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Abstract
Background: With the growing abundance of microarray data, statistical methods are increasingly
needed to integrate results across studies. Two common approaches for meta-analysis of
microarrays include either combining gene expression measures across studies or combining
summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis
models that are analogous to these methods.

Results: Two Bayesian meta-analysis models for microarray data have recently been introduced.
The first model combines standardized gene expression measures across studies into an overall
mean, accounting for inter-study variability, while the second combines probabilities of differential
expression without combining expression values. Both models produce the gene-specific posterior
probability of differential expression, which is the basis for inference. Since the standardized
expression integration model includes inter-study variability, it may improve accuracy of results
versus the probability integration model. However, due to the small number of studies typical in
microarray meta-analyses, the variability between studies is challenging to estimate. The probability
integration model eliminates the need to model variability between studies, and thus its
implementation is more straightforward. We found in simulations of two and five studies that
combining probabilities outperformed combining standardized gene expression measures for three
comparison values: the percent of true discovered genes in meta-analysis versus individual studies;
the percent of true genes omitted in meta-analysis versus separate studies, and the number of true
discovered genes for fixed levels of Bayesian false discovery. We identified similar results when
pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from
the same microarray platform with only two conditions: a treatment and control, and that the data
sets were pre-scaled.

Conclusion: The Bayesian meta-analysis model that combines probabilities across studies does
not aggregate gene expression measures, thus an inter-study variability parameter is not included
in the model. This results in a simpler modeling approach than aggregating expression measures,
which accounts for variability across studies. The probability integration model identified more true
discovered genes and fewer true omitted genes than combining expression measures, for our data
sets.
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Background
Due to the growing accumulation of publicly available
microarray data, it is increasingly important to develop
methods to integrate findings across studies. Combining
results will increase sample sizes and thus the power to
detect differentially expressed genes. While meta-analysis
has been used extensively in medical and public health
applications, it has only recently been developed for
microarray studies [1-15]. The two primary methods for
data integration consist of either combining gene expres-
sion measures across studies or combining summary
measures of expression such as p-values, probabilities or
ranks. In the first approach, Wang et al. [1] used a
weighted average procedure to combine standardized
mean expression differences across three independent
studies. Through this method they identified genes that
were consistently differentially expressed between leuke-
mia and normal B cells. Choi et al. [2] and Stevens and
Doerge [3] combined standardized gene effects into an
overall mean effect using statistical modeling. The models
accounted for different sources of variation in microarray
studies, including differences between studies. Since inter-
study variability was assumed to be constant for each
gene, the uncertainty of this parameter was not included
in the subsequent analyses (this refers only to the non-
Bayesian model of Choi et al. [2]). Hu et al. [4] extended
the method of Choi et al. [2] by incorporating an individ-
ual study quality index for each gene into the effect size
estimate. The authors combined two lung cancer data sets
and demonstrated that their method identified more dif-
ferentially expressed genes than previous analyses. Other
investigators combined "raw" gene expression data rather
than gene effects when the data was comparable across
studies. Examples include Morris et al. [5], which com-
bined Affymetrix studies by creating new probesets across
arrays, and Park et al. [6], which integrated log-expression
ratios in an ANOVA meta-analysis model for cDNA
microarrays.

Due to the difficulty in comparing cross-laboratory and
cross-platform expression measures, several microarray
meta-analysis methods have combined summary meas-
ures of expression rather than expression measures them-
selves. Rhodes et al. [7] calculated p-values in individual
lung cancer studies and aggregated the p-values to provide
an overall estimate of gene significance. Parmigiani et al.
[9] introduced an integrative correlation approach that
identified genes with consistent expression patterns across
multiple platforms. Other approaches convert gene
expression values within each study to rank orderings or
probabilities of expression. The transformed data is then
aggregated across studies to identify disease marker genes
or prognostic signatures (Shen et al. [10], Xu et al. [11],
Warnat et al. [12]).

Recently, Bayesian meta-analysis models have been intro-
duced that are analogous to the classical methods
described above. Bayesian approaches have several advan-
tages over traditional methods and have been used widely
in individual microarray studies [16-18]; in particular the
discrete mixture model has been developed extensively
[19-30]. Bayesian models are well-suited to the small sam-
ple sizes of microarray studies since they borrow informa-
tion from all genes to estimate model parameters. They
also provide a framework for incorporating all available
information in a systematic manner, and explicitly
include model and parameter variability. A third impor-
tant benefit of the Bayesian approach is that a predictive
distribution for future data is produced (Stangl and Berry
[31], Tweedie et al. [32]). Bayesian models can also han-
dle the large amounts of missing data inherent in micro-
array studies relatively easily.

The two primary Bayesian approaches to meta-analysis for
microarray studies correspond to the traditional
approaches: one combines standardized gene effects and
the other combines probabilities, as follows. Choi et al.
[2] introduced the first Bayesian meta-analysis model for
microarray data, which integrated standardized gene
effects in individual studies into an overall mean effect.
Inter-study variability was included in the model with an
associated uninformative prior distribution. This type of
model, termed hierarchical Bayesian random effects, has
been used broadly in non-microarray contexts (see, for
example, DuMouchel and Harris [33], Smith et al. [34],
Tweedie et al. [32], Normand [35], DuMouchel and Nor-
mand [36], Pauler and Wakefield [37], Sargent et al. [38],
Gelman et al. [39]). The hierarchical Bayesian random
effects meta-analysis model has several favorable features:
it provides an overall effect size among all studies, and it
accounts for inter-study variability, which may improve
accuracy of results. However, many microarray meta-anal-
yses include a small number of studies, e.g. between two
and four studies [1,2,4-7,9-11,13-15]. Due to these typical
small study numbers, the inter-study variability is chal-
lenging to model. An uninformative prior distribution for
this parameter may not provide enough information, and
thus more informative priors need to be considered. Alter-
natively, Conlon et al. [15] introduced a Bayesian meta-
analysis model that combined study probabilities rather
than gene effect levels, eliminating the need to estimate
inter-study variability. The model produced the overall
gene-specific posterior probability of differential expres-
sion while incorporating several sources of data replica-
tion. Here, we compare two Bayesian meta-analysis
models: the standardized expression integration model
and the probability integration model of Conlon et al.
[15]. The standardized expression integration model is
similar in approach to hierarchical Bayesian random
effects models (such as that of Choi et al. [2]) in that mean
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values are combined across studies to provide an overall
mean value, with inter-study variability included as a
parameter in the model with an associated prior distribu-
tion. However, instead of combining effect sizes as in
Choi et al., we combine standardized gene expression val-
ues, since our data is assumed to be from the same plat-
form and comparable across studies (for further detail, see
Background: Background on effect sizes and standardized
gene expression levels). In simulations, we illustrate that
combining probabilities improves performance versus
combining standardized gene expression levels based on
three comparison measures: the increase in true discov-
ered genes in meta-analysis versus separate studies, the
decrease in true omitted genes in meta-analysis versus
individual studies, and the number of true genes identi-
fied for fixed levels of Bayesian false discovery. Our find-
ings are similar when analyzing biological data in two
studies of Bacillus (B.) subtilis.

While many meta-analytic methods incorporate data
across multiple microarray platforms, several recent
reports have shown the difficulty in such approaches. Kuo
et al. [40] and Jarvinen et al. [41] both worked with cell
lines and concluded that combining data across cDNA
and oligonucleotide platforms was not reliable. Mah et al.
[42] found that there is only moderate overlap in gene
expression levels between cDNA and oligonucleotide
platforms. Due to these findings, we focus on meta-anal-
ysis for one platform, cDNA microarrays.

Background on effect sizes and standardized gene 
expression levels
Traditional random effects models and hierarchical Baye-
sian random effects models first summarize the data from
two conditions into study-specific mean effects and asso-
ciated variances; the models use these summary effect
measures rather than the individual data values (i.e. "raw"
data). For instance, the hierarchical Bayesian random
effects model of Choi et al. [2] used the well-studied esti-
mator of Hedges and Olkin [43], which estimates the
effect size as the difference of the means of two groups
divided by the pooled standard deviation. The estimator
is sample-size adjusted to obtain an unbiased effect size;
the associated variance is also based on Hedges and
Olkin's work. However, Hedges and Olkin's method
requires two separate groups of data with only one level of
replication, which is not always available. For one sample
data with replicate slides within repeated experiments, the
Hedges and Olkin effect size estimates do not apply. For
these reasons, for our one-sample cDNA microarray stud-
ies with multiple sources of replication, we use the stand-
ardized logarithms of the red/green (Cy5/Cy3)
fluorescent intensity ratios in our meta-analysis models.
We use log-ratios since they create more symmetric distri-
butions and stabilize the variances (Dudoit et al. [44]).

The log-expression ratios are standardized so that each
slide has zero mean and unit standard deviation (see also
Shen et al. [10] and Dominici and Parmigiani [45]). For
further background on cDNA microarrays, see [46-49].

Results and discussion
Bayesian standardized expression integration meta-
analysis model
Researchers often conduct multiple independent micro-
array studies for the same biological system. For example,
Eichenberger et al. [50] designed two studies to identify
genes under the control of a primary transcription factor
sigma E (σE) in B. subtilis. The first study was a mutation
of σE and the second was an overexpression of σE (referred
to as the mutant and induction studies, respectively; for
details of the data sets, see Methods: Biological data).
Thus, genes that were overexpressed in one study should
be underexpressed in the other. Combining results of the
two studies in a meta-analysis will increase sample size
and help more precisely identify target genes. In the Baye-
sian standardized expression integration model, expres-
sion levels are smoothed across studies to produce an
overall expression measure for each gene. This model
assumes that the standardized expression means are not
the same in each study, but that each study-specific mean
is a random sample from a common population distribu-
tion. Inter-study variability is included as a parameter in
the model. More specifically,

for J independent studies. Here, yjgse are the observed

microarray data, and are the normalized log-expression
ratios for study j, gene g, slide s, and experiment e. For
cDNA microarrays, the expression ratio is the ratio of flu-
orescent intensity levels for the red and green-labeled
mRNA (Cy5 and Cy3) samples, or treatment and control.
We standardized the yjgse values so that each slide has zero

mean and unit standard deviation (see also [10,45]). In
this model, we take into account that the yjgse are affected

by variability due to slides, experiments (cultures) and
studies. In individual studies, yjgse is a sample from a nor-

mal distribution of the slide values within the same exper-
iment for gene g. We represent this in the model as yjgse ~

N(ξjge, ) where ξjge is the mean among all slide values
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of an experiment for gene g. The parameter  represents

the variability of the slide value distribution for each gene.

The within-experiment mean ξjge is a sampling from a nor-

mal distribution of experiment values; we denote this as

ξjge ~ N(θjg, ). Here, θjg is the study-specific mean log-

expression ratio of gene g, and  represents the variabil-

ity across experiments. In turn, the study-specific mean θjg

is a sampling from a normal distribution of study values.

Thus, θjg ~ N(μg, ), where μg represents the overall mean

log-expression ratio across studies, and  is the variabil-

ity across studies. The μg values are assumed to be nor-

mally distributed with a mean of zero with a small
variance for non-differentially expressed genes, and with a
large variance for differentially expressed genes. Note that
only yjgse values are observed data, while the remaining

parameters are unobserved. Based on the overall mean

value μg, the model produces the posterior distribution for

Ig, which is used to calculate the probability of differential

expression Dg = Prob(Ig = 1 | data). More specifically, Ig ~

Bernoulli(p) is the indicator variable for differential

expression of gene g corresponding to μg ≠ 0, and p is the

fraction of expressed genes. Thus, Prob(Ig = 1) = p, where

With this model, genes are divided into two groups, differ-
entially expressed (Ig = 1) and non-expressed (Ig = 0), with

probabilities p and (1-p), respectively. For each gene, the
posterior probability of differential expression over all
studies, Dg = Prob(Ig = 1 | data), is produced, and we com-

pare results based on Dg. In assigning prior distributions,

when Ig = 0, the μg are assumed to be normally distributed

with mean zero and small variance  ; when Ig = 1, the

μg are assumed to be normally distributed with mean zero

and large variance (c × ).

The inter-study variability parameter  influences the

results to a large degree and requires careful considera-
tion. We detail several specifications for the prior distribu-

tion of  in the sections: Two-study simulation results;

and Methods: Standardized expression integration model:
prior distributions for inter-study variation.

We assign conjugate scaled inverse chi-squared prior dis-
tributions to the slide and experiment variation parame-

ters,  and . The scale parameters are derived from

the data, by pooling information from all genes (similar
to Tseng et al. [17], Gottardo et al. [23], Lönnstedt and
Speed [24]; see Methods). The prior framework for a sin-
gle study is similar to Gottardo et al. [23] except that we
calculate a posterior distribution for p rather than using an
iterative algorithm to estimate p. Our data also has one
more level of replication than that of Gottardo et al. [23],
i.e. repeated slides within repeated experiments. Our hier-
archical Gaussian structure for one study also resembles
the Bayesian ANOVA models (BAM) of Ishwaran and Rao
[29,30]. BAM restructures the problem of identifying
overexpressed genes as a variable selection procedure and
uses a Bayesian model designed toward selective shrink-
age. The difference between our model in a single study
context and BAM is that we have one-sample data, while
BAM models are tailored to a two-sample format; our data
also has more levels of replication.

Each study is assumed to contain only two conditions: a
treatment and a control. We simulate posterior distribu-
tions for each parameter using a Markov chain Monte
Carlo (MCMC) implementation of the model [51]. See
the Methods section for more details of the prior distribu-
tions and the MCMC procedure.

Bayesian probability integration meta-analysis model
The Bayesian model to combine probabilities was intro-
duced in Conlon et al. [15] and is similar to the Bayesian
standardized expression integration model, except that
the mean expression levels of each study are not com-
bined and thus inter-study variability is not modeled. We
call this the probability integration model because, for
each gene, it calculates the overall probability of differen-
tial expression given the data of each separate study; this
effectively smoothes the probability of differential expres-
sion across studies. This differs from the standardized
expression integration model, which first calculates an
overall mean gene expression measure and determines the
probability of differential expression given the estimated
mean. We specify the probability integration model as fol-
lows:
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The parameters common to both Models (1) and (2) are
as defined for Model (1) (see also Conlon et al. [15]). The
yjgse are again the observed microarray data, and are the
normalized log-expression ratios for study j, gene g, slide
s, and experiment e. In this model, we again take into
account that the yjgse are affected by variability due to slides
and experiments, and the yjgse values are standardized to
have zero mean and unit standard deviation. The θjg is
again the study-specific mean log-expression ratio of gene
g. However, rather than modeling the study-specific mean
θjg as a sampling from a normal distribution of study val-
ues, this model treats each study separately, and does not
combine the mean values from each study into one mean
value. Thus, an overall mean value μg is not produced for
this model. The gene-specific posterior probability of dif-
ferential expression is again produced; however, this
probability is based upon the separate mean levels of each
study rather than an overall mean level, as in Model (1).
Note that the differences between Model (1) and Model
(2) occur at the inter-study level; the models are the same
for a single study. The MCMC implementation is similar
to that for Model (1), with details in the Methods section.
We compare Models (1) and (2) using integration-driven
discovery rates, integration-driven revision rates and Baye-
sian false discovery rates, defined in the following.

Integration-driven discovery and revision
Choi et al. [2] define the integration-driven discovery rate
(IDR) as the proportion of genes that are identified as dif-
ferentially expressed in the meta-analysis that were not
identified in any of the individual studies alone. IDR rep-
resents the increase in information based on combining
studies versus individual studies. For our models, for a
given threshold of posterior probability of differential
expression, γ, genes are identified as differentially
expressed if (Dg ≥ γ). The IDR is defined as the percent of
differentially expressed genes in the meta-analysis that are
not differentially expressed in any of the individual anal-
yses:

In simulations, we define true genes as genes that were
simulated to be differentially expressed. The correspond-
ing true integration-driven discovery rate, tIDR, is the per-
cent of true genes discovered in the meta-analysis that
were not discovered in any of the individual analyses:

Stevens and Doerge [3] define the integration-driven revi-
sion rate (IRR) as the percent of genes that are declared
differentially expressed in individual studies but not in
meta-analysis. IRR represents the genes that are missed or
"dropped" in meta-analysis versus separate study analy-
ses:

The corresponding true integration-driven revision rate,
tIRR, is the percent of true genes that are identified as dif-
ferentially expressed in at least one individual study but
not in meta-analysis:

Bayesian false discovery rate
The false discovery rate (FDR) was introduced by Ben-
jamini and Hochberg [52], and is defined as the expected
number of discovered genes that are not truly differen-
tially expressed divided by the total number of discovered
genes. Further discussion and application of FDR in a
microarray context include Tusher et al. [53], Storey [54],
Storey and Tibshirani [55] and Genovese and Wasserman
[56]. In a Bayesian approach, Genovese and Wasserman
[57] defined the posterior expected FDR (peFDR) as:

where δg is an indicator for differential expression and Y
represents the data (see also Do et al. [28]).

Two-study simulation results

We simulated data for two studies, Study 1 and Study 2,
with 3,000 genes and a format similar to the B. subtilis
mutant and induction studies. We used three levels for the
percent of differentially expressed genes (denoted ps to

indicate simulated), ps = 5%, 10%, 25%, and three mean

levels of inter-study variation . We refer to the mean

levels of inter-study variability as low, medium and high,
based on comparison to the biological data, as follows.

Each level of  was simulated from a Normal distribu-

tion with the following means: low variability: mean 

= 0.1 for differentially expressed and mean  = 0.01 for
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non-expressed genes; medium: mean  = 0.3 and 0.03;

and high: mean  = 0.7 and 0.07, for expressed and non-

expressed genes, respectively. The variances of the Normal
distributions were equivalent to the biological data (for
more detail, see Methods). Again, we refer to genes that
were simulated to be differentially expressed as true genes.
Each array was standardized to have mean zero and unit
standard deviation.

Bayesian standardized expression integration model: modeling inter-
study variation

For the Bayesian standardized expression integration
meta-analysis model, the prior distribution assigned to

 has a large influence on the results. We considered

three prior distributions with extensive use in hierarchical
Bayesian meta-analytic models: inverse-gamma prior dis-
tributions (see, for example, Choi et al. [2], Smith et al.
[34], Normand [35], Sargent et al. [38]), log-logistic
(DuMouchel and Normand [36]), and locally uniform
(Gelman et al. [39]). See Methods for a detailed descrip-
tion of these prior assignments. Briefly, the informative
inverse-gamma and locally uniform distributions pooled
information from sets of genes to provide better estimates
of inter-study variability. The log-logistic prior distribu-
tion treated each gene separately without pooling infor-
mation from sets of genes, and was a function of the
weighted average of the sampling variabilities across stud-
ies for each gene. The log-logistic distribution prevents the
meta-analysis results from being overly influenced by
studies with large sampling variability. Of the prior speci-
fications, only the locally uniform prior improved upon
individual study analyses. In particular, this prior distribu-
tion was centered at the median of the inter-study variabil-
ity based on the data, with separate distributions for the
differentially expressed and non-expressed genes (see
Methods). We show results hereafter based on this prior
distribution.

Standardized expression integration versus probability integration 
model

We implemented the Bayesian standardized expression
integration model (SEI hereafter, Model (1)) and the
Bayesian probability integration model (PI hereafter,
Model (2)) to combine the two simulated studies for the
three levels of percent differentially expressed genes and
three levels of inter-study variation. We also analyzed each
study individually. Note again that in individual studies,
the SEI and PI models are equivalent, i.e. the only differ-

ences between the SEI and PI models are at the inter-study
level. In order to compare the SEI and PI models, we cal-
culated for each model the true integration-driven discov-
ery rate (tIDR) and the true integration-driven revision

rate (tIRR) for thresholds of γ ≥ 0.50, i.e. the posterior
probability of differential expression greater or equal to
50%. The PI model produced higher tIDR and lower tIRR

than the SEI model for all values of γ ≥ 0.50 for the simu-
lated data. Figures 1 and 2 display the tIDR and tIRR
results, respectively, for the three simulated levels of ps and

high mean . Table 1 presents results for all simulated

data sets, for representative threshold value γ = 0.95.

We also fixed levels of peFDR and compared the number
of true discoveries for the two models. We found that both
models improved the number of true discoveries versus
individual analyses, and the PI model identified more true
genes than the SEI model for the same levels of peFDR <
20%. Figure 3 illustrates the results for the three ps levels

and high mean . Table 1 reports results for all simula-

tions, for representative peFDR = 5%.

The primary difference between the two models is that the
SEI model first combines the mean standardized gene
expression levels from each study into an overall mean
and then calculates the probability of differential expres-
sion based on this overall mean, while the PI model cal-
culates the probability of differential expression based on
the separate study means. For genes that have high mean
standardized expression in one study but lower mean
standardized expression in a second study, the SEI model
tends to identify these genes as non-differentially
expressed based on an approximately medium overall
mean; however, the PI model identifies more of these
types of genes as differentially expressed. This is due to
keeping the study means separate in the PI model, and
thus genes with high probability of differential expression
in one study are not overly offset by genes with lower
probability of differential expression in the second study.
Due to these model differences, the SEI model declares
more true genes as non-differentially expressed, thus pro-
ducing higher tIRR than the PI model. For genes that are
declared non-differentially expressed in both individual
studies, the PI model identifies more of these genes as dif-
ferentially expressed in meta-analysis versus the SEI
model, resulting in higher tIDR and more true genes iden-
tified for the same level of false discovery than the SEI
model.
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tIDR versus posterior probability of differential expression for the two-study simulation dataFigure 1
tIDR versus posterior probability of differential expression for the two-study simulation data. True integration-
driven discovery rate (tIDR) versus threshold values of posterior probability of differential expression γ ≥ 0.50, for the stand-
ardized expression integration model (blue circles) and probability integration model (black diamonds) for the two-study simu-

lation data with high mean  = 0.7 (differentially expressed); 0.07 (non-differentially expressed) and the following simulated 

percent differentially expressed genes ps: a) 5%; b) 10%; c) 25%.

         (a) 

         (b) 

         (c) 
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tIRR versus posterior probability of differential expression for the two-study simulation dataFigure 2
tIRR versus posterior probability of differential expression for the two-study simulation data. True integration-
driven revision rate (tIRR) versus threshold values of posterior probability of differential expression γ ≥ 0.50, for the standard-
ized expression integration model (blue circles) and probability integration model (black diamonds) for the two-study simula-

tion data with high mean  = 0.7 (differentially expressed); 0.07 (non-differentially expressed) and the following simulated 

percent differentially expressed genes ps: a) 5%; b) 10%; c) 25%.

          (a) 

          (b) 

         (c) 
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Five-study simulation results

We also compared the SEI and PI models for five inde-
pendent studies. For this, we simulated three additional
studies with format similar to Study 1, but with different
parameter values for slide and experiment variation (see
Methods). All other parameter specifications were similar
to the two-study simulations. In all data sets, the PI model
again identified higher tIDR and lower tIRR than the SEI

model for all thresholds of γ ≥ 0.50. Figures 4a and 4b

show results for ps = 10% and high mean ; Table 2

details the results for all data sets, with representative

threshold value γ = 0.95. Note that the SEI model pro-

duced tIDR = 0% for many levels of γ. In these incidents,
for all true genes identified by the SEI model, at least one

of the five individual studies had Dg at least as high as γ.
When compared to the two-study simulations, combining
more studies resulted in lower tIDR in most cases for both
the SEI and PI models. This occurred since, for a larger
number of studies, it was more likely that some genes had

Dg ≥ γ in at least one individual study, which reduced

tIDR. The tIRR was also lower in most cases in comparison
to the two-study simulations for both the SEI and PI mod-
els. This was due to the increase in Dg in the meta-analysis

models when combining more studies, which reduced
tIRR.

For all simulated data sets, both the SEI and PI models
again identified more true discoveries than the individual
analyses for the same levels of peFDR < 20%; the PI model
also found more true discoveries than the SEI model, sim-
ilar to the two-study simulations. Figure 4c displays the

results for ps = 10% and high mean  ; Table 2 reports

the results for all data sets, with representative peFDR =
5%. When compared to two-study simulations, combin-
ing more studies resulted in more true discovered genes
for the same levels of peFDR, for both the SEI and PI mod-
els. This indicates that pooling more data improves the
accuracy of peFDR.

τ g
2

τ g
2

Table 1: Results for two-study simulation data. True integration-driven discovery rate (tIDR) and true integration-driven revision rate 
(tIRR) for threshold value of posterior probability of differential expression γ = 0.95, and the number of true discovered genes for 
posterior expected false discovery rate peFDR = 5%, for the Bayesian standardized expression integration (SEI) and probability 
integration (PI) models. Results are shown for the three levels of simulated percent differentially expressed genes ps and three levels of 

mean inter-study variability  for the two-study simulation data.

ps = 5% ps = 10% ps = 25%

Two-Study Simulation Data SEI PI SEI PI SEI PI

Low: mean = 0.1 (DE); 0.01 (non DE) tIDR, γ = 0.95 24.6% 29.9% 12.9% 18.9% 3.8% 9.0%

tIRR, γ = 0.95 3.7% 0% 2.9% 1.4% 6.2% 1.5%

True Genes, peFDR = 5% 84 92 183 196 479 513

Medium: mean = 0.3 (DE); 0.03 (non DE) tIDR, γ = 0.95 11.2% 19.5% 10.8% 16.2% 2.6% 6.4%

tIRR, γ = 0.95 16.4% 7.5% 15.9% 4.5% 16.4% 3.1%

True Genes, peFDR = 5% 80 97 185 211 493 547

High: mean = 0.7(DE); 0.07(non DE) tIDR, γ = 0.95 11.0% 15.3% 5.4% 7.6% 2.9% 4.9%

tIRR, γ = 0.95 16.7% 7.7% 19.9% 6.6% 16.0% 4.8%

True Genes, peFDR = 5% 93 105 212 235 572 617
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Number of true discovered genes versus peFDR for the two-study simulation dataFigure 3
Number of true discovered genes versus peFDR for the two-study simulation data. The maximum number of true 
discovered genes versus posterior expected false discovery rate (peFDR) for the standardized expression integration model 
(blue circles), probability integration model (black diamonds), individual analyses of Study 1 (red checks) and Study 2 (green tri-

angles), for the two-study simulation data with high mean  = 0.7 (differentially expressed); 0.07 (non-differentially 

expressed) and the following simulated percent differentially expressed genes ps: a) 5%; b) 10%; c) 25%.

     (a) 

      (b) 

     (c)
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The PI model showed improved performance over the SEI
model in simulations of five studies for similar reasons as
discussed in the simulations of two studies. By calculating
the probability of differential expression based on the sep-
arate study means in the PI model, genes with high prob-
ability of differential expression in at least one study
produce a higher overall probability of differential expres-
sion in the PI meta-analysis. However, the SEI model first
produces an overall mean and then calculates the proba-
bility of differential expression based on this overall
mean, which results in fewer true genes being declared dif-
ferentially expressed. Due to these meta-analytic model
differences, the PI model results in higher tIDR, lower tIRR
and more true differentially expressed genes identified for
the same level of false discovery than the SEI model.

Biological data results
We implemented the SEI and PI models to combine the B.
subtilis mutant and induction studies, using 2,509 genes
that had at least one expression value in each study. We
also analyzed each study individually. Each slide was
standardized to have zero mean and unit standard devia-
tion. Since the truly differentially expressed genes are

unknown for the biological data, we report results some-
what differently than for the simulated data. For both
models, we show IDR and IRR for fixed levels of γ ≥ 0.50
with corresponding peFDR (Figures 5a, 5b and Table 3).
The PI model produced higher IDR than the SEI model for
most levels of γ ≥ 0.50, with corresponding lower peFDR.
In a few instances, the IDR was higher for the SEI than the
PI model, but the difference was less than 1%, and the cor-
responding peFDR was lower for the PI model. On aver-
age, the PI model produced an IDR 3.5% higher than the
SEI model for γ ≥ 0.50, and 6.5% higher for γ ≥ 0.95; the
corresponding average peFDR was 1% and 0.3% lower for
the PI model, respectively. The IRR was lower for the PI
model for all values of γ ≥ 0.50. In addition, for fixed lev-
els of peFDR < 20%, both the PI and SEI models discov-
ered more genes than the individual studies alone, and
the PI model discovered more genes than the SEI model
in all cases (Figure 5c).

Sensitivity analysis

The prior distributions of the slide effect and experiment

effect variance parameters,  and , respectively,φjg
2 σ jg

2

Table 2: Results for five-study simulation data. True integration-driven discovery rate (tIDR) and true integration-driven revision rate 
(tIRR) for threshold value of posterior probability of differential expression γ = 0.95, and the number of true discovered genes for 
posterior expected false discovery rate peFDR = 5%, for the Bayesian standardized expression integration (SEI) and probability 
integration (PI) models. Results are shown for the three levels of simulated percent differentially expressed genes ps and three levels of 

mean inter-study variability  for the five-study simulation data.

ps = 5% ps = 10% ps = 25%

Five-Study Simulation Data SEI PI SEI PI SEI PI

Low : mean = 0.1 (DE); 0.01(non DE) tIRR, γ = 0.95 13.7% 34.7% 3.8% 20.6% 0% 11.4%

tIRR, γ = 0.95 4.5% 0% 6.7% 0.6% 15.4% 1.4%

True Genes, peFDR = 5% 88 106 187 215 496 576

Medium : mean = 0.3 (DE); 0.03 (non DE) tIDR, γ = 0.95 7.2% 21.3% 2.2% 15.2% 0% 6.7%

tIRR, γ = 0.95 9.4% 0% 10.2% 3.6% 16.8% 3.0%

True Genes, peFDR = 5% 99 118 212 241 571 642

High : mean = 0.7 (DE); 0.07 (non DE) tIDR, γ = 0.95 3.8% 13.3% 0% 5.4% 0% 3.4%

tIRR, γ = 0.95 9.8% 0.9% 7.9% 2.8% 10.7% 3.5%

True Genes, peFDR = 5% 122 135 259 270 654 688
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tIDR, tIRR and true discovered genes versus peFDR for the five-study simulation dataFigure 4
tIDR, tIRR and true discovered genes versus peFDR for the five-study simulation data. a) True integration-driven 
discovery rate (tIDR) versus threshold values of posterior probability of differential expression γ ≥ 0.50, for the standardized 
expression integration model (blue circles) and probability integration model (black diamonds) for the five-study simulation 

data with high mean  = 0.7 (differentially expressed); 0.07 (non-differentially expressed) and simulated percent differentially 

expressed genes ps = 10%; b) True integration-driven revision rate (tIRR) versus threshold values of posterior probability of dif-

ferential expression γ ≥ 0.50, for the standardized expression integration model (blue circles) and probability integration model 

(black diamonds) for the five-study simulation data with high mean  = 0.7 (differentially expressed); 0.07 (non-differentially 

expressed) and simulated percent differentially expressed genes ps = 10%; c) The maximum number of true discovered genes 
versus posterior expected false discovery rate (peFDR) for the standardized expression integration model (blue circles), prob-
ability integration model (black diamonds), individual analyses of Study 1 (red checks), Study 2 (green triangles), Study 3 (tur-

quoise pluses), Study 4 (pink inverted triangles), Study 5 (gold stars) for the five-study simulation data with high mean  = 0.7 

(differentially expressed); 0.07 (non-differentially expressed) and simulated percent differentially expressed genes ps = 10%.

         (a) 

          (b) 

        (c) 
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IDR, IRR and discovered genes versus peFDR for the biological dataFigure 5
IDR, IRR and discovered genes versus peFDR for the biological data. a) Integration-driven discovery rate (IDR) versus 
threshold values of posterior probability of differential expression γ ≥ 0.50, for the standardized expression integration model 
(blue circles) and probability integration model (black diamonds) for the B. subtilis mutant and induction biological study data; b) 
Integration-driven revision rate (IRR) versus threshold values of posterior probability of differential expression γ ≥ 0.50, for the 
standardized expression integration model (blue circles) and probability integration model (black diamonds) for the B. subtilis 
mutant and induction biological study data; c) The maximum number of differentially expressed genes versus posterior 
expected false discovery rate (peFDR) for the standardized expression integration model (blue circles), probability integration 
model (black diamonds), individual analyses of B. subtilis mutant study (red checks) and induction study (green triangles).

         (a) 

          (b) 

       (c) 
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require some information from the data in order for the
models to converge. When assigning uninformative distri-

butions to these parameters, i.e.  ~ Inverse

Gamma(0.001,0.001) and  ~ Inverse

Gamma(0.001,0.001), the models do not converge. We

thus assigned inverse chi-squared distributions to  and

, with scale parameters based on pooling variance

information from all genes, similar to other authors
([17,23,24]). We used 3 degrees of freedom so that the
prior distributions were as uninformative as possible
(similar to [17]). To examine the sensitivity of the results
to the degrees of freedom of the scaled inverse chi-squared
distributions, we performed sensitivity analyses for the
two-study and five-study simulation data sets as well as
the biological data. For the simulation data, we used the
data sets with percent of differentially expressed genes ps =

10% and medium mean . We repeated the analyses

with the following degrees of freedom for both  and

 : 6, 10, 20, 40. Larger degrees of freedom correspond

to more informative priors, i.e. smaller means and vari-
ances imposed upon the variance parameters. In all anal-
yses, we found that with more informative priors, the
mean posterior probabilities of differential expression for
all genes increased. For the two-study simulation data,
this resulted in larger numbers of true genes identified for
the same levels of peFDR for both the SEI and PI models.
tIDR decreased for larger degrees of freedom for thresh-

olds of γ ≥ 0.50 for both the SEI and PI models, since the
individual studies as well as the meta-analyses produced
higher posterior probabilities of differential expression,
which lowered tIDR. tIRR decreased for larger degrees of

freedom for thresholds of γ ≥ 0.50 for both the SEI and PI
models, again due to the higher posterior probabilities of
differential expression.

The five-study simulation results were similar to the two-
study results, except that the tIRR increased slightly for the
SEI model for larger degrees of freedom for some thresh-
olds of γ ≥ 0.50. This was due to the larger number of indi-
vidual studies; with more individual studies, there were
more genes with higher posterior probabilities of differen-
tial expression in at least one individual study versus the
SEI meta-analysis, which increased tIRR for the SEI model.
For the biological data, we found similar results to the
two-study simulation data: with larger degrees of free-

dom, IDR, IRR and peFDR decreased on average for
thresholds of γ ≥ 0.50 for both the SEI and PI models.

Overall, the PI model outperformed the SEI model for all
prior degrees of freedom imposed, and using 3 degrees of
freedom resulted in the most conservative findings for the
posterior probabilities of differential expression. We show
results for the two-study and five-study simulation data in
Table 4 and Supplemental Figures S1 and S2 (see Addi-
tional file 1); the biological data results are displayed in
Table 5 and Supplemental Figure S3 (see Additional file
1).

Conclusion
We compared two Bayesian approaches to meta-analysis
of microarray data: the standardized expression integra-
tion and probability integration models. The standard-
ized expression integration model includes inter-study
variability and may thus improve accuracy of findings; it
also produces an overall estimate of standardized gene
expression among all studies. However, due to the typical
small number of studies in meta-analyses for microarrays,
the inter-study variability is difficult to model. Alterna-
tively, the probability integration approach eliminates the
need to specify inter-study variability since each study is
modeled separately, with overall smoothing of probabili-
ties across studies. In our simulations of two and five stud-
ies, the probability integration model produced higher
tIDR and lower tIRR than the standardized expression
integration model for fixed posterior probabilities of dif-
ferential expression, and also identified more true discov-
eries for the same levels of peFDR. We found similar
results for the biological data, with the probability inte-
gration model producing higher IDR on average and
lower IRR with corresponding lower values of peFDR, for
fixed probabilities of differential expression. We conclude
that, for our data sets, aggregating probabilities across
studies rather than combining gene expression levels
improves IDR, IRR and the number of discovered genes
versus peFDR.

In the standardized expression integration meta-analysis
model, the prior assignment for the inter-study variability
had a large impact on the results. We assigned some of the
most common prior distributions used in practice: inverse
gamma, log-logistic and locally uniform. The uninforma-
tive inverse gamma and log-logistic distributions were
gene-specific and did not pool information from similar
genes; these distributions did not improve results versus
individual analyses. The informative inverse gamma dis-
tributions pooled information either from all genes or sets
of differentially and non-differentially expression genes,
but also did not improve upon separate study analyses.
We found the most improvement in true integration-
driven discovery rates and increases in true discoveries
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versus peFDR using the locally uniform prior distribution
centered at the medians of the differentially expressed and
non-expressed genes; this emphasizes the need for priors
that pool information across genes rather than using indi-
vidual gene information or uninformative priors, for
small data sets.

The probability integration model does not produce an
overall measure of expression for each gene, similar to the
classical meta-analysis methods of combining p-values,
probabilities and ranks. However, study-specific gene

expression values are produced, and these can be exam-
ined for individual genes of interest.

The standardized expression integration and probability
integration models presented here were developed for
studies from the same platform. A common control sam-
ple is not required across studies, and the studies are
assumed to be independent. In addition, the models do
not require the same array-layout across studies. For
example, some studies could have replicate slides within
repeated experiments, while other studies could have only

Table 4: Sensitivity analysis results for the two-study and five-study simulation data. Sensitivity analysis results for the prior degrees of 

freedom assigned to the slide and experiment effect variance parameters,  and , respectively, for the two-study and five-study 

simulation data sets with medium mean  = 0.3 (differentially expressed); 0.03 (non-differentially expressed) and simulated percent 

differentially expressed genes ps = 10%. Shown are true integration-driven discovery rate (tIDR) and true integration-driven revision 

rate (tIRR) for threshold value of posterior probability of differential expression γ = 0.95, and the number of true discovered genes for 
posterior expected false discovery rate peFDR = 5%, for the Bayesian standardized expression integration (SEI) and probability 
integration (PI) models.

Two-Study Simulation Data True Integration-Driven
Discovery Rate, γ = 0.95

True Integration-Driven
Revision Rate, γ = 0.95

True Genes, peFDR = 5%

Prior Degrees of Freedom

SEI PI SEI PI SEI PI

3 3 10.8% 16.2% 15.9% 4.5% 185 211
6 6 4.4% 11.9% 11.6% 1.2% 197 216
10 10 3.6% 10.2% 7.9% 0.6% 202 218
20 20 1.7% 8.1% 4.4% 0.5% 206 219
40 40 1.6% 6.6% 5.9% 0.5% 208 221

Five-Study Simulation Data

3 3 2.2% 15.2% 10.2% 3.6% 212 241
6 6 0% 8.8% 13.0% 2.8% 219 246
10 10 0% 6.9% 13.1% 2.7% 225 248
20 20 0% 3.9% 14.4% 3.1% 228 250
40 40 0% 5.1% 12.8% 1.8% 227 250
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Table 3: Results for Bacillus subtilis biological data. Integration-driven discovery rate (IDR), integration-driven revision rate (IRR) and 
posterior expected false discovery rate (peFDR) for various threshold values of posterior probability of differential expression γ ≥ 0.50, 
for the standardized expression integration (SEI) and probability integration (PI) models applied to the B. subtilis mutant and induction 
biological study data.

Integration-Driven Discovery Rate Integration-Driven Revision Rate Posterior Expected FDR

γ SEI PI SEI PI SEI PI

0.995 51.1% 64.6% 32.4% 14.7% 0.0008 0.0004
0.99 46.3% 61.4% 28.2% 12.7% 0.002 0.001
0.95 35.7% 37.9% 20.3% 8.9% 0.013 0.007
0.90 26.7% 27.1% 7.1% 3.1% 0.022 0.014
0.50 4.7% 7.1% 12.4% 8.6% 0.098 0.085
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replicate slides within a single study. The models are thus
applicable to a wide range of study designs.

Methods
Two study simulation data

We simulated data for two studies, with similar format to
the B. subtilis mutant and induction biological data (see
Methods: Biological data), with simulated proportion of
differentially expressed genes ps = 5%, 10%, 25%. Each

study contained 3,000 genes. Study 1 had 5 replicate
slides within 3 repeated experiments, and Study 2 had 4
replicate slides within 3 repeated experiments. We simu-
lated data from Model (1), with model parameters chosen

to resemble the biological data. We set  = 0.025 and c

= 48. For Study 1, we assigned variance across slides to
0.074 and across experiments to 0.026. For Study 2, we

assigned slide variation to 0.023 and experiment variation
to 0.022. The biological data had inter-study variability
that was approximately Normally distributed with mean
of 0.33 and variation of 0.12 for the top 10% of genes, and
mean 0.031 and variation 0.004 for the remaining genes.

We simulated  from a Normal distribution, with mean

values that were lower, similar to, and higher than these
values for the overexpressed and non-expressed genes,
respectively: low mean: 0.1 and 0.01; medium mean: 0.3
and 0.03; high mean: 0.7 and 0.07; with variation values
equivalent to the biological data. We refer to these as low,
medium and high mean levels of inter-study variability.
Each slide was standardized to have mean zero and unit
standard deviation. Although correlation of expression is
expected among genes, this has been shown to be difficult
to simulate. We thus assumed independence among genes

ηg0
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Table 6: Runtime values for the WinBUGS MCMC implementation. Runtime values in seconds for 5,000 iterations of the WinBUGS 
MCMC implementation of SEI and PI models for various numbers of genes and studies, using a personal computer with an Intel Core 
Duo T2500 2.0 GHz Processor.

Runtime (Seconds)

Number of Genes

Two Studies 3,000 10,000 20,000

SEI model 561 2,652 4,621
PI model 415 1,947 3,375

Five Studies

SEI model 1,511 4,981 8,679
PI model 1,204 4,287 8,008

Table 5: Sensitivity analysis results for the Bacillus subtilis biological data. Sensitivity analysis results for the prior degrees of freedom 

assigned to the slide and experiment effect variance parameters,  and , respectively, for the B. subtilis mutant and induction 

biological study data. Shown are the integration-driven discovery rate (IDR), integration-driven revision rate (IRR) and posterior 
expected false discovery rate (peFDR) for threshold value of posterior probability of differential expression γ = 0.95, for the 
standardized expression integration (SEI) and probability integration (PI) models applied to the B. subtilis mutant and induction 
biological study data.

Prior Degrees of Freedom Integration-Driven Discovery 
Rate, γ = 0.95

Integration-Driven Revision 
Rate, γ = 0.95

Posterior Expected FDR,
γ = 0.95

SEI PI SEI PI SEI PI

3 3 35.7% 37.9% 20.3% 8.9% 0.013 0.0073
6 6 13.9% 20.1% 7.9% 5.3% 0.0088 0.0049
10 10 7.1% 14.0% 7.1% 2.4% 0.0059 0.0037
20 20 6.3% 14.5% 7.7% 0.0% 0.0044 0.0040
40 40 5.3% 13.3% 10.1% 0.7% 0.0038 0.0041
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in simulations, similar to other studies (see, for example,
Gottardo et al. [23], Lönnstedt and Speed [24]).

Simulation data for five studies

For the simulation of five studies, Study 1 and Study 2
were the same as in the previous section, and we simu-
lated data for 3 additional studies, with proportion of dif-
ferentially expressed genes ps = 5%, 10%, 25%. In total

there were 3,000 genes. For Studies 3, 4 and 5, we used the
study format similar to Study 1, with 5 replicate slides
within 3 replicate experiments. For the slide and experi-
ment variance parameters, we assigned values that were
either within the range of values for Study 1 and Study 2,
or somewhat outside the range. For Study 3, the slide var-
iance was assigned 0.05, and experiment variance 0.02.
For Study 4, the slide variance was assigned 0.04, and
experiment variance 0.022. For Study 5, the slide variance
was set to 0.06, and experiment variance 0.03. We again

set  = 0.025 and c = 48 and simulated  from Nor-

mal distributions with three mean levels: low, medium
and high, with variation values equivalent to the biologi-
cal data, similar to the two-study simulation data. Each
slide was standardized to have zero mean and unit stand-
ard deviation.

Biological data
B. subtilis is a bacterium that responds to starvation by
forming spores, which allow it to survive in extreme envi-
ronmental conditions. Two independent B. subtilis micro-
array studies were designed to identify genes in the
sporulation pathway controlled by the sigma factor σE.
The studies had reciprocal designs; the first was a muta-
tion of σE, and the second was an induction of σE, with
details in the following (see also [50,58]).

Mutant study
For the mutant study, cells with a deletion in the gene for
σE (the mutant sample) were compared to wild-type cells.
The wild-type/mutant ratios identified genes under the
control of σE. In total, five microarrays were created from
three independent repeated experiments; the first experi-
ment produced three replicate slides and the second and
third experiments each produced one slide. Each array
contained somewhat more spots than the B. subtilis
genome size of 4,106 due to multiple spotting of specific
genes on the arrays. The percent of missing data due to
low quality spots ranged from 18.6% to 64.5% across the
five slides; a total of 3,713 genes had measurable expres-
sion values for at least one slide. We used log-ratios of
intensities [44], normalized slides using a rank-invariant
method [17,59] and standardized each slide to have zero
mean and unit standard deviation.

Induction study
The induction study was an overexpression of σE in which
cells treated with an inducer were compared to unaltered
cells. The induction/wild-type ratios identified genes in
the σE regulon. In total, four microarrays were created
from three independent repeated experiments. The first
two experiments each produced one slide and the third
experiment produced two replicate slides. The percent of
data removed due to low quality spots ranged from 52.6%
to 67.0% across the four slides; a total of 2,552 had meas-
urable expression for at least one slide. We again analyzed
the post-normalized log-ratios of intensities, and stand-
ardized each array to have zero mean and unit standard
deviation.

Standardized expression integration model: prior 
distributions for inter-study variation

We assigned the following inverse gamma, log-logistic
and locally uniform prior distributions for the inter-study

variability parameter  in the standardized expression

integration model (Model (1)) for both the simulation
and biological data. We applied both uninformative and
informative priors; the informative priors either used indi-
vidual gene information or pooled information from sets
of genes. We found that uninformative priors and priors
that used individual gene information did not improve
upon individual study analyses. Only one prior distribu-
tion produced true integration-driven discovery rates >

0% for γ ≥ 0.50, and an increase in true discoveries versus
peFDR < 20% compared to individual study analyses in
the two and five study simulations: 3) locally uniform
centered at the median of the inter-study variability (see
below).

1) Inverse gamma distribution (Choi et al. [2], Smith et al.
[34], Normand [35], Sargent et al. [38]): this is a standard
conjugate prior distribution for variance parameters. We
first applied an uninformative prior distribution, in order
to allow the data to inform on the posterior distribution.
However, since this distribution did not result in
improved performance, we also applied two informative
distributions, as follows.

a) Uninformative inverse gamma distribution:
IG(0.001,0.001), corresponding to mean 1, variance
1000.

b) Informative inverse gamma distribution: IG(α, β), with
α, β chosen so that the mean and variance were equal to
the mean and variance of the inter-study variability based
on data of all genes. This prior distribution pools data
from all genes in order to provide a more accurate meas-
ure of inter-study variability. Pooling variance informa-
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tion from all genes is similar to the methods of Tseng et al.
[17], Gottardo et al. [23] and Lönnstedt and Speed [24].

c) Informative inverse gamma distribution: separate pri-
ors for differentially and non-differentially expressed
genes. Since the inter-study variability is higher for differ-
entially expressed genes than non-expressed genes, we
assigned two different priors conditioned on Ig = 1 and Ig
= 0. For Ig = 1, we assigned an inverse-gamma distribution
with mean and variance equal to that of the inter-study
variability based on the top p% of data. The proportion p
was estimated from the average of the individual study
analyses. Similarly for Ig = 0, we assigned the prior based
on the remaining (1-p)% of data. Estimating inverse-
gamma parameters separately for the top and remaining
proportions of genes is similar to the method of Gottardo
et al. [23].

2) Log-logistic distribution (DuMouchel and Normand
[36]):

Here, K is the number of studies and  is sampling var-

iability for gene g in study j.  Note that this prior assign-
ment is calculated for each gene individually. Our data
included slide and experiment variance; we thus calcu-

lated  for gene g and study j as follows:

where E is the total number of experiments, ne is the

number of slides within experiment e, and  is the sam-

ple variance of the yjgse within experiment e.

As discussed in DuMouchel and Normand [36], the  is

the harmonic mean of the K sampling variances, , and

the density p(τg) has median equal to sg0. The quartiles of

the distribution of τg are sg0/3, sg0 and 3sg0, so that the dis-

tribution covers a sensible range of values. If the sample
standard deviations are not equal across microarray stud-
ies, then sg0 will be weighted toward the studies with

smaller sgj ; this prevents the meta-analysis results from

being overly influenced by a few studies that have large sgj

values.

3) Locally uniform distribution (Gelman et al. [39]): sep-
arate priors for differentially and non-differentially
expressed genes. The uniform prior is used when a varia-
ble is known to lie within a specific interval and is equally
likely to be found anywhere within the interval. For inter-
study variability of gene expression, this prior assignment
pools information from the differentially and non-differ-
entially expressed genes in order to provide a more accu-
rate estimate of the variability. Again, since the inter-study
variability is higher for differentially expressed than non-
expressed genes, we assigned different priors conditioned
on Ig = 1 and Ig = 0. For Ig = 1, we assigned a locally uni-
form prior centered at the median inter-study variability
based on the top p% of data. The percent p was deter-
mined from the average of the individual study analyses.
Similarly for Ig = 0, we assigned a locally uniform prior
based on the remaining (1-p)% of data. The ranges of the
uniform distributions were ± one standard error of the
median. The standard error of the median was estimated
as 1.253 × standard error of the mean (Kendall et al. [60]).
We selected the range of ± one standard error of the
median based on exploratory calculations. In simulations,
this range produced higher tIDR for γ ≥ 0.50 and more
true discoveries for levels of peFDR < 20% versus individ-
ual study analyses compared to the following alternative
ranges: fixed medians (range of zero); and ± two standard
errors of the medians. We also repeated prior assignment
3) using means in place of medians, but this prior specifi-
cation did not result in improvements in discoveries ver-
sus individual study analyses.

Normal versus t-distribution modeling of the study-specific mean 
values
As discussed and implemented by several authors (Smith
et al. [34], Sargent et al. [38], Choi et al. [2]), an alternative
to the Normal distribution assumption for the study-spe-
cific mean values θjg is to model the values as t-distribu-
tions, due to the small number of studies. We repeated
each of the prior assignments 1) to 3) above assuming a t-
distribution with degrees of freedom less than 30 (with
degrees of freedom 30 equivalent to a Normal distribu-
tion). For simulated data, we found that the tIDR versus γ
≥ 0.50 and the number of true discoveries versus peFDR
decreased with fewer degrees of freedom. Based on these
findings, we model the mean values θjg as Normal distri-
butions in the standardized expression integration model.
The Normal assumption is commonly used in hierarchical
Bayesian meta-analysis models, even for small numbers
of studies (see, for example, Normand [35], Pauler and
Wakefield [37], Sargent et al. [38]).

Markov chain Monte Carlo implementation
We implement a Markov chain Monte Carlo (MCMC)
procedure to simulate the posterior distributions of each
of the parameters. MCMC methods generate samples
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from a density p(ψ) for a parameter ψ (with p(ψ) possibly
known only to a constant of proportionality) by creating
a Markov chain on the state space of ψ which has p as its
true (stationary) distribution (see Liu et al. [51] for further
details).

Joint posterior distributions
For Model (1), the joint distribution of the data and
parameters is:

where Ωj = ( , c), j = study, g = gene, e = experiment, s =

slide.

For Model (2), the joint distribution of the data and
parameters is:

where Ωj = ( , cj), j = study, g = gene, e = experiment, s

= slide.

Prior distributions

We assigned as uninformative prior distributions as possi-
ble to the parameters of Models (1) and (2) that still
resulted in convergence of the models. For the parameter
p, we assigned a non-informative Uniform(0, l) distribu-
tion. The prior distributions of the slide effect and experi-

ment effect variance parameters,  and ,

respectively, required some information from the data in
order for the models to converge. We assigned the follow-
ing prior distributions for these parameters (see also
[17,23,24]):

Here,  and  are scale parameters of the inverse chi-

squared distribution obtained from the data.  is com-

puted as follows:

where yjg.e is the log-expression ratio averaged over the
slides within each experiment:

The scale parameter for  is similarly produced as fol-

lows:

where yjg.. is the log-expression ratio averaged over both

slides and experiments. We assigned 3 degrees of freedom

in each study for  and , i.e. h = k = 3, so that the dis-

tribution is as uninformative as possible (see also Results
and Discussion: Sensitivity analysis). The remaining
parameters were assigned the following prior distribu-
tions, which were as uninformative as possible while still
allowing the models to converge.

The degrees of freedom and scale parameters a, , respec-

tively, were assigned so that the prior mean of  was 1

with variance 0.1, and b,  were assigned so that the

prior mean of c was 100 with variance 10,000. For a

description of the prior distribution for , see the Meth-

ods section: Standardized expression integration model:
prior distributions for inter-study variation.

Full conditional posterior distributions
Each parameter was sampled from the full conditional
posterior distributions by an MCMC algorithm using the
WinBUGS software [61]. We used 5,000 iterations for all
analyses, which was more than sufficient. Further MCMC
implementation details can be found in Conlon et al.
[15].
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WinBUGS running time
The WinBUGS running time ranged from approximately 7
minutes for 3,000 genes and two studies for the PI model
to 2.41 hours for 20,000 genes and five studies for the SEI
model, for 5,000 iterations, using a personal computer
with an Intel Core Duo T2500 2.0 GHz Processor. Table 6
details running times in seconds for the number of genes:
3,000, 10,000, 20,000, for two and five studies and 5,000
iterations for both the PI and SEI models.

Availability and requirements
The WinBUGS code for implementing the models is
included in the Supplemental Files (see Additional files 2
and 3).

Operating system: Windows 98 or later.

Other requirements: WinBUGS software version 1.4 or
later [61].

License: free.
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