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ABSTRACT

Motivation: The proliferation of public data repositories creates a

need for meta-analysis methods to efficiently evaluate, integrate

and validate related datasets produced by independent groups.

A t-based approach has been proposed to integrate effect size

from multiple studies by modeling both intra- and between-study

variation. Recently, a non-parametric ‘rank product’ method, which

is derived based on biological reasoning of fold-change criteria, has

been applied to directly combine multiple datasets into one meta

study. Fisher’s Inverse �2 method, which only depends on P-values

from individual analyses of each dataset, has been used in a couple

of medical studies. While these methods address the question from

different angles, it is not clear how they compare with each other.

Results: We comparatively evaluate the three methods; t-based

hierarchical modeling, rank products and Fisher’s Inverse �2 test

with P-values from either the t-based or the rank product method.

A simulation study shows that the rank product method, in general,

has higher sensitivity and selectivity than the t-based method in

both individual and meta-analysis, especially in the setting of

small sample size and/or large between-study variation. Not

surprisingly, Fisher’s �2 method highly depends on the method

used in the individual analysis. Application to real datasets

demonstrates that meta-analysis achieves more reliable identifica-

tion than an individual analysis, and rank products are more robust in

gene ranking, which leads to a much higher reproducibility among

independent studies. Though t-based meta-analysis greatly

improves over the individual analysis, it suffers from a potentially

large amount of false positives when P-values serve as threshold.

We conclude that careful meta-analysis is a powerful tool for

integrating multiple array studies.

Contact: fxhong@jimmy.harvard.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

High-throughput microarray technology has become a popular

tool for large-scale comparative analysis of gene expression

profiles. As a result, there are rapidly growing collections of

publicly available datasets that can be used for subsequent

analysis (Moreau et al., 2003). However, direct comparison

among heterogeneous datasets is not possible due to the

complicated experimental variables embedded in array experi-

ments (Irizarry et al., 2005; Kuo et al., 2002). Meta-analysis,

which consists of a set of statistical techniques to combine

results from several studies, appears to be a good and practical

solution. Recently, its applicability to microarray data was

demonstrated by different groups. Rhodes et al. (2002) applied

meta-analysis to combine four datasets on prostate cancer to

determine genes that are differentially expressed between

clinically localized prostate and benign tissue. Parmigiani

et al. (2004) performed a cross-study comparison of gene

expression for the molecular classification of lung cancer. Park

and Stegall (2007) combined publicly available and their own

microarray datasets to investigate the detection of cytokine

gene expression in human kidney. Meta-analysis has been

shown to have increased statistical power to detect small but

consistent effects that might be false negatives in the individual

analyses (Choi et al., 2003). It also has significantly improved

reproducibility when compared with independent studies,

which may lead to improved reliability (Hong et al., 2006).

Therefore, meta-analysis provides researchers with an indis-

pensable tool to interrogate existing databases for candidate

biomarkers and biological pathways.
Meta-analysis may be broadly defined as the quantitative

review and synthesis of the results of related but independent

studies (Normand, 1999). The objectives include increasing

power to detect an overall treatment effect and assessment of

the amount of variability between studies. The former is the

common task of most microarray experiments, which aim at

detecting differentially expressed genes among multiple condi-

tions (control versus treatment). Since the early days, many

simple and sophisticated statistical methods have been pro-

posed for this purpose in the individual experiments (Breitling

et al., 2004; Efron et al., 2001; Newton et al., 2004; Tusher

et al., 2001), and their performance has been thoroughly
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compared (Pan, 2002). However, complicated experimental

variables and different platforms used in microarray experi-

ments lead to more statistical issues than encountered in

standard meta-analysis, thus most standard methods can not be

applied directly for combining array datasets.

In recent years, several meta-analysis methods have been

proposed using different approaches. The most straightforward

one is Fisher’s Inverse �2 test (Fisher, 1925), which computes a

combined statistic from the P-values obtained from the analysis

of the individual datasets, S ¼ �2log(�i Pi), where S follows a

�2 distribution with 2I degrees of freedom under the joint null

hypothesis. This method is easy to use and does not require

additional analysis. However, by working with the P-values, it

is impossible to estimate the average magnitude of differential

expression.
Choi et al. (2003) adopted the classic biostatistical meta-

analysis framework (Normand, 1999) in array analysis and

used a t-like statistic (defined as effect size) as the summary

statistic for each gene from each individual dataset. They then

proposed a hierarchical modeling approach to assess both

intra- and inter-study variation in the summary statistic across

multiple datasets. This model-based method estimates an

overall effect size as the measurement of the magnitude of

differential expression for each gene through parameter

estimation and model fitting. The approach has been imple-

mented into a Bioconductor (Gentleman et al., 2004) package

GeneMeta that facilitates its application.
Recently, the non-parametric rank product (RP) method

has been introduced in another Bioconductor package

(RankProd) (Hong et al., 2006) to identify differentially

expressed genes, which has direct applicability in meta-analysis.

It is based on the rank product method of detecting

differentially expressed genes (Breitling et al., 2004) and offers

several advantages over linear models or t-tests, including a

biologically intuitive fold-change (FC) criterion, fewer assump-

tions and better robustness, which leads to increased power

in low sample number and/or large noise settings (Breitling

and Herzyk, 2005). Both the t-based and the RP method

utilize permutation tests to assess the statistical significance,

reporting the false discovery rate (FDR) of the identification

based on combined statistics. And both of them generate

P-values which can also serve as input for Fisher’s Inverse

Chi- square test.
In this article, we comparatively evaluate the three methods;

t-based hierarchical modeling using GeneMeta, the rank

product method with RankProd and Fisher’s Inverse �2 test

with P-values from the individual analysis of a single dataset

with each of the first two methods. ROC curves and pAUC

(Pepe, 2000) are utilized in a simulation study to quantify the

sensitivity and specificity of each method. We also apply the

methods to two sets of experimental microarray studies,

one with relatively small and one with relatively large

between-study variation. And we address the performance

based on two main criteria: (1) reproducibility measured by a

CAT plot (Irizarry et al., 2005) and (2) identification power

measured by integration-driven discovery rate (Choi et al.,

2003). We also briefly discuss other available meta-analysis

methods, such as Bayesian approaches (Wang et al., 2004),

linear models (Ghosh et al., 2003) and rank aggregation

(DeConde et al., 2006).

2 METHODS

Let T and C stand for two experimental conditions (treatment versus

control), and let there be i ¼ 1, . . . , I independent studies (datasets) and

(niT, niC) replicates for the ith study. Thus, for a given gene, the data is

recorded as Tij/Cij which is the (logged) gene expression level in the jth

replicate in treatment/control of the ith study. In the following sections,

we briefly describe the three methods.

2.1 The t-based modeling approach

The t-test and its variations are the most widely used approaches in

array analysis to identify differentially expressed genes. Meta-analysis

based on the t-statistic was reviewed by Normand (1999) in the context

of biostatistical applications, and it was adopted for microarray

analysis recently (Choi et al., 2003). Briefly, a standardized mean

difference was obtained as an effect size index for the measurement of

differential expression of a gene in any given study.

di ¼
�Ti � �Ci

Sp
ð1Þ

�Ti and �Ci represent the means of treatment and control group in the ith

study, and Sp indicates the estimated variation. Then we model the

effect size index di across studies by a hierarchical model:

di ¼ �i þ "i; "i � Nð0; s2i Þ ð2Þ

�i ¼ �þ �i; �i � Nð0; �2Þ

where � denotes the parameter of interest (treatment effect), and �2 and

s2i represent the between-study and within-study variation. The model

has two different forms: a fixed-effect model (FEM) and a random

effect model (REM), depending on whether between-study variation is

ignorable. Choi et al. (2003) suggest to use Cochran’s Q statistic

(Cochran, 1954) to test homogeneity of study effect, which is assessing

the hypothesis that �2 is zero. Failure to reject the null hypothesis

should indicate the appropriateness of the FEM. Otherwise REM will

be used instead, where the estimator by DerSimonian and Laird (1986)

is used to estimate �2. Then this estimate is submitted to estimate � and

its variance Var[�] by a point estimator

�̂ð�2Þ ¼

P
ðs2i þ �2Þ�1diP
ðs2i þ �2Þ�1

;Var½�̂ð�2Þ� ¼
1

P
ðs2i þ �2Þ�1

A Z-score will be derived from �̂ð�2Þ and Var½�̂ð�2Þ� to assess the

standardized average treatment effect for each gene across studies, zg,

g ¼ 1, . . . ,G.

To assess the statistical significance of the combined results, one

would obtain P-values from a standard normal distribution N(0,1)

using these Z-scores. However, it is preferred in array analysis that

permutation is used instead, to account for small sample size and to

avoid the violation of the normality assumption. In this case, column-

wise permutation is performed within each study to create randomized

data and z-scores under the null distribution, z�g
b for permutation

b ¼ 1, 2, . . . , B. The ordered statistics z(g) (z(1) � . . . � z(p)) and z�b
ðgÞ

(z�b
ð1Þ � . . . � z�b

ðpÞ) were obtained, and the FDR was estimated for a given

gene g by

FDRg ¼
ð1=BÞ

P
b

P
ðgÞ Iðjz

�b
ðgÞj � zgÞP

ðgÞ IðjzðgÞj � zgÞ

where I(�) is the indicator function. In the package GeneMeta, the FDR

estimation is carried out for up-regulation, down-regulation and
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two-side comparison, respectively. Based on similar reasoning, we can

also extend the permutation to compute P-values as follows;

Pg ¼ ð1=GBÞ
X

b

X

ðgÞ

Iðjz�bðgÞj � zgÞ

where G is the total number of genes under study.

2.2 The rank product approach

The rank product is a non-parametric statistic that was first proposed

to detect differentially expressed genes in a single dataset (Breitling

et al., 2004). It is derived from biological reasoning about the fold-

change (FC) criterion and detects genes that are consistently found

among the most strongly up-regulated (or down-regulated) genes in a

number of replicate experiments. Moreover, the method offers a natural

way to overcome the heterogeneity among multiple datasets and

therefore can be extended to meta-analysis, which generates a single

significance measurement for each gene in the combined study (Hong

et al., 2006).

Here we describe the rank product meta-analysis algorithm using

two datasets as an example with (n1T, n1C) and (n2T, n2C) replicates,

respectively.

(1) For a one-channel array, compute pair-wise ratios or fold-

changes within each dataset; T1j/C1l, j ¼ 1, . . . , n1T, l ¼ 1, . . . ,n1C
) K1 ¼ n1T � n1C comparisons and T2j/C2l, j ¼ 1, . . . , n2T,

l¼1, . . . , n2C ) K2 ¼ n2T � n2C comparisons. (For two-channel

arrays, T1j/C1j, j ¼ 1, . . . , n1 and T2j/C2j, j ¼ 1, . . . , n1 with niT ¼

niC ¼ ni, so K1 ¼ n1 and K2 ¼ n2.)

(2) Rank fold-change (FC) within each comparison (largest FC )

rank 1)) rgik: rank of gene g in ith study under kth comparison,

k ¼ 1, . . . , Ki.

(3) Combine K1 ranks from dataset 1 and K2 ranks from dataset 2,

determine rank product for each gene as RPg ¼ (
Q

i

Q
k rgik)

(1/K)

where K ¼ K1 þ K2.

(4) Independently permute expression values within each single array

relative to gene ID, repeat step (1)–(3) and obtain the null rank

product statistic RP�ðbÞ
g .

(5) Repeat step (4) B times and form a reference distribution with

RP�ðbÞ
g , determine P-value and FDR associated with any given

gene g similarly as the one used in the t-based modeling

approach.

Pg ¼ ð1=GBÞ
X

b

X

ðgÞ

IðjRP�b
ðgÞj � RPm¼gÞ

FDRg ¼
ð1=BÞ

P
b

P
ðgÞ IðjRP

�b
ðgÞj � RPgÞP

ðgÞ IðjRPðgÞj � RPgÞ

One-channel experiments, for the purpose of this discussion, include

Affymetrix gene-chips and two-color cDNA arrays with reference

design; direct two-color cDNA arrays are usually two-channel

experiments. The permutations are done by permuting the expression

value (ratio for two-channel experiments) within each array, rather than

by permuting the samples across arrays as in the t-based approach.

Basically, the algorithm computes pairwise FC with replicates for each

gene between treatment and control in both directions, respectively, and

transforms FC into rank among all genes under study, then searches for

genes that are consistently top ranked across replicates. Converting FC

into ranks increases robustness against noise and heterogeneity across

studies. Indeed, a recent study (Yuen et al., 2002 ) found that, although

the fold-changes of differentially expressed genes had poor consistency

across array platforms, the rank orders were comparable. This method

is also implemented in a Bioconductor package (RankProd).

2.3 Fisher’s inverse Chi-square approach

Moreau et al. (2003) reviewed several simple methods (called omnibus

procedures; Hedges and Olkin, 1985) that are available to test the

statistical significance of combined results based on P-values from each

single study. One method (Tippet, 1931) is to take the minimum P-value

(pmin) for each gene observed over different datasets but test this

minimum P-value at a higher stringency than the single study rejection

threshold �: reject ‘no differential expression’ if pmin 5 1-(1 � �)(1/I).

This method is sensitive to outliers, so a variant uses the nth smallest

P-value as an alternative (Wilkinson, 1951).

Another method is Fisher’s Inverse �2 test. It computes a combined

statistic from the P-values obtained from the individual datasets,

S ¼ �2logð�ipiÞ

which follows a �2 distribution with 2I degrees of freedom under the

joint null hypothesis and thus P-values of the combined statistic can be

calculated. Some researchers also extended Fisher’s method by giving

different weights to P-values from each dataset (Good, 1955). Weight

assignment can depend on the reliability of each P-value as a result of

data quality or on other factors considered important. To address the

issues of losing power due to a single very poor entry, Zaykin et al.

(2002) proposed a truncated product method (TPM) to calculate

Fisher’s product using a thresholding criterion where only P-values less

than or equal to some pre-specified cutoff value � contribute to the

combined product,

Sz ¼ �2logð�iPi
IðPi��ÞÞ

In addition to reducing false negatives, TPM also guards against false

positives by requiring the presence of at least one significantly small

P-value, which is rooted in the concern that a combination of

marginally significant P-values might suggest unreasonably high

significance of the combined statistic (Rosenthal, 1991). Pyne et al.

(2006) proposed a conservative way of controlling the combined FDR

at a specified level � by thresholding each experiment at FDR level �0

(�0 � �2/4I2) with experiment-specific P-value cutoffs �i, �0 following the

procedures by Benjamini and Hochberg (1995) or Storey (2002). One

aspect we need to point out is that Fisher’s product should be applied to

P-values for up-regulation and down-regulation separately, as random

opposite expression differences in a small sample setting would result in

marginally small P-values that lead to a high significance of the

combined statistic.

It is easy to notice that both the t-based and the rank product

approach can be applied to an individual dataset and P-values from

such individual analyses from either of them can be used in Fisher’s

product method. In this study, we will apply Fisher’s product using

P-values obtained from regular individual analyses with either t-based

or rank product approach, respectively. Since it is hard to threshold

with only two P-values available in our examples (Section 3), we will

use the original form of Fisher’s product as the test statistic and derive

P-values for the combined results from the null distribution. The

outcome will then be compared to that from meta-analysis with a

t-based or rank product approach.

2.4 Evaluation

We evaluate the performance of the above three methods by comparing

their power of detecting differential expression (sensitivity) and

reliability (specificity). We adopted receiver operating characteristic

(ROC) curves and associated partial area under the curve (pAUC)

(Pepe, 2000) in the simulated dataset, and Correspondence At the

Top (CAT) plots (Irizarry et al., 2005) in the real-data applications,
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for which the true differentially expressed genes are unknown. The

ROC curve is primarily a descriptive device displaying the range of

trade-offs between false positive rates and false negative rates for a

given test. The closer to the upper left-hand corner of the ROC space,

the better the performance of the given test. pAUC is the area under the

ROC curve in a restricted range of false-positive rates, often used as

summary index of test accuracy within a practical region of false

positive rates.

CAT plots are a reliability assessment tool introduced by Irizarry

et al. (2005), which assesses the agreement of the identification among

studies. Genes identified in multiple independent studies are likely to be

the truly significant ones, thus high reproducibility among independent

studies suggests a high specificity. It has been shown that correlation or

scatter plots of log2-fold changes are poor measurements of the

agreement among studies, as they are heavily influenced by large

amounts of non-differentially expressed genes. In practice, we are only

interested in a small subset of genes that appear to be differentially

expressed. Therefore, it is more important to assess agreement for genes

that are likely to be called significant (Irizarry et al., 2005). The

procedure for creating a CAT plot is to make a list of n top candidate

genes for each of the two studies, which can be individual or meta

studies, and plot the proportion in common against the list size n.

In other words, one plots the proportion of the top n genes identified in

one study that are ‘re-discovered’ in the top n genes of another study,

hence the alternative designation as ‘plot of rediscovery rate’. We have

three independent datasets in our application below, thus we will

perform meta-analysis with two of them and compare the results with

that from the third dataset (reference study) to draw CAT plots. In

addition, the proportion in common will be calculated among any two

of three individual analyses. The average proportion will be included in

the plot as the performance of the regular individual analysis.

We will use the integration-driven discovery (IDD) to measure the

extra power offered by integrating multiple datasets (Choi et al., 2003).

IDD was originally defined using cutoffs in Z-score and we modified it

to P-values in order to accommodate the outcomes from all three

methods. As we will generate P-values for both up-regulation and

down-regulation for each gene, we use (pupi , pdni ) and (pup, pdn) to denote

the significance in each comparison for the individual study i and

combined meta-analysis. The IDD is defined as

ðpup � pthÞ and ðpupi 4pth for i ¼ 1; . . . ; IÞ

or

ðpdn � pthÞ and ðpdni 4pth for i ¼ 1; . . . ; IÞ

IDD is the number of extra genes identified by meta-analysis compared

with the union set of all individual studies at the same p-threshold level

(pth). Integration-driven discovery rate (IDR), defined as the ratio of

IDD to the total number of discoveries, will be listed for a series of

small P-value thresholds for each method. However, a low IDR, which

suggests a subtly increased power, might be due to a relatively high

power of the given method in the individual studies, which indeed

indicates better performance. Moreover, a high IDD might lead to a

potentially decreased specificity, as more false positives might appear

with more genes identified, particularly as the p-threshold increases.

Therefore, we consider the measurement of ‘reproducibility’ or

reliability by CAT plot a better evaluation criterion.

3 RESULTS

3.1 Simulation

To evaluate the performance of the three meta-analysis

methods, we first simulated expression levels of G¼ 5000

genes under two conditions T(treatment) and C(control) from 3

(I ¼ 3) independent studies based on a t-based model as

Cgik ¼ �g þ �gi þ "gik; ð3Þ

Tgik0 ¼ �g þ �gi þ �gi þ "gik0

and

�gi ¼ �g þ �ig

where Cgik and Tgik0 are logged expression levels of gene g in the

ith study under control (k ¼ 1, . . . , K1 replicate) and treatment

(k0 ¼ 1, . . . , K2 replicate). For simplicity, we let K1 ¼ K2 ¼ K.

�g is the mean expression under control, and �gi represents its
variation among studies. �gi stands for the expression difference

in the ith study, which contains a true difference �g and its

variation �ig among studies. We notice that �gi can be ignored

as it will be canceled in both t-based and rank product analysis.
In order to mimic experimental microarray studies, we gen-

erated data (Cgik, Tgik) based on rough parameter estimates

using a point estimator from the experimental data used in the

following sections. For example, since the mean logged

expression for all genes ranged from 3–13 in the hormone

data (Section 3), we simulated �g from Unif(3,14); we randomly

selected 10% true differentially expressed genes with �g �

Unif(�3, 3). We allow �ig to have gene-specific between-study

variation, �ig � Nð0; �2gÞ, and use an inverse gamma distribution

to generate �2g � IGða; bÞ. We also simulated within-study error

"gik, "gik0 from normal distributions with different error

variation in three independent studies as Nð0; s2i Þ, s2i ¼ 0:03;
0.05, 0.08. To explore the effect of between-study variation (�2g)

and sample size (K), we simulated 6 scenarios listed in the Table

1, with (1) relatively large variation (LV) a ¼ 3, b ¼ 0.2,

Eð�2gÞ ¼ 0:2, Varð�2gÞ ¼ 0:04 and (2) relatively small variation

(SV) a ¼ 3, b ¼ 0.02, Eð�2gÞ ¼ 0:02, Varð�2gÞ ¼ 0:0004 and three

settings of sample size, K¼3, 5,10, which covers the range where

meta-analysis is likely to be most beneficial.
For each scenario, we applied the rank product and t-based

method to each of the three datasets and calculated average

results as the performance of the individual analysis.

We then selected two datasets at a time [C(3, 2) ¼ 3 times]

for meta-analysis and also got average outcomes from

three meta-analyses. By comparing the identifications with

the true differentially expressed genes, we plotted the ROC

Table 1. pAUC from the false positive range 0–0.05 for all six senarios

presented in simulation studies. ‘F-meta’ stands for meta-analysis using

Fisher’s product with P-values from either of the two methods

�2g � IGða; bÞ a¼ 3, b¼ 0.4 (LV) a¼ 3, b¼ 0.04 (SV)

Sample Size K¼ 3 K¼ 5 K¼ 10 K¼ 3 K¼ 5 K¼ 10

Single RP 0.028 0.027 0.027 0.032 0.040 0.039

t-based 0.019 0.021 0.027 0.032 0.032 0.038

Meta RP 0.034 0.033 0.033 0.039 0.039 0.038

t-based 0.027 0.026 0.034 0.039 0.040 0.037

F-meta RP 0.034 0.033 0.033 0.039 0.039 0.038

t-based 0.033 0.022 0.005 0.039 0.038 0.034
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curves for the top n ¼ 50, 100, . . . , 1000 identified genes

(Supplementary Fig. 1) and for a series of selected P-value

thresholds 0.0001. . .0.01 (Supplementary Fig. 2) in all six

scenarios. Figure 1 shows an example (K¼ 3, LV). pAUC

values within the standard false positive rate region (0–0.05) are

summarized for all six scenarios in Table 1.
The series of ROC plots and pAUC summaries in Table 1

highlights several findings. First, as expected, meta-analysis

with either method achieves better outcomes compared to

single analysis, suggesting increased power and specificity.

However, the improvement becomes less predominant as �g
(between-study variation) decreases and K (sample size)

increases. Second, rank products outperform the t-based

method with a better tradeoff between sensitivity and specificity,

especially in single analysis and in the low false positive

rate region. Again, the advantage gets smaller when K increases

and/or � decreases. Third, the t-based method generates inflated

P-values (Supplementary Fig. 3) leading to high false-positive

rates even at small P-value thresholds, as indicated by the shift

of the ROC curve to the right. P-values from rank products

appear to be a more reliable measurement of significance.

Finally, the performance of Fisher’s method highly depends on

the quality of P-values from the simple individual analysis. The

inflation of P-values escalates when applying Fisher’s method

with P-values from the t-based method, which leads to an

unacceptably large number of false discoveries in Fisher’s

method.

3.2 Controlled human array data

This dataset was originally presented by Irizarry et al. (2005) as

the controlled experiment for a multiple-laboratory comparison

of three different microarray platforms: Affymetrix Genechips,

two-color spotted cDNA arrays, and two-color long oligonu-

cleotide arrays. Two RNA samples were created in which only

a few genes were expected to be differentially expressed. Two

technical copies were made for each of them, given to

researchers in 10 labs from the Washington, DC–Baltimore

area, and processed according to what was considered best

practice in each lab. We selected data from lab 1, 2 and 3 out of

5 labs which utilized Affymetrix gene-chips platform as the

testing datasets. We expect both intra-study and between-study

variations to be small due to the technically replicated RNA

sample and the same platform being utilized in all three labs.

Similar to the simulation study, we performed an individual

analysis for each of three datasets, and seleted two datasets at a

time [C(3, 2)¼3 times] for meta-analysis. The average outcomes

from three individual and three meta-analyses are used in the

comparison. A Q-test indicated that an FEM is appropriate in

the t-based method, which confirms that the inter-study

variation is ignorable. As we only expect very few differentially

expressed genes, we use several low P-values as the cutoff point

in Table 2 and list the number of genes identified in the

individual and meta-analysis as well as the integration-driven

discovery rate (in parenthesis). As shown in Table 2, meta-

analysis is able to identify more genes at the same p-level,

suggesting an increased power and a potentially low false

negative rate. However, unexpectedly large amounts of genes

are identified by t-based methods, particularly with Fisher’s

product, making it suspicious of potentially high false positive

rates as already indicated in the simulation study. We notice

that rank products identified a significant amount of genes

at low FDR level (50.05), while the model-based method

failed to identify any genes at the same FDR level. Due to

the small scale of between-study and within-study variation,

unsurprisingly, most of the genes identified in the individual

studies were confirmed or re-identified in meta-analysis.

Furthermore, we see higher significance (smaller P-values)

in meta-analysis for genes with consistent but small changes

(data not shown), suggesting an increased confidence regarding

the identification.
Treating the top n genes identified in the third dataset as the

reference, we compared the top n genes identified in dataset

1 and 2, as well as the top n genes from meta-analysis

combining dataset 1 and 2. The percentage in common among

the top genes is presented in CAT plots. Since we would only

expect a small number of differentially expressed genes, the

CAT plots (Fig. 2) are drawn for the top 400 genes (200

up-regulated and 200 down-regulated) identified from each

analysis. Meta-analysis, in general, gains higher reliability

compared to single analysis, suggesting that the result is more

likely to be reproduced by an independent study. However, the

rediscovery rate is much higher for rank products compared to

that of the t-based method for both individual and meta-

analysis. For example, the rediscovery rate is above 60% in all

analyses with rank products, while it is below 50% with the

t-based method. This is consistent with the simulation study,

Fig. 1. Partial ROC curves for simulated datasets (K¼3, LV) with rank

product (red) and t-based method (black) for the top 1000 identified

genes (top) and for a series of selected P-value thresholds

0.0001,. . .,0.01 (bottom). ‘-s-’: individual analysis; ‘-M-’: meta-analysis

with rank product/t-based approach; ‘-f-’: meta-analysis using Fisher’s

product with P-values from either of the two methods. Note the ‘-f-’

and ‘-M-’ in red are overlapped.

F.Hong and R.Breitling

378



where rank products yield more robust gene ranking for the top

genes, leading to higher reproducibility and increased specifi-
city. This might be due to the robustness of rank products

against noise. Surprisingly, Fisher’s product appears to have
higher reproducibility than the t-based method, suggesting that

meta-analysis using a t-based model might add another level of

instability, which is prevented by Fisher’s approach.

3.3 Plant hormone data

Here we meta-analyzed three array experiments that have been

carried out in two laboratories (Shimada and Chory) to study
the effect of a particular hormone on plant growth. Each of the

three studies compares gene expression profiles at 3 h after
hormone treatment to non-treatment control plants (Vert et al.,

2005). Shimada’s group in Japan first conducted two very
similar experiments, each with two replicates; one with the

Affymetrix 8K GeneChip, representing 1/3 of the Arabidopsis

genome, and one with Affymetrix ATH1 arrays, representing
(approximately) the whole genome. Chory’s group in the USA

reported a third similar experiment using the Affymetrix
ATH1 array with three replicates for each condition

(Nemhauser et al., 2004). All three datasets were preprocessed
using gcRMA (Wu et al., 2004) in Bioconductor and �7000

common genes were extracted and used in the evaluation.

Quality checks (not shown) indicate severe heterogeneity
among the three datasets and a strong ‘lab effect’ as the two

datasets from Shimada’s group, although using different types
of GeneChip, are much more similar to each other than to the

data from Chory’s group. To reduce the disruption by lab effect

in computing the rediscovery rate, we used the two datasets

from Shimada’s group to practice meta-analysis and treat the

Chory data as the reference. A Q-test for heterogeneity found

that the REM was appropriate when the t-based method is used

for this dataset.
While reporting integration driven discoveries in Table 3, we

can also see that a larger percentage of discoveries in the simple

analyses are not identified by meta-analysis using the t-based

method compared to the rank product method. This indicates a

potentially high false positive rate and/or low robustness in gene

ranking of the t-based approach. For example, only 26% genes

were re-discovered in meta-analysis at p ¼ 0.01 level and even

worse for lower p-thresholds. Similarly to the controlled human

data, rank products identified more genes at the lower p-levels.

Together, this again suggests that rank products have higher

selectivity and sensitivity than the t-based method in case of

small sample size and large noise. Since, biologically, plant

hormones affect plant growth in a global way, we expect expres-

sion level changes for a large number of genes, so we chose to

expand the re-discovery rate comparison to the top 1000 up-

regulated and 1000 down-regulated genes. Similar to Figure 2,

figure 3 confirmed the increased re-discovery rate with meta-

analysis in both up- and down-regulated gene sets, and rank

products have much higher reproducibility than the t-based

method in this dataset, too. One should notice the extremely low

reproducibility of the t-based method in single analysis

(essentially just a t-test), indicating much higher false positive

rates, which is consistent with what we observed in the IDR table

(Table 3). Fisher’s product appears to have similar performance

(slightly worse) as rank products and the t-based method in this

dataset, when using P-values from each method, respectively.

4 DISCUSSION

4.1 A comparative summary of the three methods

It is clear that Fisher’s product uses only P-values from

each single dataset; its performance heavily depends on the

Fig. 2. CAT plot of the controlled data with rank product (left panel)

and t-based approach (right panel). ‘-s-’(red): individual analysis;

‘-M-’(black): meta-analysis with rank product/t-based approach; ‘-f-’

(blue): meta-analysis using Fisher’s product with P-values from each of

the two methods. The dotted horizontal line indicates 50% agreement.

Table 3. Plant hormone data set

P Rank Product t-based

Single Meta-RP Meta-F Single Meta-t Meta-F

0.001 136 260 (0.5) 247 (0.47) 37 94 (0.98) 74 (0.64)

0.005 292 447 (0.40) 417 (0.35) 159 295 (0.92) 220 (0.51)

0.01 424 566 (0.32) 550 (0.29) 317 491 (0.83) 368 (0.39)

0.05 1132 1039 (0.13) 999 (0.10) 1425 1352 (0.38) 1105 (0.11)

‘single’: Union set of genes identified from the individual analyses.

Table 2. Controlled data set: average number of genes identified at

different P-levels and integration-driven discovery rate (IDD) in meta-

analysis (shown in parenthesis) using rank product (Meta-RP) and

t-based approach (Meta-t). The results with Fisher’s product are listed

as ‘Meta-F’

P Rank Product t-based

Single Meta-RP Meta-F Single Meta-t Meta-F

1e-4 47 166 (0.72) 150 (0.69) 7 87 (0.98) 496 (0.99)

5e-4 100 233 (0.58) 221 (0.55) 39 229 (0.92) 721 (0.94)

1e-3 137 281 (0.52) 259 (0.48) 75 332 (0.84) 839 (0.89)

5e-3 280 449 (0.40) 424 (0.36) 280 672 (0.62) 1243 (0.73)
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underlying method used to calculate p. Therefore, we will focus

our discussion on the two methods used to generate the

P-values.

Both t-based and rank product approaches are derived or

extended from the ones used in simple analysis, therefore they

largely inherit their features in simple analysis. The t-based

approach originates from Student’s t-test and provides a

flexible selection of a fixed-effect or random-effect model

based on homogeneity tests and an overall measure of

differential expression for each gene. The latter feature offers

a direct comparison of the magnitude of a treatment on

different genes. Rank products, however, do not have this

feature but only provide the relative position of a gene

compared with all other genes under study for judging its

expression difference.

On the other hand, rank products have advantages over

t-based approaches in terms of robustness in ranking genes.

In most array studies with small sample size, t-based methods

suffer from unreliable error estimates, therefore gene ranking

substantially varies from experiment to experiment, which

causes a low specificity as shown in our simulation, or a low

reproducibility in experimental applications. Although increas-

ing sample size would improve the performance of the t-based

method as shown in simulation studies, it is uncommon to

have large sample size in laboratory biological experiments.

The poor reproducibility has been a major concern, discoura-

ging some biologists from trusting the results of array

experiments. It is indeed exciting news that combining multiple

studies significantly improves reliability (Figs 2 and 3).

Importantly, it appears that rank products have consistently

the highest reproducibility/specificity in both simulation

and experimental data applications, regardless of the scale

of heterogeneity among datasets. This observation suggests that

gene rankings from the rank product method are more robust

against noise and other hidden variables embedded in different

datasets.

4.2 Comparison to other meta-analysis approaches

Wang et al. (2004) introduced a meta-analysis method from

a Bayesian perspective. The basic idea is to treat one dataset

as prior knowledge that gives preliminary information about

the expression difference for the given gene and then to

increase our knowledge by adding another dataset to get an

updated posterior assessment of the expression change. Let

D1 ¼ �T1 � �C1 and s21 be the estimate of expression change and

its estimated variance from the first dataset. If we assume a

normal distribution of the errors in measurement, a well-known

Bayesian calculation shows that the best estimate of the true

difference after adding the second dataset is given by

Dcombined ¼
ðD1=s

2
1Þ þ ðD2=s

2
2Þ

ð1=s21Þ þ ð1=s22Þ

and the variance is given by

1

s2combined

¼
1

s21
þ

1

s22

In other words, we combine difference measurements from

different datasets by weighting them using variance. It is easy

to show that this formula generalizes to the scenario of

multiple datasets and the final results does not depend on

the order in which multiple datasets enter the study,

Dcombined ¼
P

iðDi=s
2
i Þ=

P
ið1=s

2
i Þ and 1=s2combined ¼

P
ið1=s

2
i Þ.

However, a simple derivation can show that the above

method is indeed the maximum likelihood estimator (MLE)

for the t-based modeling approach introduced in Section 3

under the fixed-effects model, if we change the effect size di to

Yi ¼ �Ti � �Ci (Normand, 1999). We consider the standardized

(scale-free) statistic di more appropriate when datasets are

generated from different laboratories, therefore we do not treat

the Bayesian approach as a fundamentally different method.

Indeed, application to simulated data confirms that the

Bayesian approach has very similar outcomes to the t-based

method (data not shown).
Ghosh et al. (2003) proposed another two t-test based

approaches. The first one utilizes a weighted average of the

t-statistics Ti from the individual datasets,

T ¼ n�1
XI

i¼1

niTi ð4Þ

as the test statistics and obtains statistical significance from

permutation. The second algorithm has a more general formula

with study effect as main effect as well as interaction with each

gene. Let Yi¼(Ti1. . .TiniT
, Ci1, . . . ,CiniC

) denote the expression of

a given gene in the ith study with a total of k ¼ 1, . . . , (niT þ niC)

samples, the model is written as

E½Yik� ¼ �0i þ �1iXk þ �2iZi þ �3iXkZi ð5Þ

where Xk is a covariate for experimental condition (treatment

versus control) of the kth sample and Zi is the study indicator.

A likelihood test for testing H0 : �1i¼�3i¼0 would yield a set of

test statistics (based on least square estimates) for assessing

differential expression, and a permutation test is proposed to

generate significance measurements. One should notice that

model 4 assumes the treatment effect is the same across all

Fig. 3. CAT plot of the plant hormone data with rank product (left)

and model-based approach (right). ‘-1-’(red) and ‘-2-’(green) shows

overlap between dataset 1, 2, and the reference. ‘-M-’(black): meta-

analysis with rank product/t-based approach; ‘-f-’(blue): meta-analysis

using Fisher’s product with P-values from each of the two methods.

The dotted horizontal line indicates the position of 50% agreement.
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the studies, which is similar to the FEM in model 3, while
model 5 assumes treatment effect varies between studies, which
is the idea of the REM in model 3. As a result, these approaches

are so similar to the t-based method that they share most of its
features illustrated above.
The various rank aggregation approaches of DeConde et al.

(2006) are based on meta-search methods from computer
science, which are used to combine lists of search results.
Because the concept works on rank-ordered lists, it will share

many of the advantageous performance characteristics of
rank products. On test data from five different prostate
cancer datasets (DeConde et al., 2006), the performance

of rank aggregation and rank products is indistinguishable
(not shown). Therefore, rank aggregation can be considered an
interesting alternative to rank products and should be further

investigated.

5 CONCLUSION

In this article, we compare the performance of three meta-
analysis methods for microarray studies, using array data

generated on the Affymetrix platform. At the data analysis
level, we limited our comparison to the improvement of the
detection of differential expression, as this is currently the most

common aim of microarray experiments. The heterogeneity
among multiple datasets leads to many statistical issues

affecting the integration process. Our study shows that meta-
analysis achieves increased power and higher reproducibility by
integrating multiple datasets. In general, the non-parametric

rank product method outperforms the other methods in terms
of sensitivity and specificity, especially in a setting of small
sample size and large between-study variation. This suggests

that rank products should be preferred in such a setting since
transferring fold-changes into ranks increases the robustness
against variations from different sources. In addition, simula-

tion shows that P-values from the rank product approach are a
more reliable significance measurement than those from the
t-based method. Nevertheless, the t-based method can achieve

dramatic improvements in terms of gene ranking when
combining multiple studies together.
Fisher’s �2 method appears to be highly dependent on the

methods used in the individual analysis. It yields rather poor
results in combination with t-based methods, and performs
similar to rank product-based meta-analysis. Therefore, we do

not suggest usage of Fisher’s method in combining multiple
dataset unless only P-values are available. Our work also points

out that there will be a substantial amount of false positives in
the list of genes identified in the individual studies with low
sample size and large scale of heterogeneity when a t-based

method is used, which contributes to the poor consistency
among independent studies as reported before by different
research groups (Jarvinen et al., 2004; Kothapalli et al., 2002).

The availability of public array repositories opens up a new
realm of possibilities for microarray data analysis. An essential
challenge is the efficient integration of array data generated by

different laboratories and/or different platforms. Currently,
there are several (� 4) popular array technologies. It is still
unclear how measurements from different platforms compare

with each other (Moreau et al., 2003), and inconsistencies in

gene coverage and annotation make comparisons very difficult.
It will be an interesting topic to further explore meta-analysis

across different platforms, which is not the scope of this study.
As large amounts of data are being produced on a daily basis

using a wide variety of experimental designs and technologies,

meta-analysis could be beneficial in a much wider range of
applications, such as integrating time-course genomic data and

proteomic experiments (Varambally et al., 2005). Therefore, we
are expecting additional developments of methods for meta-

analysis which will significantly enhance our ability to benefit

from these powerful high-throughput technologies.
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