̂1, i.e. use the pseudoinverse for invert-
ing each bootstrap replicate estimate P̂ ∗b , then average the results
(= ‘bagged partial correlation’).

By construction, all three of these estimators can be applied to cases where
the sample size is smaller than the number of variables. However, they differ
drastically with respect to accuracy and power. This is investigated in detail
below using computer simulations (see Results section).

Null distribution of sample partial correlation
To address the statistical testing problem of non-zero partial correlation

H0: πij = 0 versus H1: πij �= 0, (3)

we require the sampling distribution of π̂ij = pij under the null hypothesis
πij = 0 (for convenience, we drop the subscripts i and j in the following).

From Hotelling (1953), the distribution of the sample normal correlation
coefficient ρ̂ = r is known exactly. For ρ = 0 we have

f0(r; κ) = (1 − r2)(κ−3)/2 �(κ/2)

π1/2�[(κ − 1)/2] , (4)

where κ is the degree of freedom. For the standard correlation coefficient the
degree of freedom κ = N −1 is determined by the sample size N . For ρ = 0
the variance of r also equals the inverse of κ , i.e. Var(r) = 1/κ .

The sample normal partial correlation coefficient π̂ = p is distributed
precisely as the standard correlation coefficient ρ̂ = r , only that κ is reduced
by the number of eliminated variables (Hotelling, 1953). Thus, if there are
G variables (of which G − 2 have to be eliminated in order to compute the
pairwise partial correlation coefficients) the resulting degree of freedom is
κ = N − G + 1. Note that this relationship implies that N cannot be smaller
than G if κ is to remain positive.

In a small-sample setting, we cannot use the standard partial correlation
estimate �̂ [Equation (2)] but rather have to rely on alternative estimators such
as �̂1, �̂2, �̂3 suggested above. Unfortunately, we cannot analytically derive
the sampling distributions of these estimators. However, it can be shown
numerically (for details see Results section) that their respective simulated
sampling distributions still assume the distributional form of Equation (4),
albeit with a smaller variance and hence with κ > 0 even for N < G. Note
that in this case the degree of freedom κ is not a simple function of N and G

but rather has itself to be estimated from the data.

Robbins–Efron-type inference of empirical test
distribution
In principle, given an appropriate choice of κ , Equation (4) allows us to
compute p-values for estimated partial correlation coefficients and thus to
perform statistical testing with regard to the presence of edges in a GGM
network.

As we do not have repeated estimates of the partial correlation coeffi-
cient per individual edge it is not trivial to estimate the degree of freedom
κ . However, we can utilize the highly parallel structure of the edge testing
problem and the fact that biomolecular networks are typically sparse (Yeung
et al., 2002). In a network considering G genes there is a large number
E = G(G−1)/2 of possible edges. Only a small fraction ηA of these will cor-
respond to true edges, whereas for the remaining majority the corresponding
true partial correlation coefficients will vanish.

Therefore, we may assume that the partial correlation coefficients p across
all edges in the network follow a mixture distribution

f (p) = η0f0(p; κ) + ηAfA(p) , (5)

where η0 and ηA are the priors for the null and alternative distribution, f0 and
fA, respectively, with η0 + ηA = 1 and η0 	 ηA. The null distribution f0

is given by Equation (4). For reasons of simplicity, we assume here for the
distribution of partial correlation coefficients of the true edges fA a simple
uniform distribution from −1 to 1. Note that for fA other more complicated
distributions could easily be conceived, including non-parametric estimates.

Fitting this mixture distribution to the observed partial correlation coeffi-
cients (via optimizing the corresponding likelihood function or an EM-type
algorithm) allows to infer the parameters η̂0 and κ̂ . It is then straightforward
to compute two-sided p-values for each possible edge in the correspond-
ing network using the exact null distribution f0 with κ̂ as plug-in estimate.
Alternatively, one may also be interested in computing

Prob(non-zero edge|p) = η̂AfA(p)

f (p; κ̂)
, (6)

i.e. the empirical posterior probability of an edge being present.
This approach, although new for edge detection in graphical models, is dir-

ectly inspired by similar approaches to detect differentially expressed genes
(Sapir and Churchill, 2000; Efron et al., 2001; Efron, 2003). There, the
mixture distribution models differentially expressed genes assuming that the
majority of investigated genes is not differentially expressed.

A key element in this procedure is that it turns a seemingly disadvantage
in the analysis, namely the large number of genes G in a microarray dataset,
into an advantage: with growing G the number of zero-edges η0E becomes
larger, and hence it gets easier to estimate the null distribution from the data.
Note that this ‘Robbins–Efron-type’ inference (see Efron, 2003) enables one
to determine the sampling distribution f0 from a large-dimensional point
estimate (!). A further benefit of using an empirical null distribution in a
large-scale testing situation is that it also additionally accounts for hidden
correlations and unobserved covariates (Efron, 2004).

Finally, we note that using the estimated degree of freedom κ̂ we can
define an effective sample size Neff = κ̂ + G − 1. This reflects the relation-
ship between sample size and κ for the standard normal partial correlation
coefficient, but also extends to the case when other estimators such as �̂1,
�̂2 and �̂3 are employed.

Selection of graphical Gaussian model using false
discovery rate multiple testing
One simple strategy for choosing a GGM network consistent with the data
is to test each of the E = G(G − 1)/2 potential edges individually for
their presence in the final network, i.e. whether the corresponding partial
correlation coefficient is significantly different from zero (Whittaker, 1990;
Drton and Perlman, 2004). This proceeds as follows. First, a list of p-values
p1, p2, . . . , pE is calculated, one for each edge. Subsequently, because of the
parallel testing situation a multiple testing procedure needs to be applied.
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Here, we employ the method of FDR multiple testing (Benjamini and
Hochberg, 1995). FDR controls the expected proportion of false positives out
of the total number of rejections rather than the chance of any false positives.
This makes it ideal for screening purposes (Storey and Tibshirani, 2003). The
basic algorithm is as follows:

(1) Construct the set of ordered p-values p(1), p(2), . . . , p(E) with
corresponding edges e(1), e(2), . . . , e(E).

(2) Then let iQ be the largest i for which p(i) ≤ (i/E)(Q/η0).

(3) Finally, reject the null hypothesis of zero partial correlation for all
edges e(1), e(2), . . . , e(iQ).

It can be shown that this procedure controls the FDR at level Q (Benjamini
and Hochberg, 1995; Storey, 2002). Moreover, FDR is justified both from a
frequentist as well as from a Bayesian perspective (Efron et al., 2001; Storey,
2002; Efron, 2003). Note that the above decision rule also requires the spe-
cification of η0, the fraction of true zero partial correlations. This parameter
is either set to one, the most conservative choice as done by Benjamini and
Hochberg (1995), or it may be estimated adaptively from the data (Benjamini
and Hochberg, 2000; Storey, 2002). In our case, a suitable estimate η̂0 is
available from the fit of Equation (5).

Using a multiple testing procedure for GGM selection has the advantage
that it is practical and computationally efficient also for large numbers of
genes. Nevertheless, we are well aware that this is a heuristic and only an
approximation to an exhaustive GGM search. Unfortunately, the number of
possible network topologies grows super-exponentially with the number of
nodes. Thus, an exhaustive network enumeration is necessarily limited to
toy cases. Other heuristic searches such as backward and forward selection
(Whittaker, 1990) do not necessarily guarantee a better fit for large G than
multiple testing (Drton and Perlman, 2004). However, stochastic searches
such as Bayesian MCMC sampling of GGMs may prove to be more effective
(for recent developments see Wong et al., 2003; Dobra et al., 2004).

Recipe of analysis and computer program
In a nutshell, our suggested framework for inferring large GGMs from small-
sample data comprises the following steps:

(1) Choose a suitable point estimator of partial correlation (one of �̂1, �̂2,
�̂3), see simulation study and our recommendations in the Results
section.

(2) Compute partial correlation estimates for each possible edge.

(3) Estimate the degree of freedom κ by fitting the mixture distribution
from Equation (5).

(4) Compute two-sided p-values and posterior probabilities for each edge.

(5) Use FDR multiple testing for the selection of edges to be included in
the GGM.

(6) Visualize the resulting network structure.

We have implemented this approach in the R package ‘GeneTS’
(versions 2.0 and later). It is distributed under the terms of the
GNU General Public License and freely available from http://www.stat.
uni-muenchen.de/∼strimmer/genets/, from the R package archive (http://
cran.r-project.org) and from the Bioconductor Web page (http://www.
bioconductor.org).

Visualization of the inferred networks requires additional installation of the
Bioconductor R packages ‘Rgraphviz’ by Jeff Gentry and ‘graph’ by Robert
Gentleman (Figs 1 and 7).

RESULTS
In order to investigate the statistical properties of the proposed frame-
work to inferring GGMs from small samples, we conducted a series
of extensive computer simulations. Subsequently, we re-analyzed
molecular data from a microarray study of breast cancer tissue
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Fig. 1. Simulated sparse network with G = 100 nodes and 99 edges
(corresponding to an edge fraction of ηA = 0.02). Note that in this figure
branch lengths are purely due to the layout of the graph and do not indic-
ate the strength of the correlation between two connected nodes. Gray lines
indicate negative partial correlation, whereas edges with positive correlation
are drawn in black.

Table 1. Definition of quantities used for assessing GGM network
reconstruction

Quantity Definition

Number of true edges TP + FN = ηAE

Number of zero-edges TN + FP = η0E

Significant edges TP + FP = S

False positive rate E(FP/(η0E)) = αI

False negative rate E(FN/(ηAE)) = αII

True negative rate (specificity) 1 − αI

True positive rate (sensitivity, power) 1 − αII

Positive predictive value PPV = E(TP/S|S > 0)

False discovery rate FDR = E(FP/S|S > 0)

samples (West et al., 2001) and inferred a corresponding large-scale
gene association network.

Simulation setup
In our analysis of simulated data we used the following approach
to generate random graphical models and data. It allows to control
parameters of interest such as the number of nodes G, the fraction
of non-zero edges ηA and the sample size N of the simulated data.

First, partial correlation matrices � were generated by an
algorithm, which guarantees that the resulting matrices are always
positive definite. This method proceeds as follows:

(1) Start with an empty, symmetric G × G matrix (with zero
diagonal elements).
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Fig. 2. Mean squared error of the three small-sample estimators �̂1, �̂2 and
�̂3 in dependence of sample size for G = 100 genes. The areas designated
‘small N ’, ‘critical N ’ and ‘large N ’ are defined relative to the number of
genes G.

(2) Choose randomly the off-diagonal positions corresponding
to the ηAE non-zero edges, and fill in preliminary correlation
values drawn from the uniform distribution between −1 and 1.

(3) Compute columnwise sums of the absolute values of the mat-
rix entries, and set the corresponding diagonal element equal
to this sum plus a small constant (e.g. 0.0001). This ensures
that the resulting matrix is diagonally dominant, and thus
positive definite.

(4) Standardize the matrix so that all the diagonal entries equal 1
to obtain the simulated true partial correlation matrix � which
in turn represents the true GGM.

An example of a simulated network with G = 100 nodes and
ηA = 0.02 is shown in Figure 1. This choice of G and ηA implies
that there are 99 true edges out of 4950 potential edges. Note that
even for small values of ηA the resulting ‘sparse’ network still looks
quite dense. This is because the number of available edges E grows
with the square of the number of variables G.

Second, simulated data of the desired sample size N were gener-
ated as follows. From � the true pairwise correlation matrix P was
computed via reverse application of Equations (1) and (2). As � is
positive definite, so is its inverse and the corresponding matrix P .
Subsequently, samples of length N were drawn from the multivariate
normal distribution with mean zero and the correlation structure P .

In the next step, the simulated data were used to obtain point
estimates �̂1, �̂2 and �̂3. These were in turn compared with the
original true matrix �. As a measure of the accuracy of the point
estimates, we employed the squared error loss L(�̂i , �) = ||�̂i −
�||2F = ∑

i,j (π̂ k
ij −πij )

2. The expected loss (risk), or mean squared

error (MSE), was estimated by averaging L(�̂i , �) over multiple
simulation runs.

Then, after fitting the mixture distribution, we used the estimate κ̂

to compute the effective sample size via N̂eff = κ̂ + G − 1. Finally,
to assess the network reconstruction by multiple testing of edges
we counted true positives TP (correctly identified true edges), false
positives FP (spurious edges, i.e. not recognized zero-edges), true
negatives TN (correctly identified zero-edges) and false negatives FN
(not recognized true edges). From this information, we estimated the
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Fig. 3. Effective sample size Neff for the three investigated small-sample
point estimators of partial correlation in dependence of true sample size for
G = 100 genes.

TN rate (specificity) and the TP rate (sensitvity). Table 1 provides
the list of definitions of these quantities. We also computed estimates
of the positive predictive value (PPV), i.e. the expected fraction of
true edges among all significant edges.

Analysis of simulated data
Accuracy of point estimates First, we investigated the accuracy
of the point estimators �̂1, �̂2 and �̂3 to recover the true partial
correlation matrix � in dependence of the sample size N .

We varied the network parameters so that N = 10, 20, . . . , 210,
G = 20–210 and ηA = 0.01–0.2. For a fixed network size with
a given proportion of non-zero edges ηA, we randomly generated
GGMs and simulated data as described above. The number of boot-
strap replicates for bagging was set at B = 1000, and we conducted
R = 50 simulations for each setting of N and G.

Figure 2 shows as an example the graphs resulting from simula-
tions run with G = 100, ηA = 0.02 and N = 10, 20, . . . , 210. The
same qualitative results were also obtained with all other investigated
combinations of G and ηA (data not shown). The most striking res-
ult from these simulations is the existence of three different regions
(N � G, N ≈ G and N � G) where all three estimators exhibit
very different properties.

For large samples with N � G the point estimators �̂1, �̂2 and
�̂3 mainly agree with each other, with the same low error. Note that
this is the only region where ‘classical’ graphical Gaussian modeling
theory is valid.

On the other hand, for very small N � G the best point estimate
is clearly obtained by �̂2. This can be explained as follows: �̂2 is
the only one of the three investigated estimators that is based on a
positive definite estimate of the correlation matrix, as averaging over
bootstrap sample correlation matrices P̂ ∗b acts as implicit regulariza-
tion procedure (cf. Friedman, 1989). Also note that P̂ is unbiased
and hence E(P̂ ) = P ≈ (1/B)

∑B
b=1 P̂ ∗b. The benefit is that the

subsequent matrix inversion to obtain �̂2 can proceed with little loss
of accuracy.

In the ‘critical N’ zone with N ≈ G a striking dimensionality
resonance effect (Raudys and Duin, 1998; Skurichina and Duin,
2002) is observed. The MSE of �̂1 increases dramatically around
N ≈ G, with decreasing error when the sample size decreases. This
‘peaking phenomenon’ is well known in small-sample regression
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Fig. 4. Quantile–quantile plots of the observed null distribution of �̂1, �̂2

and �̂3 for G = 100 genes. Top row: large sample size (N = 200). Bottom
row: small sample size (N = 20).

and classification problems and is due to the use of the pseudo-
inverse (Raudys and Duin, 1998). It can be understood as follows. For
N ≈ G, the eigenvalues of the sample correlation matrix are strongly
distorted in comparison with those of the true correlation matrix,
therefore the largest and smallest eigenvalues are strongly biased (e.g.
Friedman, 1989). This causes the corresponding SVD directions in
the pseudoinverse to become highly overestimated. Regularization of
the correlation matrix (e.g. by bagging) reduces this error dramatic-
ally (Skurichina and Duin, 2002). This can be immediately seen by
comparing �̂1 with the two bagged estimators �̂2 and �̂3 that both
demonstrate a very good performance in the ‘critical N’ zone and
exhibit a considerably lower error than �̂1.

Effective sample size Next, we conducted a further simulation
study, similar in set-up as above to study the dependence of the
effective sample size Neff = κ̂ +G− 1 from the actual sample size.
The results from an example run with G = 100 nodes are shown in
Figure 3.

A number of things can be learned from this figure. First, the effect-
ive sample size Neff is always greater than the number of variables G,
regardless of the actual sample size. This is noteworthy especially for
small sample sizes N � G. Second, whenever the effective sample
size Neff is large, then the MSE is small (Fig. 2). This is particularly
pronounced for estimator �̂2 in the ‘small N’ zone and for estimator
�̂3 in the ‘critical N’ zone. Finally, as a large Neff implies a large κ̂

we note that the variance of the null distribution decreases with the
growing effective sample size. This is an important criterion when
choosing an appropriate estimator (see subsection below for some
suggestions).

Validation of null distribution In further studies, we verified that
under the null hypothesis of no partial correlation the three proposed
small-sample estimators �̂1, �̂2 and �̂3 do indeed follow the the-
oretical distribution suggested in Equation (4). This is important to
avoid systematic bias in the statistical testing of edges.

In Figure 4, we show example quantile–quantile plots comparing
the empirical with the theoretical null distribution for large (N =
200, top row) and for small (N = 20, bottom row) sample size. In
each case, the data were simulated assuming G = 100 genes and an
empty ‘network’ with no edges as underlying model.

Fig. 5. Top row: Quantile–quantile plots for the observed mixture distribu-
tions with N = 20, G = 100 and ηA = 0.02. Bottom row: The corresponding
empirical posterior probability plots.

The first row of Figure 4 shows that, as expected, for large N all the
observed correlation coefficients fit the theoretical null distribution
very well. The estimates of the degree of freedom κ are also broadly
equivalent across the three estimators �̂1, �̂2 and �̂3. Note that �̂1 is
identical to the classic partial correlation estimator for N = 200, and
accordingly the corresponding estimate κ̂ matches the theoretically
expected value κ = 101.

For comparison, in the second row of the same figure, the quantile–
quantile plots are shown for the much smaller sample size N = 20.
For both �̂1 and �̂3 clearly the observed null distributions still fit
the theoretical distributions well. The plot for �̂2 indicates a stronger
curtosis and slightly broader tails of the empirical compared to the
theoretical distribution. Nevertheless, the fit between theoretical and
empirical distribution is still good.

One further point to note is that for small samples the variability of
partial correlation estimates and the estimated degrees of freedom κ̂

differ considerably among the investigated estimators. For N = 20
and G = 100 the estimator �̂2 exhibits by far the smallest variance
and largest κ̂ .

Fit of mixture distribution Subsequently, we also checked the fit of
the mixture distribution [Equation (5)] in the presence of true non-
zero correlations. The results from a small-sample simulation with
N = 20, G = 100 and ηA = 0.02 are displayed in Figure 5.

The top row of Figure 5 shows the quantile–quantile plots of the
observed distribution of partial correlation coefficients versus the
theoretical null distribution. We observe broader tails of the empir-
ical as compared to the theoretical distribution. This is expected as in
this case the empirical distribution is a mixture of the null distribution
and the alternative distribution for the non-zero correlations belong-
ing to the true edges (indicated in the plots by cross symbols). The
proportion of zero-edges η0 is estimated accurately, and the estim-
ates of the degree of freedom κ of the null distribution are similar to
the corresponding estimates for N = 20 in Figure 4.

The bottom row of Figure 5 depicts the corresponding empir-
ical posterior probability plots [Equation (6)]. The probability of
an observed partial correlation to correspond to a true correlation is
approximately one for large correlation strengths and quickly van-
ishes for smaller absolute values. Only the tails of the empirical
mixture distribution contain the statistically significant edges. The
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Fig. 6. Power, positive predictive value and false positive rate for recovering the true GGM network. Table 1 provides a list of definitions of the investigated
quantities, and see the main text for the the simulation setup with G = 100 genes.

width of characteristic U-shape of the posterior probability plot is
determined by the degree of freedom κ of the null distribution. This
shows that using an estimator with a small variance is advantage-
ous as this allows to identify statistically significant edges even with
relatively small absolute value of partial correlation.

Sensitivity and specificity of GGM selection Finally, we spent a
large amount of computational effort on simulations to investigate the
statistical properties of GGM selection using FDR multiple testing.

We conducted simulations with N ranging from 10 to 210 in steps
of 10, G = 100 and ηA = 0.02. For N ≤ 110 we performed R = 500
repetitions (i.e. simulation of GGM network and data) per sample
size, whereas for reasons of computational economy only R = 50
repetitions were done for N > 110. The GGMs were inferred by
multiple testing of E = 4950 edges with the desired FDR level fixed
at Q = 0.05.

For each inferred network, we counted the number of true positive
features (i.e. the number of correctly recognized true edges) as well
as the number of true negatives (i.e. the number of correctly identified
zero-edges). From these raw statistics, and repeated simulations of
networks and data, we obtained estimates of the false positive rate, of
power, and of the PPV for �̂1, �̂2 and �̂3 at a given sample size N .
The precise definitions for these terms are given in Table 1. Figure 6
summarizes our results.

All three small-sample estimators, �̂1, �̂2 and �̂3, exhibit the
same low empirical false positive rate regardless of N . For large
N > 170 they also agree in power and in PPV. However, they differ
drastically in the small-sample case N < G and for N ≈ G. In terms
of power, the bagged estimators both �̂2 and �̂3 consistently outper-
form the simple estimator �̂1 that fares rather poorly particularly for
N < G. In the latter region �̂2 exhibits the overall highest power,
whereas for N ≈ G and sample sizes slightly above G the estimator
�̂3 performs the best.

The largest PPV is generally obtained by using the estimator �̂2.
However, for very small sample size the PPV of �̂2 decreases
sharply; this is most probably due to the imperfect fit with the
theoretical null distribution (cf. Fig. 4).

A further noteworthy result from all our simulations is that close to
G = N there is generally very little power to infer the true network
structure. This may again be a consequence of the ‘dimensionality
resonance’ phenomenon discussed above.

Finally, we would like to note that all these simulations and the
resulting estimates are quite conservative. This is because we gener-
ated true GGMs in such a way that they contained edges with both
strong as well as weak true correlation. The latter are notoriously
difficult to detect (cf. Fig. 5) and this consequently depresses the test
results.

Choice of small-sample estimator
From the above analysis of simulated data it is clear that the estim-
ators �̂1, �̂2 and �̂3 perform very differently. As a summary, we
suggest the following guidelines for choosing a suitable estimator:

�̂1: Should only be used for N � G, otherwise it lacks statistical
power. Note that in this ‘large N’ region the other two estimators
perform equally well but are computationally slower due to
bagging.

�̂2: Best used for small-sample applications with N < G. Here, the
main advantages of �̂2 are its small variance (large effective
sample size) and its high accuracy as a point estimate. It exhibits
the overall best power in the ‘small N’ zone. Furthermore, it is
computationally less expensive than �̂3. However, note its low
PPV for very small N .

�̂3: Is best used in the ‘critical N’ zone where it offers small error
and large effective sample size. For N slightly larger than G

this estimator also provides the overall best power, though in
terms of PPV this estimator performs less well than �̂2.

As a result, this particularly promotes �̂2 as an estimator of
choice for the inference of GGM networks from small-sample gene
expression data.

Molecular data
Breast cancer data set We now illustrate the utility of the proposed
empirical Bayes framework of inferring GGM networks from small
samples by application to a large-scale biological dataset. More spe-
cifically, we re-analyzed gene expression data from a breast cancer
study described in West et al. (2001).

Preprocessing and calibration This dataset comprises 49 tissue
samples and gene expression was measured for 7129 genes/probes
using Affymetrix hu6800 chips. We downloaded the corresponding
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Fig. 7. Subnetwork consisting of 96 genes centered around the ESR2 gene. This net was extracted from a global network with G = 3883 genes reconstructed
from the breast cancer data of West et al. (2001) using the small-sample estimator �̂2. See the text for a biological interpretation of selected genes neighboring
ESR2.

CEL data from the Duke University Center for Genome Techno-
logy (http://data.cgt.duke.edu/West/PNASCel1.zip). We then calib-
rated and normalized the raw data to obtain robust multiarray
average (RMA) expression measures (Irizarry et al., 2003). This
was done using the ‘affy’ package in Bioconductor version 1.3
(http://www.bioconductor.org).

Subsequently, we removed all the sequences that varied only min-
imally or on low levels. Specifically, we screened out genes whose
expression levels across all samples varied <2-fold (corresponding
to a RMA difference <1.0, as RMA is a measure on the log-base 2
scale) or whose maximum RMA intensity value was <9.0. As a res-
ult of the prescreening gene expression, data for 3883 genes across
49 samples remained for further analysis.

Inference of global association network In order to infer the global
association structure and the corresponding GGM network for all
3883 genes, we employed the small-sample estimator �̂2 with B =
10 000 bootstrap replications. The computation of the estimate of the
partial correlation matrix—a 3883 times 3883 matrix with entries
for 7 536 903 possible edges—required ∼20 h on a standard Intel
Pentium 4 workstation running under the Linux operating system.

The subsequent fit of the mixture distribution [Equation (5)] res-
ulted in an estimated degree of freedom κ̂ = 4601.98 with η̂0 =

0.9924. Using the FDR method with a desired level Q = 0.05 we
determined 88 822 significantly non-zero coefficients, corresponding
to a p-value cutoff of 0.0006 and a threshold of partial correlation
π̂ > 0.051. Note that for this size of network most of the coeffi-
cients are very close to zero, so even small values are statistically
significant. This is also reflected in the large value of κ̂ .

From a statistical perspective, we caution that particularly in an
extreme small-sample setting not all statistically significant edges
will necessarily correspond to true edges (low PPV). To be on the con-
servative side, we therefore advise to take the theoretical threshold
only as minimal lower bound and also to consider larger cut-off
values.

CNR2 receptor is most-connected gene Because of the large num-
ber of nodes and edges it is difficult to visualize the resulting global
network structure (however, see below for a discussion on a subnet-
work). However, the degree of connectivity of each gene is more
easily amenable and also highly informative.

For example, in our inferred GGM network for the investigated
breast cancer dataset the cannabinoid receptor 2 gene (CNR2), also
known as CB2 receptor, is the best-connected gene, as it contains
significant correlations with 75 (!) other genes. The ‘peripheral’ can-
nabinoid receptor CNR2 is mostly expressed in the immune system,
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and unlike the ‘central’ CNR1 receptor it is unrelated to cannabinoid
psychoactivity.

The existence of such ‘super hubs’ in genetic networks is well
known (e.g. Barabási, 2004). The interesting point about CNR2 is
that it seems to be directly involved in controlling tumor growth. It
has been characterized as putative oncogene for acute myeloid leuk-
emia (Jorda et al., 2003). In addition, it has been shown that targeting
CNR2 can lead to induction of apoptosis in malignant lymphoblastic
disease (McKallip et al., 2002). Furthermore, the stimulation of
CNR2 leads to a regression of skin cancer tumors (Casanova et al.,
2003).

Subnetwork of the ESR2 gene For further illustration of the com-
plexity of the inferred global network, we now briefly describe the
genes in the immediate surroundings of the ESR2 gene (the estrogen
receptor 2). This gene was selected as ‘seed gene’ for the subnetwork
because of its role in the pathobiology of breast cancer tumors (e.g.
West et al., 2001). In Figure 7, all the 95 genes that are correlated
with ESR2 through at most five links are shown. To reduce noise in
this figure only edges with partial correlations with π̂ > 0.13 are
shown. Interestingly, many close neighbors of ESR2 in this subnet-
work are known to be implicated in the development of malignant
neuroplastic disease.

For example, ELK3 (also known as ERP, NET or SAP2) belongs
to the Ets family of transcription factors. Ets proteins have been
implicated in the regulation of gene expression during a variety of
biological processes, including growth control, transformation and
T-cell activation in many organisms. Loss of normal control is often
associated with conversion to an oncoprotein (Wasylyk et al., 1993).

On the left to the ESR2 gene sits the human CD7 antigen (also
known as gp40) which is a cell surface glycoprotein found on thymo-
cytes and mature T-cells. CD7 is one of the earliest antigens to appear
on cells of the T-lymphocyte lineage, and the most reliable clin-
ical marker of T-cell acute lymphocytic leukemia (Aruffo and Seed,
1983).

The MLL3 gene, directly linked in our network with ELK3 and
LADF4, is a member of the TRX/MLL gene family. It is associated
with leukemia and developmental defects (Ruault et al., 2002).

Further down in the network one finds LAF4, a gene responsible
for lymphocyte differentiation. Together with MLL it is involved in
lymphoblastic leukemia (von Bergh et al., 2002).

Many more genes depicted in Figure 7 are related to the devel-
opment of cancer (e.g. see the CancerGene database at http://caroll.
vjf.cnrs.fr/cancergene/). Hence, we are cautiously optimistic that the
inferred correlation network may indeed be useful as a starting point
from which to generate further medical and biochemical hypotheses.

DISCUSSION

Key contributions and novel aspects
In this paper, we have introduced a conceptually simple yet versatile
and computationally fast framework for estimating large GGMs from
datasets of small sample size. The development of this approach
was motivated by the challenge of inferring genetic networks from
nowadays microarray data which typically contain only relatively
few sample points compared to the number of investigated genes.
This will continue to be an important issue also in the future: sample
size is primarily restricted by the availability of tissue samples, and
is not necessarily increased by improved technology.

Our framework relies on three key components:

(1) Recognizing that small sample inference requires explicit
regularization, we propose several new estimators of partial
correlation. In particular, we employ a combination of SVD
and bagging in order to compute improved coefficients (this
corresponds to 0th and 1st order regularization, respectively).

(2) We present an empirical Bayes approach to detect statistic-
ally significant edges. This allows to infer from the high-
dimensional point estimate of partial correlations the exact
null distribution needed for statistical testing, and also exploits
the sparse degree of connectivity in real genetic networks. In
microarray analysis, a similar approach is already success-
fully being used to detect differential expression (Efron, 2003,
2004).

(3) We suggest a heuristic to perform approximate model
(network) selection using multiple testing using the FDR
method.

To our knowledge the present method is the first that uses an exact
distribution (i.e. one that is valid for finite N ) to test and infer GGMs
on the gene-level from short microarray data. Thus, our approach
may be regarded as an extension of earlier work by Waddell and
Kishino (2000); Toh and Horimoto (2002a,b); Bay et al. (2002) and
Wu et al. (2003). Furthermore, we have conducted extensive simula-
tions to investigate the performance of the proposed approach in the
dependence of sample size. These appear to be notably absent from
many previous studies, as pointed out before by Husmeier (2003).
In addition, we have verified our method by application to a realistic
large-scale problem. We note that in contrast to a related MCMC
approach by Dobra et al. (2004) our method can be run on low-cost
PC hardware (no parallel cluster needed).

Review of GGM model assumptions
Our approach contains a number of implicit assumptions that need
to be critically assessed.

First, GGMs are based on multivariate normality. Generally, this
appears to be unproblematic given that calibration and normaliza-
tion procedures are routinely used to preprocess gene expression
measurements.

Second, more critical is the assumption of linear relationships
among the investigated variables. While this may be a good approx-
imation in many cases, we are well aware that a GGM has limited
representational power if non-linear or combinatorial effects are
present in the data. There are approaches that allow to test for devi-
ations from linear models (Cox and Wermuth, 1994) but for small
samples this may turn out to be very difficult.

Third, there may be (linear) higher order interactions among more
than two variables. GGMs in general model higher order depend-
ences via the notion of cliques (i.e. fully connected groups of nodes).
However, our heuristic model search using multiple testing is based
on evaluating pairwise interaction only. Nevertheless, cliques can
still occur in the inferred network, hence our approach will at least
approximately detect higher order effects.

Relation to other probabilistic approaches for modeling
genetic networks
GGMs belong to the large class of linear graphical models (e.g.
MacKay, 2003). Note that most other statistical methods for inferring
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genetic networks also fall into this group (e.g. D’haeseleer et al.,
2000; Bay et al., 2002; De Hoon et al., 2003; Wu et al., 2003; Rangel
et al., 2004; de la Fuente et al., 2004). Nevertheless, the important
issue of regularization in the presence of small samples has only
been discussed in a handful of papers (van Someren et al., 2001;
Yeung et al., 2002; Liao et al., 2003; Dobra et al., 2004). One of the
purposes of this paper is to further draw attention to this problem.

During the review process a referee has repeatedly pointed out that
Bayesian networks are superior to GGMs as in theory the former
allow to model non-linear relationships. If a lot of data are available,
this is certainly true. In practice however, owing to the paucity of the
data at hand, it is not generally possible to infer these non-linearities
nor the global network structure (Husmeier, 2003; Friedman and
Koller, 2003). Furthermore, the often exercised discretization causes
information loss and might considerably influence the obtained res-
ults. Moreover, often Bayesian networks are in fact also linearized,
which for time series data turns them into linear state-space models
(Murphy, 2002).

Here, we simply argue that to model gene association and depend-
ence on small-sample datasets it is prudent to choose a graphical
model (such as a GGM) that requires very few assumptions and only
a minimal number of parameters. Note that we do not endorse GGMs
as the ‘true model’ for genetic networks.

Challenges and outlook
There are many directions that may be considered for further
research. We believe that particularly three points are of prime
importance.

First, the present approach needs to be properly adopted to time
series data. While part of the longitudinal correlation will be accoun-
ted for by the empirical fit of the null distribution, explicit dynamic
and temporal elements in the model will be crucial for inferring dir-
ected relationships. GGMs have been generalized to time series
models (e.g. Dahlhaus, 2000), and there are many other graphical
models for time series data (e.g. Murphy, 2002; Rangel et al., 2004).

Second, for all of the above-mentioned models it will be crucial
to study more intensively appropriate regularization procedures. We
are currently investigating a variety of methods that may lead to a
better fit of the null distribution, and thus enhance statistical testing
of edges.

Third, more research needs to be done in the field of model selec-
tion for gene association networks. In particular, the quality of search
heuristics such as the one presented in this paper should be compared
thoroughly with solutions obtained with exact approaches (only pos-
sible for small examples) and with those from the various proposed
stochastic searches (e.g. Wong et al., 2003).

In conclusion, we find that the graphical modeling framework is a
suitable statistical approach to modeling molecular genetic networks,
but inference and appropriate model selection for small-sample data
remain challenging. Our approach based on GGMs aims to be par-
ticularly simple and computationally efficient. We hope that it may
serve as an useful and practical exploratory tool and perhaps also as
a starting point for further development.
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