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Abstract

Background: The comparability of gene expression data generated with different microarray 

platforms is still a matter of concern. Here we address the performance and the overlap in the 

detection of differentially expressed genes for five different microarray platforms in a challenging

biological context where differences in gene expression are few and subtle.

Results: Gene expression profiles in the hippocampus of five wild-type and five trcpuigpke" ｻC-

doublecortin-like kinase mice were evaluated with five microarray platforms: Applied Biosystems, 

Affymetrix, Agilent, Illumina, LGTC home-spotted arrays. Using a fixed false discovery rate of 10% 

we detected surprising differences between the number of differentially expressed genes per 

platform. Four genes were selected by ABI, 130 by Affymetrix, 3,051 by Agilent, 54 by Illumina, and 

13 by LGTC. Two genes were found significantly differentially expressed by all platforms and the 

four genes identified by the ABI platform were found by at least three other platforms. Quantitative 

RT-PCR analysis confirmed 20 out of 28 of the genes detected by two or more platforms and 8 out of 

15 of the genes detected by Agilent only. We observed improved correlations between platforms 

when ranking the genes based on the significance level than with a fixed statistical cut-off. We 

demonstrate significant overlap in the affected gene sets identified by the different platforms, 

although biological processes were represented by only partially overlapping sets of genes. 

Aberrances in GABA-ergic signalling in the transgenic mice were consistently found by all platforms.

Conclusions: The different microarray platforms give partially complementary views on biological 

processes affected. Our data indicate that when analyzing samples with only subtle differences in 

gene expression the use of two different platforms might be more attractive than increasing the 

number of replicates. Commercial two-color platforms seem to have higher power for finding 

differentially expressed genes between groups with small differences in expression. 



4

Background

Microarray technologies are now commonly used for genome-wide surveying of gene expression. 

With the availability of an increasing amount of data from different studies, there is a growing need 

for comparison and combination of datasets. This would be helpful to increase statistical power and 

to compare biological processes. Comparisons across different studies are, however, complicated by 

the use of different platforms. Over the past years, many microarray platforms, based on different 

technologies, have been developed by commercial and academic institutions. How reliable and 

consistent the results from different platforms are is still a matter of debate [1-3]. Initially, 

platforms comparison studies were mainly focused on comparison between commercial chips 

(mainly Affymetrix) and in-house spotted microarrays [4-7]. In recent years, more comprehensive 

studies were done, some of them reporting agreement between platforms [8-13] and some of them 

not [14-20]. The largest comparison was performed within an FDA-initiated program for evaluation 

of the reproducibility, quality and consistency of microarray platforms (MicroArray Quality Control, 

MAQC). In general, a high agreement between platforms was reported [21-25]. Our study is an 

extension to previously published studies in several aspects: we investigated the capabilities of five 

microarray platforms with high technological diversity to identify differences in gene expression in a 

challenging and highly controlled biological condition, where the expected level of transcriptional 

regulation was low, the number of differentially expressed genes small, and the number of 

biological replicates small, but realistic. 

The biological question addressed was the finding of differential gene expression in the 

hippocampus between transgenic mice overexpressing a splice-variant of the doublecortin-like 

kinase-1 gene, ｻC-doublecortin-like kinase (DCLK)-short, which makes the kinase constitutively

active [26]. The DCLK gene has recently been implicated in crucial aspects of embryonic cortical 

development by controlling neurogenesis, neuronal migration and neuronal vesicle transport [27-

30]. DCLK-short is not expressed during embryogenesis, is abundantly expressed in adult limbic 

brain structures, particularly in the hippocampus [26], and has mild kinase activity in vitro [26,31]. 

The biological function of DCLK-short expression in the adult hippocampus is largely unknown and 

the transgenic mice have subtle phenotypes with no obvious differences in basal outcomes (Schenk 

et al, in preparation). Microarray-based expression profiling of the hippocampus tissues from ｻC-

DCLK-short and controls should reveal the biological processes in which the gene is involved.

The main aim of this paper is to compare the performance of different microarray platforms to 

detect differences in gene expression in biologically related samples. The performance of and the 

consistency between the microarray platforms on the level of affected genes and gene sets are 

reported here. The biological findings will be discussed in more detail elsewhere (Schenk, in 
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preparation). 

Results

Experimental set-up

Gene expression in the hippocampus of five wild-type mice and five transgenic mice was evaluated 

with five microarray platforms (Table 1): Applied Biosystems (ABI), Affymetrix (AFF), Agilent (AGL), 

Illumina (ILL), and home-spotted oligonucleotide arrays (LGTC). Ten chips were used for each 

platform. For the two-color arrays, a wild-type sample was always co-hybridized with a transgenic 

sample and the design was balanced with respect to dye. Platform-specific processing of the signal 

was kept to a minimum as to not introduce processing artefacts. After careful performance 

evaluation, different normalization methods were chosen for one and two-color, but within the 

groups of one- and two-color platforms the method was kept constant as not to introduce 

differences due to the normalizaton algorithm. Differential gene expression was evaluated with an 

empirical Bayes linear regression model (EBLRM) from the R package limma [32]. Raw and 

normalized data are available from Gene Expression Omnibus (GEO) under series GSE8349.

Detected transcripts

There was a large difference between the platforms in the number of probes which generated a 

signal above background. AGL had the highest number of present calls, LGTC the lowest. To make a 

fair comparison across platforms, we re-annotated all probe sequences and mapped them to the 

Ensembl transcript database. In addition to providing the most up-to-date annotation, alternatively 

spliced transcripts are considered separately so that possible inconsistencies between platforms due 

to measuring different splice variants would be excluded. The number of detectable Ensembl

transcripts was high on AGL (22,510), intermediate on AFF, ILL, and ABI (around 13,000) and low on 

LGTC (2,017) (Table 2). The low number of detectable transcripts on the LGTC platform is mainly 

due to background problems, causing negative control spots to occasionally give high signals. The 

overlap between detectable transcripts is highest between AFF and AGL (62%) and lowest for all 

LGTC combinations. 

Differentially expressed genes identified on each platform

The number of significantly differentially expressed genes (DEGs) detected with a fixed False 

Discovery Rate (FDR) of 10% greatly varied across platforms (Table 1): 4 probes were selected by 

ABI, 130 by AFF, 3,051 by AGL, 54 by ILL, and 13 by LGTC. As expected, the observed degree of 
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differential gene expression was small. The absolute expression differences for the DEGs were in 

the following range: 1.45 - 2.23-fold (ABI), 1.10 – 2.58-fold (AFF), 1.05 – 2.40-fold (AGL), 1.15 –

1.92-fold (ILL), and 1.04 – 1.47-fold (LGTC). The only two DEGs with a more than two-fold change in 

expression (as found with multiple microarray platforms and confirmed by qPCR) were: Plac9 (up) 

and Gabra2 (down).

We further investigated the surprisingly high number of DEGs detected by AGL. When intensities 

instead of ratios were taken into the statistical analysis, no differential genes were detected at a 

FDR of 10% unless dye and array effect were included in the model. With the latter model (model 3 

in the Methods section), 3,570 genes were selected, among which all the 3,051 genes selected by 

the log ratios-based analysis. This and the more elaborate evaluation presented in Additional file 1 

suggest three major explanations for the good performance of the AGL platform: co-hybridization of 

samples from the two different biological groups to the same array, doubling of the number of 

observations with the same number of arrays used for the one-color systems, and low noise levels.

These conclusions are in accordance with observations from earlier studies [13,33].

The low number of DEGs on the ABI platform may be partly attributable to the use of different 

batches of arrays, but including the batch effect in the statistical model did not result in more 

DEGs. 

Analysis of overlapping DEGs across platforms

To be able to compare results across platforms, we created two data subsets with genes or 

transcripts interrogated by all platforms. For the first subset all GenBank accessions that were used

by the array suppliers for their probe design were mapped to Unigene (UG) database, while 

averaging signal intensities from probes that mapped to the same UG entry. For 10,876 UG IDs data 

was available for all 5 platforms. For the second subset, we mapped all probes to the Ensembl 

transcript database. There were 12,774 Ensembl transcripts that were interrogated by all 5 

platforms. 

Results for the subset of genes with overlapping UG identifiers are reported in Table 1 and show the 

same trend already observed in the complete datasets. In Table 3 the overlaps in DEGs selected by 

each pair of platforms are reported. Two genes were selected by all 5 platforms (Plac9, 

9230117N10Rik). The 4 genes identified by ABI were selected on at least three other platforms. 

Overall, correspondence between platforms appears to be low. This is likely due to the use of a 

fixed statistical threshold. A higher correlation was found when evaluating the ranks of genes based 

on significance score. In Figure 1 the ranks for each gene are plotted for each pair of platforms. A 

scattersmooth function [34] is used for better visualization of the data cloud. As can be seen, in the 



7

area of the highly ranked genes (roughly from rank 1 - rank 200) there is a higher correlation 

between platforms than in the area of lower ranked genes. This is expected because only genes 

with significantly differential expression should be correlated while no correlation and complete 

scattering is expected for unchanged genes. We also considered the moderate t-statistics from the 

EBLRM which takes into account the direction of changes in the gene expression. The Pearson

correlation coefficients (cP) of the t statistics within pair of platforms ranged between 0.10-0.47 

(Table 3). Correlations between pairs of platforms belonging to the same type (one- or two-color) 

where higher than between those of different types, with cP = 0.47 between AFF - ILL and between 

AGL - LGTC. Given the fact that the correlations are calculated based on all genes of which the 

biggest majority does not change in expression, higher correlations are not to be expected.

The results of the analysis of the Ensembl transcript-mapped overlapping probes were highly similar 

in terms of overlap (Table 1), and correlations of ranks and t-statistics (data not shown). 

Validation

Quantitative reverse transcription PCR (qRT-PCR) was used to validate the results of the different 

microarray platforms [see Additional file 2]. As expected the two genes found as DEGs by all five 

microarray platforms were confirmed to display differential expression. The fold-changes found by 

qRT-PCR were slightly higher than those found by any of the microarray platforms, confirming 

previous observations that ratios tend to be compressed in microarray experiments [21,23,35]. For 

10 out of 11 tested genes that were significant (FDR<0.1) on at least two platforms, qRT-PCR 

experiments confirmed differential expression (Student’s t-test: p<0.05). Lgals1, that was found by 

AFF and ILL only, did not reach significance in the qRT-PCR experiment due to large variability in 

the wild-type group. We selected 15 genes (ranked from 8 to 719) that were found by AGL only 

covering the range from highly to lowly expressed genes, to ascertain whether the high number of 

genes selected by AGL was due to false positives. Eight out of these 15 genes were confirmed by 

qRT-PCR (p<0.05), including Spp1 and Camkk1. These two genes were ranked among the top-350 

genes on all platforms, except for Camkk1 on ABI. Pip5k2a, Ttc3, and Acsl1 were confirmed by qRT-

PCR, but had an average ranking on the other platforms, and thus are truly found by AGL only. Of 

the 7 genes that were found by AGL only but could not be confirmed by qRT-PCR, Gnb1l and Sgip1

were border-line significant in the qRT-PCR experiment (p=0.06). Interestingly, Taf12, although 

significant on AGL only, displayed very consistent fold-changes on the five microarray platforms (-

1.08 to -1.12). Probably its fold-change was so low that it was hard to confirm by qRT-PCR.

Gene set analysis 
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Analysis at the level of gene sets (as annotated in the Gene Ontology –GO- [36] and Kyoto 

Encyclopedia of Genes and Genomes –KEGG- [37] libraries) may reveal greater similarities between 

platforms than analysis at the level of individual genes, since different but functionally-related 

genes could give hints to aberrations in the same biological processes [38]. The Global Test was 

used to evaluate the differential regulation of gene sets [39]. This method is based on a model for 

predicting a response variable from the gene expression measurements of a set of genes. Unlike 

commonly overrepresentation test or Gene Set Enrichtment Analysis, it has optimal power in small 

sample size experiments and is able to identify gene sets where many genes display a small but 

consistent effect [40]. Furthermore, the test enables the control for array and dye effects, and

produces easily interpretable p-values that can be compared across experiments. 

We ranked the gene sets based on their Global Test significance and compared each pair of 

platforms (Figure 2). Like for the analysis of individual genes, the highly ranked gene sets showed 

good agreement across platforms. Again, the best correlations were observed between pairs of 

platforms of the same type: AFF-ILL (both one-color) and LGTC-AGL (both two-color) with Spearman 

correlation coefficients of 0.39 and 0.46 respectively. In agreement with the lower number of DEGs 

found by ABI, the results from ABI did not correlate well with those of the other platforms. 

Similar results were observed using the gene sets from KEGG (data not shown). 

The list of gene sets that were consistently identified by at least three platforms is dominated by 

genes involved in GABAergic signaling (Table 4). Gabra2, found down-regulated on all platforms and 

confirmed by qRT-PCR [see Additional File 2], is the most influential gene in these gene sets. 

Different genes on different platforms contribute to the significance of these gene sets as a whole: 

e.g. Chrna4 (AFF, AGL, LGTC), Chrna3 (AGL), Glra3 (LGTC), Glra4 (ILL) for gene set GO:0004890. In 

general, this was due to near-background signals of these genes on most platforms.

Discussion

The aims of the present study were to compare the ability of different microarray platforms to 

detect differences in gene expression, when levels of regulation and numbers of regulated genes 

are low, and to investigate the influence of the platform in the biological interpretation of the 

results. 

We show that even when gene expression differences between groups are small, several microarray 

platforms are able to consistently detect them. This is an important point, since in most previously 

published microarray platform comparisons, including the toxicogenomics MAQC study where 

biological replicates were analyzed, differences between samples analyzed where much larger than 

in our study [12,21,23-25]. The MAQC papers conclude that the cross-platform correlation is higher 
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for fold-changes than for t-statistics. This is not true for our study. This apparent contradiction is 

because high fold-changes, which we simply do not have in our study, are more likely to be 

measured consistently, and contribute most to the Pearson correlation coefficient. Cross platform 

consistency in our study may compare favorably to another platform comparison study within a 

biological setting: Tan et al. reported a low agreement between 3 platforms (Affymetrix, Agilent, 

Amersham) in the analysis of the effect of serum withdrawal [14]. In their case, the amount of 

interrogated genes shared by all platforms was low. In our study, the number of common probes is 

bigger (N~ 12,000) and allows for more reliable comparisons since a bigger and possibly more 

representative set of probes is taken into consideration. 

In contrast to other papers, we did not apply any filter to our data. In the reanalysis of the Tan 

dataset by Shi and collaborators [41] the authors claimed that the use of the unfiltered dataset gave 

a poor agreement between platforms, while restricting the analyses to a small filtered subset gives 

highly reproducible results. Even if several filters are commonly used, strict investigation on the 

possible bias introduced in the data because of the exclusion of genes has not been done. Since 

filters of the data may affect individual datasets differently, we have avoided using them in order 

to reflect the true unbiased gene expression signatures. The drawback is that the correlation 

measures are more affected by biological and technical noise. 

The choice of the type of cut-off is still a matter of debate, and several authors suggested using a 

mixed cut-off of p-values and Fold Changes (FCs) [21,24]. However, even if a FC cut-off makes DEGs 

determination easier and from the technical point of view is more direct, it can eliminate the 

possibility of finding small differences in the data that are biologically interesting, as demonstrated 

in the current study (where only two genes showed a FC > 2). Furthermore, the FC statistics do not 

have the probabilistic characteristics guaranteed by theoretical conditions that allow to be sure 

about what the method does [42,43].

The degree of overlap between DEGs can be influenced by the overlap in interrogated and 

detectable transcripts as well as the method for matching of the probes. The overlap in 

interrogated transcripts was >75%, as expected for these whole genome microarray platforms. The 

overlap in probes with signal above background was also in the same range. However, by adding the 

two effects, one can explain as much as 50% of the difference between two platforms and this can 

be even more for home-spotted arrays were the numbers of detectable transcripts are often 

reduced due to local background problems. The overlap may be further reduced due to the 

interrogation of different splice variants that are mapped to the same UG identifier. The Ensembl 
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transcript mapping accounts for alternatively spliced transcripts. However, the correlation between 

platforms in the Ensembl transcript-mapped dataset was, in our case, not higher than in the UG 

dataset. This could be due to complications in the mapping process: AFF probe sets sometimes 

cover more than one transcript, and for ABI oligonucleotide sequences were not provided but only 

380 bp regions in which the probes were designed. Furthermore, there is considerable redundancy 

in the Ensembl transcript dataset due to multiple splice variants from the same gene being detected 

by all platforms, which may introduce biases in the downstream analyses. In this respect, the use of 

the recently released whole genome exon arrays for gene expression probably provides an attractive 

alternative, coping with such a problem.

AGL selected a ten-fold higher number of DEGs and significant gene sets than all other platforms. 

This is partly attributable to the high signal to noise level of this platform, as evident from the 

number of probes with signal higher than background. Still, this huge difference was unexpected

and we investigated the behavior of the AGL data in more detail, and compared this with AFF and 

LGTC data using different approaches [see Additional file 1]. Briefly, the AGL log ratios show a 

bigger variability than AFF log intensities, measured by the a posteriori standard deviations. This 

difference remains after multiplying the variance of AFF intensities by the square root 2 in order to 

calculate the variance in the ratio between two samples. To check whether the doubled number of 

observations on the AGL were the cause for finding many more differentially expressed genes, we 

left AGL arrays out one by one and repeated the EBLRM analysis. The number of DEGs decreased 

steadily from 3,051 (10 arrays, 20 samples) to 649 (5 arrays, 10 samples). This is on the same order 

of magnitude as the number of DEGs of AFF (10 arrays, 10 samples, 130 DEGs), but still five times 

larger. 

This suggests that the direct comparison of the wild-type and transgenic mouse samples on the 

same array drives the better performance, which is accordance with previous observations [13,33].

It argues against using either a common reference design or one-color protocols when comparing 

two groups of samples [21]. However, this does not explain the differences in performance between 

AGL and LGTC arrays. We found that AGL’s technical replicates were much more reproducible than 

those of LGTC: Pearson correlation coefficients were 0.95-0.98 for AGL and 0.70-0.80 for LGTC, 

illustrating the differences in quality between commercial and home-spotted arrays. Overall, our 

study suggests that the differences in amount of DEGs found by the different platforms were mainly 

caused by differences in signal to noise ratios, and the numbers of observations between one and 

two-color platforms, when using the same number of arrays. Our qRT-PCR experiments validated 

differential gene expression in most cases, also for genes found by AGL only, indicating that these 
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are not just false positives. 

Our results illustrates once more that typical sample sizes used in microarray experiments, three 

samples per group, can be too small to enable reliable detection of subtle effects such as in this 

study. Even though using 5 samples per group still does not yield enough power for some platforms, 

it is possible to use our data as basis for estimation of sample size for the platforms considered. We 

are undergoing this work and the detailed analysis, beyond the scope of this paper, shall appear 

elsewhere. Our preliminary results confirm that AGL and AFF have comparable power, so the 

different outcomes observed by us are for the largest part due to the larger effective sample size 

involved in two-colour platforms design.

We investigated whether the power of the analysis could be enhanced by merging data from all five 

platforms in one statistical model. We applied an EBLRM on the UG subset and included samples, 

platforms and dye (only for the two-color arrays) as confounders. At an FDR of 0.1, 285 genes were 

selected (Table 1). Among these, most had been selected as DEGs by the individual platforms with 

the exception of 56 genes. However, we could not validate the differential expression of the top 5 

of those genes by qRT-PCR, mainly due to large biological variation within groups. These genes 

seem to have been selected in the merged analysis due to the technical consistency on the 

microarray platforms allied to the larger pooled sample size. 

This study also aims to elucidate the biological function of delta-DCLK-short expression in the 

hippocampus. Recent loss and gain of function studies strongly suggest involvement of the DCLK 

gene in neurogenesis, neuronal migration, vesicle transport, microtubule-directed retrograde 

transport, neurotransmission and apoptosis [28-30,44-46]. Thus, DEGs identified in this study may 

be involved in these processes. The present study focuses on comparison of different array 

platforms and therefore the results of the biological function will be discussed more extensively 

elsewhere (Schenk in preparation). However, it is interesting to note that the DEGs and the 

significant gene sets revealed by the different microarrays are biologically meaningful. For 

example, numerous gene sets related to GABA-ergic neurotransmission emerged as highly significant 

in 4 out of 5 platforms. Intriguingly, similarly as the DCLK gene, excitatory GABA signalling has been 

shown to control neurogenesis, neuronal migration and differentiation of neuroblasts [47,48]. DCLK-

short expression starts postnatally around day 6, a timepoint that is characterized by a switch in 

excitatory GABAergic responses to inhibitory responses [49,50]. The added value of the use of 



12

different microarray platforms lies in the prioritization of the pathways for follow-up experiments. 

When analyzing data from a single platform, many spurious gene sets apparently not related to the 

biological process under study (e.g. chemotaxis) ranked highly, probably due to the relatively small 

expression differences observed. By comparing platforms, a biologically meaningful consensus could 

be distilled. 

Conclusion

The present study suggests that the choice of a platform can be mainly governed by practical and 

cost considerations. However, our data demonstrate that, given the much higher number of 

identified DEGs, commercial two-color platforms may be preferred when two groups with small 

differences in expression are to be compared. In these situations, a direct-comparison design helps 

to maximize signal-to-noise ratios in the ratios between the two groups through minimization of the 

array effect and the possibility for more replicates with the same number of arrays. Since we 

performed this study with a clear underlying biological question, we could demonstrate that there 

was agreement across platforms in the perturbed biological processes identified. Consistency 

between platforms helped to prioritize biological processes relevant for the biological question 

under study. The relevant gene sets were detected with an only partly overlapping set of genes. Our 

data indicate that when analyzing samples with only subtle differences in gene expression the use 

of two different platforms might be more rewarding than increasing the number of replicates on the 

same platform.
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Methods

MICE

5 Wild-type male C57/BL6j and 5 transgenic male mice over-expressing DCLK-short with a C57/BL6j 

background were individually housed 7 days prior to the start of the experiment. Animals were 

housed under standard conditions, 12h/12h light/dark cycle and had access to food and water ad 

libitum. Wild-type (N=5) and transgenic (N=5) tissue samples were collected by taking the brain 

from the skull and quickly dissecting out both hippocampi. Dissection was performed at 0° C to 

prevent degradation of RNA. Hippocampi were put directly in pre-chilled tubes containing Trizol 

reagent (Invitrogen Life Technologies, Carlsbad, CA, USA). All animal treatments were approved by 

the Leiden University Animal Care and Use Committee (UDEC# 01022).

RNA extraction

After transfer to ice-cold Trizol, hippocampi were homogenized using a tissue homogenizer 

(Salm&Kipp, Breukelen, The Netherlands) and total RNA was isolated according to the 

manufacturer’s protocol. After precipitation, RNA was purified with Qiagen’s RNeasy kit with on-

column DNase digestion. The quality of the RNA was assessed with the RNA 6000 Labchip kit in 

combination with the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), using the 

Eukaryote Total RNA Nano assay according to the manufacturer’s instructions. Total RNA was 

amplified using Ambion’s MessageAmp kit, with incorporation of modified nucleotides (biotin-16-

UTP (AFF, ILL), aminoallyl-UTP (AGL, LGTC), DIG-UTP (ABI)). For AGL and LGTC, aminoallyl-cRNA 

was coupled to Cy3 or Cy5 monoreactive dyes (GE Healthcare). 

Experimental design

Labelled cRNAs of 5 individual wild-type and 5 transgenic mice were hybridized on 5 different 

microarray platforms (Table 1): Applied Biosystem (ABI), Affymetrix (AFF), Agilent (AGL), Illumina 

(ILL), and home-spotted glass microarrays containing the 22K mouse Sigma-Compugen collection 

generated at the Leiden Genome Technology Center (LGTC). Ten microarrays were used for each 

platform. For the one-color platforms (ABI, AFF, ILL), each individual RNA was hybridized to one 

microarray. A direct design was used for hybridization of the two-color arrays (AGL, LGTC), i.e. 

each microarray was hybridized with two RNA samples from different groups. All samples were 

hybridized once in Cy3 and once in Cy5. Dye-swapped hybridizations were done with non-identical 

sample pairs [see Additional file 3]. 

Quantitative RT-PCR
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Quantitative RT-PCRs were done on the Lightcycler480 (Roche), using the universal probe library 

(UPL, Roche) or SYBR-Green (when amplification efficiencies with UPL were below 90%). The RNA 

samples used for validation were the same as in the microarray experiments. Each cDNA was 

analyzed in quadruplicate, after which the average threshold cycle (Ct) was calculated per sample. 

Differential expression was evaluated with a Student’s t-test, considering the 5 biological replicates 

in each group. 

Mapping 

Two approaches were used to obtain an overlapping gene set that was measured on each platform.

The first is based on the annotation provided by the manufacturer, while the second is an in-house 

performed probe sequence-based annotation. 

1. GenBank accession numbers that were used for the design of the microarray probes were used for 

querying the Mus musculus Unigene (UG) database build #151. All UG IDs that occurred at least once 

on each platform were included in the UG set (N= 10,876). With this UG set, a UG dataset was 

created for each platform by extracting the expression values for the relevant probes. When 

multiple probes were present for the same UG ID, the average of the signal of the probes was used 

as expression value.

2. For AGL, LGTC, and ILL, probe sequences provided by the manufacturer were directly used for 

annotation. For AFF, the 11 probe sequences in a probe set were concatenated, after removal of 

potential overlap. ABI did not reveal the exact probe sequences but a 380 bp region, in which the 

probes were located. Gmap [51] was used for alignment of the sequences to the Ensembl mouse 

genome sequence (build NCBIM34). Hits with a match score higher than 0.9 (matches – gaps / query 

size [52]) were considered genuine matches. Chromosomal start and end positions of the hits were 

compared to the exon positions in the Ensembl database (version 37.34e). Subsequently, the 

Ensembl Transcript database was queried with only the exons that matched (part of) the probe 

sequence. Only transcripts with a match score >0.9 on all 5 platforms were included the Ensembl 

transcript set (N= 12,744). When multiple probes were present for the same transcript, the average 

of the signal of the probes was used as expression value. 

Based on each of the above overlapping gene sets, a dataset was created for each platform, which 

was analyzed separately [for UG: see Additional file 4]. For completeness, the complete datasets 

(including also the non overlapping probes) were also analyzed in parallel. 

Preprocessing procedures

The quality of the arrays was assessed by visual inspection of the raw images and pairwise MA-plots. 
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No arrays were excluded from the analysis since the variance on the log-ratios was comparable 

between arrays. For the ABI platform, we observed differences in the signal distribution between 

two batches of arrays hybridized on two different days, for the other platform no quality problems 

were observed. Each dataset was loaded into the R environment directly as a raw data matrix (for 

ABI and ILL) or using the limma package (AFF, AGL, and LGTC). No background correction was 

applied to the two-color microarray platforms since the background correction increased noise 

levels in the low intensity range considerably. For AFF analysis, only perfect match probes were 

taken into account and probesets were summarized with the “median polish” method. The data 

from the one-color platforms were normalized with variance stabilization and normalization 

function implemented in the vsn package [53]. From all the normalization methods tested, vsn was 

most robust, whereas the performance of alternative normalization algorithms was more platform-

dependent. Two-color arrays were normalized with loess [54] since vsn normalization did not 

correct all the intensity-dependent non-linear behaviour in the data. Raw and normalized data are 

available in GEO under series GSE8349. 

Present calls

For Affymetrix chips, probes were said to be present when the MAS5.0 present call algorithm called 

the probe “P” (present) on all 10 arrays. For the other platforms, probes were said to be present 

when their signal intensity was above the signal from the lowest 95% of platform-specific negative 

control probes on all 10 arrays. For the two colour platforms, this requirement was imposed on the 

intensities of both the green and the red channel. Lists of present probes for each platform were 

then mapped to the ENSEMBL transcript database to generate a list of unique ENSEMBL transcript 

IDs with detectable expression. 

Statistical analyses

Determination of Differentially Expressed Genes (DEGs)

Each dataset was analyzed for determination of DEGs using an Empirical Bayes Linear 

Regression Model (EBLRM). The following models were used for this purpose: 

3+ one-color datasets 

yi= ｸi + ßi group+ ｼi

4+ two-color datasets– log ratios

wi= ｸi + ii

5+ two-color datasets–intensities

yi= ｸi + ßi group+ ｺi dye+ ｻi array +ｼi
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where i is the ith item of the datasets, yi is the intensity signal, wi is the log ratios of the signal in 

Cy3 dye vs the Cy5 dye; ｸi, ßi, ｺi, ｻi, ｼi were the coefficients of the intercept, group (transgenic vs. 

wild type), dye ( Cy5 vs. Cy3 - only for two-color arrays), array (only for two-color arrays), and error 

terms, respectively. All the effects were considered to be random. DEGs were defined as the probes 

for which the ßi were significantly different from 0, since ßi is the estimate for the group (wild-type 

or transgenic) effect. Analysis were performed with the limma package [32], using the lmFit 

function. P values were adjusted for multiple testing using the False Discovery Rates (FDR) method 

suggested by Benjamini and Hochberg [55]. FDR not greater than 10% was considered as statistically 

significant. Numbers and percentages of overlapping items in the list of DEGs among the 5 platforms 

were calculated.

Genes of UG and Ensembl were ordered by their p values obtained from the EBLRM and their 

Spearman correlation coefficients (cS) were calculated for pairs of platforms. Pearson correlation 

coefficients (cP) were calculated to quantify the correlation between the statistics produced by the 

EBLRM in the 5 overlapping datasets.

Gene set analysis 

The association between the multiple functionally-related genes belonging to the same gene sets 

(according to the GO [36] and KEGG [37] libraries) and the group was assessed using the Global Test 

[39]. A logistic model with a gamma p-value estimating method was used for all platforms. For the 

two-color arrays, intensities were extracted and a model including array and dye effects as 

confounders was used. Gene sets were ordered by their p values obtained from the global test and 

Spearman correlation coefficients were calculated for pairs of platforms. Multiple testing was 

corrected via the FDR method [55]. FDR not greater than 10% was considered as statistically 

significant. 

Two-color platforms data analysis

Analyses of the two-color platforms data were done using log ratios per array, whenever possible. 

However, for the gene set analysis and for the analysis of the merged datasets separate channel 

intensities were needed. These were then extracted from the raw data, normalized using vsn and, 

to account for technical variability, the analysis model also included array and dye as confounders. 

Software

All the analyses were performed using R software environment [56] version 2.3.2 and BioConductor 
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[57] packages vsn [53], loess [54], multtest [58], Affy [59], globaltest [39], limma [32], AnnBuilder 

[60] and the function scattersmooth [34].

When metadata packages were available at the BioConductor website (in our case, for AGL and AFF 

platforms), we used them for the annotation. Otherwise (for ABI, ILL, and LGTC) the annotation 

packages were produced using the AnnBuilder package in R [60]. 
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Figure legends

Figure 1. Scattersmooth plots of the correlation between the ranks (according to p values) of genes 

in the UG dataset of the 5 platforms. Red corresponds to denser areas, while yellow corresponds to 

non dense areas. The scattersmooth uses an algorithm for smoothing of two dimensional histograms 

with smoothed densities (26). This graph is more meaningful than a traditional scatter plot of the p 

values or of the -log p values, where the small number of DEGs in our datasets originates graph 

blurred with thousands of overlapping dots and empty areas. Since the different signal to noise ratio 

is varying in the platforms and affects the statistics differently, plots of the ranks are more 

meaningful than plot of p values and statistics.

Figure 2 Scattersmooth plots between the ranks of the GO gene sets (according to Global Test p 

values).
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Table 1. Description of the platforms under study.

Platform Name #Probes #Unique 
UniGene 
IDs 

#Ensembl 
transcripts *

one/
two 
color

# DEGs 
(10% FDR) 

# DEGs UniGene
dataset 
(N=10,876)

# DEGs Ensembl
dataset 
(N=12,744)

ABI Applied 
Biosystem-
AB1700 

35,948 19,013 25,858 one 4 4 5

AFF Affymetrix -
Mouse Genome 
430 v2.0 Array 

45,101 20,320 23,553 one 130 72 112

AGL Agilent- WMG 
G4122A

41,232 20,612 25,845 two 3,051 1,594 2,003

ILL Illumina-
Sentrix Mouse-
6 Expression 
BeadChip

46,133 19,292 25,629 one 54 19 24

LGTC Home-spotted 
65-mer 
oligonucleotide 
arrays (Sigma-
Compugen 
collection)

21,997 15,261 18,104 two 13 22 35

All
Platforms 

10,876 12,744 - 285** 693**

* More probes could correspond to the Ensembl transcript.
** The number of differential genes obtained comes from the integrated analysis of data from all 
platforms within one statistical model which takes the platform into account (cf. Discussion 
section)
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Table 2. Overlap in detectable Ensembl transcripts across platforms.

The number of detectable transcripts is presented on the diagonal (bold), with the total number of 

interrogated transcripts for each platform between parentheses. The overlap in the number of 

detectable transcripts for each pair of platforms is presented in the right side of the table, with the 

total number of interrogated transcripts shared between each pair of platforms between 

parentheses. The pair-wise overlap in detectable transcripts as a percentage of the overlapping set 

of interrogated Ensembl transcripts is presented in the left side of the table.

Detectable transcripts ABI AFF AGL ILL LGTC

ABI
13331
(22963)

8897
(15950)

11863
(20858)

9449
(21055)

1557
(15221)

AFF 55.8%
11683
(18572)

10986
(17698)

9226
(17645)

1487
(13987)

AGL 56.9% 62.1%
22510
(26233)

12120
(23933)

1800
(17329)

ILL 44.9% 52.3% 50.6%
13376
(26550)

1617
(17225)

LGTC 10.2% 10.6% 10.4% 9.4%
2017

(18591)
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Table 3. Overlap in DEGs in the UG subset (normal face) and Pearson correlation coefficients (bold 

face) between t statistics in each pair of platforms. 

C(Pearson)\# DEGs AFF ABI ILL AGL LGTC

AFF 72 4 12 25 4

ABI 0.26 4 3 4 3

ILL 0.47 0.22 19 10 3

AGL 0.18 0.16 0.17 1594 19

LGTC 0.11 0.10 0.11 0.47 22
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Table 4. Gene sets highly ranked across platforms. 

For each platform, gene sets were ranked by their association with the phenotype under study, 

using the p-value from the global test. Displayed are those gene sets that rank highly in the 

majority of platforms; for GO sets, the sum of the highest three (out of five) ranks had to be below 

100; for KEGG sets, the sum of the highest four (out of five) ranks had to be below 100. 

Columns 1 and 2 display GO/KEGG IDs and names of the gene sets (in parentheses: GO 

classification: BP=biological process; MF=molecular function). Columns 3 to 7 display the ranks of 

the gene sets for each of the platforms. 

GENE SET ID Name ABI AFF AGL ILL LGTC

GO

GO:0007214 gamma-aminobutyric acid signaling

pathway (BP)

232 46 23 26 33

GO:0004890 GABA-A receptor activity (MF) 248 42 11 13 48

GO:0016917 GABA receptor activity (MF) 283 40 14 12 52

GO:0030594 neurotransmitter receptor activity (MF) 433 23 2 2 166

GO:0042165 neurotransmitter binding (MF) 474 22 1 1 174

GO:0006821 chloride transport (BP) 853 17 3 22 21

GO:0015698 inorganic anion transport (BP) 1022 7 21 33 76

GO:0005230 extracellular ligand-gated ion channel 

activity (MF)

1672 29 10 17 91

GO:0006820 anion transport (BP) 1801 8 33 34 98

GO:0015276 ligand-gated ion channel activity (MF) 1900 20 4 11 175

GO:0050900 leukocyte migration (BP) 13 898 12 69 1726

KEGG

4080 Neuroactive ligand-receptor interaction 25 1 3 2 10

4512 ECM-receptor interaction 18 9 21 16 33

2010 ABC transporters - General 27 3 15 4 53

4660 T cell receptor signaling pathway 23 16 57 8 31

760 Nicotinate and nicotinamide metabolism 58 8 4 161 20

3030 DNA polymerase 9 11 12 24 138

4514 Cell adhesion molecules (CAMs) 39 13 23 17 115

900 Terpenoid biosynthesis 13 12 54 19 62

4640 Hematopoietic cell lineage 64 4 22 9 76
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Additional files

Additional file 1:

File format: DOC

Title: suppl.material.pedotti

Description: contains a more detailed comparison of the performance of AGL and AFF microarrays

Additional file 2:

File format: DOC

Title: table.S1.pedotti

Description: contains a list of the genes selected for the validation with qRT-PCR and its results

Additional file 3:

File format: DOC

Title: table.S2.pedotti

Description: contains the hybridization design for the two color arrays (AGL and LGTC)

Additional file 4:

File format: txt (tab delimited text file)

Title: all.data.UG

Description: contains the expression data of all the 5 platforms for the subset of genes with 

overlapping UG identifiers
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