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Abstract
Background: Numerous nonparametric approaches have been proposed in literature to detect
differential gene expression in the setting of two user-defined groups. However, there is a lack of
nonparametric procedures to analyze microarray data with multiple factors attributing to the gene
expression. Furthermore, incorporating interaction effects in the analysis of microarray data has
long been of great interest to biological scientists, little of which has been investigated in the
nonparametric framework.

Results: In this paper, we propose a set of nonparametric tests to detect treatment effects, clinical
covariate effects, and interaction effects for multifactorial microarray data. When the distribution
of expression data is skewed or heavy-tailed, the rank tests are substantially more powerful than
the competing parametric F tests. On the other hand, in the case of light or medium-tailed
distributions, the rank tests appear to be marginally less powerful than the parametric competitors.

Conclusion: The proposed rank tests enable us to detect differential gene expression and
establish interaction effects for microarray data with various non-normally distributed expression
measurements across genome. In the presence of outliers, they are advantageous alternative
approaches to the existing parametric F tests due to the robustness feature.

Background
High density oligonucleotide microarray, spotted cDNA
array, or other array technologies have presented not only
daunting amount of expression data for biologists to
explore the inherent biological mechanisms, but also
challenging statistical analysis problems. A replicated
microarray experiment involves multiple arrays to com-
pare gene expression profile under different conditions.
However, normality assumption justifying parametric
testing is often untenable in microarray studies [1,2]. For
instance, a set of 540 genes from a leukemia data set [3]
were analyzed and various distributions for the different

genes were found, in which only 13.3% genes have error
distributions satisfying the normality assumption [4]. If
the underlying distributions of expression measurements
can be validated properly, model-based approaches such
as likelihood or Bayesian inference can validly accept non-
normally distributed data and gain satisfactory power to
detect differentially expressed genes (e.g. [5-10]). For
example, a hierarchical mixture-model has been proposed
with parameterizations for Gamma or log-normally dis-
tributed measurements [10]. However when the distribu-
tion of the data is difficult to characterize, nonparametric
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inference makes less stringent distributional assumptions
and thereby provide appropriate analysis.

Furthermore data contamination can arise in microarray
setting due to different reasons. For instance, an image
contamination can occur if a long scratch is present on the
array image or a corner of the array is misaligned in the
image processing stage. Sample contamination can occur
if the mRNA sample is contaminated with other sources of
RNA present in the laboratory environment. Such outliers
are dramatically different from the majority of the obser-
vations and can greatly undermine the sensitivity of para-
metric approach. A method of assessing goodness of fit to
a linear model has been used to automatically detect out-
liers that possess too large deviation from the overall pat-
tern [11]. Alternatively, a quality index based on
coefficient variation was adopted to filter out outlying val-
ues with poor quality [9]. Nevertheless the inspection
process is time consuming for such large-scale expression
data analysis [11]. In this context, nonparametric infer-
ence is advantageous as it is insensitive to the presence of
outliers. Even without the step of outlier filtering, the
validity and power of the nonparametric procedures
would be minimally affected.

The development of both parametric and nonparametric
methods to address the two condition problem in micro-
array setting has recently received much attention. Most of
the parametric tests employed t or t-like statistics and dif-
fer primarily in the estimation of variance [12]. In contrast
to these methods which treat the genes as separate fixed
effects, the two-group Bayes method was proposed to treat
the genes as arising from a certain population. Thus the
dimensionality of the inference problem was reduced by
sharing information across the array [5,9]. Nonparametric
approaches have also been proposed for two-user defined
groups [12,13]. The Wilcoxon rank sum test was consid-
ered in [14,15] to identify differentially expressed genes in
comparison with the Fisher-Pitman permutation test,
which is also referred as the nonparametric t test [15].
Recently, the Baumgartner-Weiß-Schindler test has been
recommended to detect differentially expressed genes in
two groups, which was shown to be less conservative and
more powerful than the Wilcoxon rank sum test [16].

However, a microarray experiment often has more com-
plicated design than that of two user-defined groups.
Besides the treatment effects of interest, there may exist
some clinical covariates such as age, gender and certain
clinical symptoms, which also influence the gene expres-
sion level. For such experiments, a factorial design model
is useful to account for the multiple sources of variation.
Townsend and Hartl [6] derived a Bayesian model that
has been widely used for the estimation of gene expres-
sion levels in multifactorial experiments [7,17]. This

model has been extended [8] to accommodate not only
additive error terms but also multiplicative error terms to
resolve small yet statistically significant differences in
gene expression. Alternatively, an overall ANOVA model
has also been widely used that simultaneously considers
all the genes on the arrays and incorporates array effect
and dye effect [18]. A gene specific ANOVA model under
the normality assumption was considered in [19]. A
mixed linear model was proposed to assess gene signifi-
cance in which both fixed treatment effects and random
array effects were assumed [20]. Unfortunately, there has
been no nonparametric procedure proposed up to date to
analyze multifactorial microarray data. In addition, the
establishment of interaction effect between the multiple
attributing factors can help elucidate certain biological
mechanisms related to the regulation of gene expression.
Thus it is desirable to develop a set of nonparametric pro-
cedures to detect differential gene expression and estab-
lish interaction effects for multifactorial microarray data.

Results
Principle of the method
To account for the multiple sources of variation attribut-
ing to the gene expression, we consider the following
model for each specific gene:

Xkijn = θk + Tij + Cj + εkijn, k = 1,..., K; i = 1,..., I; j = 1,..., J; n
= 1,..., N  (1)

with ∑j Cj = 0, and ∑i, j Tij = 0, where k indexes for the gene
number, i indexes for the treatment group, j indexes for
the covariate group, n indexes for the replicate number. In
the equation, Xkijn represents the expression measurement,
θk represents the kth gene specific mean, Tij represents the
effect of the ith treatment group (for instance, drug treat-
ments, tissue types, and strains of mice) through its main
effect and interaction effect with the jth level of the clinical
covariate, and Cj represents the effect of the jth level of the
clinical covariate. The error terms εkijn are independently
and identically distributed random noise from a continu-
ous distribution function Fk.

To further discern the interaction effect, the treatment
effect Tij, can be decomposed into Tij = Mi+ γij with ∑i Mi =
0 and ∑i, j γij = 0, where Mi denotes the main effect of the
treatment group and γij denotes the interaction effect.
Interaction effects are often of biological interest when the
treatment effects are heterogeneous across the levels of the
clinical covariate. For example, consider a data set with
mouse strains as treatment groups and tissue types as cov-
ariate groups, the interaction effects arise when the effects
of different mouse strains are disproportional over differ-
ent tissue types. It is worth noting that model (1) is related
to ANOVA models proposed by other researchers [18-20].
The difference between our factorial model (1) and the
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existing ANOVA models is two-fold: model (1) accommo-
dates multifactor effects on each specific gene, and it does
not make normality assumption on the error terms εijkn.

To develop nonparametric rank tests for multifactorial
microarray experiments, it is natural to consider rank pro-
cedure which can be viewed as nonparametric analogue of
the parametric analysis of variance approach. The popular
rank transform (RT) method consists of replacing the
observations by their ranks in the combined sample and
performing one of the standard analysis of variance tests
on these ranks [21]. However in the general multifactorial
model, the RT method is not valid for most of the com-
mon hypotheses due to the nonlinear nature of the rank
transformation. For example in the presence of interac-
tion effect, the naive application of ranks into ANOVA for-
mula cannot be used to detect for main effect nor for the
interaction effect. Theoretical validations of these limita-
tions of RT method have been thoroughly discussed by
Brunner and Neumann, Akritas, and Wilcox, among many
others [22-28]. Since the RT method can be easily accom-
plished by using standard computer packages, extra cau-
tion needs to be exerted to prevent the inappropriate
extensions of RT method for microarray data analysis
under the multifactorial model. In the following, we shall
present rank procedures which are similar to RT methods
in the sense that they also resemble the analysis of vari-
ance approach, however they incorporate more rigorous
treatment on the data rather than just replacing the actual
observations by the overall rankings.

Usually as the first step of the analysis, we wish to assess
whether the genes are differentially expressed among the
treatment groups. The testing of treatment effect under

model (1) is equivalent to the testing of the hypotheses:
H10 : Tij = 0, for all i, j versus H1a : Tij ≠ 0 for some i, j. To
address this testing problem, we proposed to use the mod-
ified rank transform method (MRT) which consists of first
standardizing the rank scores and then plugging them
into the analysis of variance formula [25]. The resulting
MRT statistic has proven to asymptotically follow a χ2 dis-
tribution with (I – 1)J degrees of freedom. In a replicated
microarray analysis, the sample size N is often so small
that the large-sample asymptotic chi-squared distribution
is not accurate enough to obtain valid p-values. To assess
the significance of the rank statistic, the permutation
method will be invoked to provide p-values of the
observed statistic. An alternative way to reduce the com-
putational burden encountered by the permutation proce-
dure is to assess the significance of the proposed rank tests
by the limiting chi-squared distribution. Table 1 provides
the type I error rates of MRT based on the chi-squared
approximation as the sample size increases from 5 to 15
and 20. It is demonstrated that a cell sample size of 20 or
more are required for the chi-squared approximation to
maintain type I error rate close to the correct nominal
level.

In practice, ties are commonly encountered in microarray
data due to rounding and data modification [16]. In the
presence of ties, we adopted the method of mid-ranks
which assigns each tied individual the average of the tied
ranks. There are other methods of dealing with ties such as
the methods of randomization and the average statistics.
However it has been shown that the randomization
method is less powerful under the alternatives due to the
supplementary random effects introduced by the rand-
omization. In addition, the method of average statistics

Table 1: Convergence of type I error rates of the MRT test based on chi-squared approximation. The type I error rates of the MRT test 
based on chi-squared approximation were evaluated under varying sample sizes. A 2 × 2 design and a 3 × 4 design were considered.

Dist Design N = 5 N = 15 N = 20

N 2 × 2 0.077 0.047 0.052
3 × 4 0.075 0.055 0.053

U 2 × 2 0.075 0.046 0.051
3 × 4 0.083 0.055 0.053

LN 2 × 2 0.074 0.060 0.055
3 × 4 0.078 0.061 0.056

CN 2 × 2 0.081 0.053 0.051
3 × 4 0.072 0.054 0.053

C 2 × 2 0.072 0.046 0.052
3 × 4 0.068 0.061 0.055
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typically leads to a conservative test that has a lower sig-
nificance level than the nominal one [29]. Thus the
method of mid-ranks is most frequently used compared
to other method to handle ties. As little is known about
the small-sample performance of MRT using mid-ranks, it
is of interest to conduct simulation studies to investigate
this aspect. The related result is provided in the subse-
quent section.

An important aspect related to multifactorial design is to
address treatment-covariate interaction effects. When the
interaction is present, the gene expression level will be
affected by the treatment disproportionally over different
covariate levels. Based on the additive decomposition
model for the treatment effects Tij = Mi + γij, the testing of
interaction effect is equivalent to the testing of the
hypotheses H20 : γij = 0, for all i, j versus H2a : γij≠ 0 for some
i, j. As we have emphasized above, the RT method does
not yield valid statistics for interaction effects (see [22-
25]). Instead we employed the aligned rank transform test
(ART) to test for the above hypotheses [30]. ART test con-
sists of performing the analysis of variance test on the
ranked residuals of the aligned observations. Although
both utilize the ANOVA formula, the ART method differs
from the RT method as it is based on residuals after the
alignment. In contrast to RT, ART is a valid test for inter-
action regardless of the presence of main effects [31].

If there are no interaction effects, we can consider a sim-
pler model: Xkijn = θk + Mi + Cj + εkijn, with Mi denoting the
treatment main effect and Cj denoting the covariate effect.
Testing for the treatment main effect corresponds to the
hypotheses: H30 : Mi = 0 for all i against H3a : Mi≠ 0 for
some i. We propose to employ the rank transform statistic
suggested in [21]. It is worthy to point out that the testing
of main effects in the absence of interaction is one of very
few situations that naive application of the ANOVA for-
mula on rank scores can yield valid statistic with satisfac-
tory power properties.

In data analysis, the three testing procedures discussed
above are connected. The following empirical rule regards
how to proceed to choose the tests in a real data analysis.
As the first step of analysis, the hypothesis of treatment
effects (H10) is usually tested to see if the gene is differen-
tially expressed across treatment groups. If H10 is accepted,
no more actions will be taken as no differential expression
is detected. If H10 is rejected, we may further perform the
test for interaction effects (H20) to see if the differential
expression is partly due to the interactions between treat-
ment groups and covariate groups. The acceptance of H20
implies there exist no interaction effects. Then the testing
for main effects (H30) can be pursued on the basis that the
interaction effects are found insignificant.

Single gene analysis
Simulation studies were conducted to evaluate the per-
formances of the proposed rank methods in comparison
with the other two competing methods, the parametric F
test (FT) and the permutation F test (PFT) that uses the F
statistic but computes p-values through permutations. The
criterion used in the comparison is the efficiency gain rel-
ative to the FT method, defined as

where T can be either the MRT, ART, RT, or PFT. Obvi-
ously, when the test T outperforms the FT, the EG will be
positive; otherwise, the EG is negative.

The performances of these methods were evaluated under
different noise distributions and different numbers of rep-
lications. We considered a replicated factorial array exper-
iment involving two treatment groups, two levels of a
clinical covariate and varying cell sample sizes. Average
type I error rates and power were calculated from 1,000
simulation runs. From the literature it has been shown
that normal, uniform, log-normal, Cauchy and normal
mixture distributions, among others, are commonly seen
for microarray expression data [4]. In our simulation, we
considered normal N(0, 1), uniform U(-2, 2), log-normal
LN(0,1), Cauchy C(0.5) and contaminated normal
CN(0.75, 0.5, 2) = 0.75N(0, 0.5) + 0.25N(0, 2). To some
extent, contaminated normal can be used to model data
with sample contamination, with one normal component
representing the true underlying mRNA population of
interest and the other normal behaving as the mRNA pop-
ulation from the contamination source. It is recognized
that this normal mixture model may not be able to
describe more irregular and dramatic data contamination
such as distorted array image or scratched array regions.
Fortunately the proposed nonparametric method does
not rely on the correct characterization of the underlying
distribution. This set of distributions were selected mainly
for comparison purpose and they represent a broad range
of characteristics from light-tailed to heavy-tailed, and
from symmetric to asymmetric distributions.

We first evaluated the performance of the proposed MRT
statistic for the testing of the treatment effects. We set the
clinical effects as C1 = -0.5, and C2 = 0.5. Under the alter-
native situation, we set the treatment effects as T11 = 0.7,
and T12 = 0.7, T21 = -0.9, T22 = -0.5, which were induced by
the main effects M1 = 0.6, M2 = -0.6, and the interaction
effects γ11 = 0.1, γ12 = 0.1, γ21 = -0.3, γ22 = 0.1.

Table 2 provides the results of the type I error and power
of the MRT as well as its two competitors FT and PFT. The
type I error rates of the FT appear around 0.05 in the case

EG T
T FT

FT
( )

( ) ( )

( )
,= −power power

power
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of light or medium-tailed distribution (normal and uni-
form). However for heavy-tailed distributions, especially
in the case of Cauchy distribution, even with the sample
size N = 10, the FT seems to be very conservative. Thus, the
performance of the FT under the null can become rather
poor if the error distribution is very different from the nor-
mal. In contrast, the type I error rates of MRT and PFT are
advantageous as they are close to the correct nominal lev-
els regardless of the underlying distribution.

With regard to the power, the results are distribution
dependent. For the medium or light-tailed distributions
(normal and uniform), FT and PFT have similar perform-
ances and both of them achieve higher power than MRT
test. In contrast, for the other distributions with heavy-
tails, skewedness and contamination, MRT appears supe-
rior to the two competing methods. When the sample size
N is 10, the MRT's efficiency gain, EG(MRT), is 54.3%,
15.6%, and 227.4% under log-normal, contaminated
normal and Cauchy respectively. On the other hand, with
the same sample size, the efficiency loss of the MRT is
approximately 1.0% and 5.8% under normal and uni-
form. Compared to the amount of efficiency gain for the
MRT versus the FT, the amount of efficiency loss seems to
be marginal. Similar conclusions can be drawn when the
sample size is 5. That is, the MRT's efficiency loss is
approximately 5.6% for normal and 15.5% for uniform;
the MRT's efficiency gain is 52.1%, 30.3%, and 145.2%
for log-normal, contaminated normal and Cauchy
respectively.

One interesting variant of the MRT method is the involve-
ment of mid-ranks to handle ties. We randomly intro-
duced m ties in the simulated data set. Table 3 lists the
results of type I error and power of the three tests in the
presence of m = 2, 5 or 10 pairs of ties. Comparing to
Table 2, it is clear that these ties incurred only marginal
differences in both type I error and power, even for the
extreme scenario of m = 10. The slight increase of power
in the presence of ties could be due to the decrease of
within-group variation caused by averaging the ranks for
tied observations.

Next we examined the performance of the ART in testing
for interaction effects, as well as the comparison to the FT
and PFT. The simulation was set up as follows: under the
null situation, the main effects were assigned, respectively,
as R1 = -0.8 and R2 = 0.8, and C1 = -0.5 and C2 = 0.5; under
the alternative situation, the main effects remained the
same and additionally the interaction effects were given
by γ11 = 0.6, γ12 = -0.6, γ21 = -0.6, and γ22 = 0.6. Table 4 pro-
vides the results of type I error and power of the three test-
ing methods for the significance of the interaction effects.
All these tests echo similar performances as presented in
the above simulation study for the treatment effects. Nota-
bly, when the distribution of noise is heavy-tailed, skewed
or contaminated, the ART appears considerably more
powerful than the FT and the PFT. Regarding the testing of
main effects, the RT statistic exhibits rather similar
performance as the above two rank tests. The details of the
RT are provided in the authors's website [32].

Table 2: Type I error rates and power for treatments effects. The type I error rates and power were evaluated under five different 
error distributions – normal, uniform, lognormal, contaminated normal and Cauchy. The values inside and outside parenthesis are 
type I error rates and power, respectively. The EG(PFT) and EG(MRT) denote the efficiency gain of PFT and MRT versus FT.

Dist N FT PFT MRT EG (PFT) EG (MRT)

N 5 0.732 (0.050) 0.732 (0.050) 0.691 (0.054) 0.000 -0.056
10 0.976 (0.050) 0.976 (0.050) 0.966 (0.050) 0.000 -0.010

U 5 0.575 (0.051) 0.565 (0.047) 0.486 (0.048) -0.017 -0.155
10 0.930 (0.054) 0.930 (0.054) 0.876 (0.050) 0.000 -0.058

LN 5 0.386 (0.029) 0.461 (0.047) 0.587 (0.048) 0.194 0.521
10 0.576 (0.036) 0.620 (0.052) 0.889 (0.052) 0.076 0.543

CN 5 0.565 (0.039) 0.598 (0.058) 0.736 (0.055) 0.058 0.303
10 0.829 (0.047) 0.838 (0.056) 0.958 (0.052) 0.010 0.156

C 5 0.230 (0.021) 0.366 (0.054) 0.564 (0.049) 0.591 1.452
10 0.259 (0.016) 0.402 (0.052) 0.848 (0.055) 0.552 2.274
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Global array analysis
The above discussion focuses on the single gene analysis.
However, in microarray analysis the subsequent analysis
step typically involves either adjusting the significance for
multiple testing [33,34], or ranking genes according to the
significance level such that the most relevant top k genes
could be selected. Although discussing these global analy-

sis approaches is beyond the scope of this paper, we are
fully aware that the capability of a testing procedure to
generate extreme p-values has a direct influence on the
selection of the most relevant genes. When the Bonferroni
procedure is employed to deal with the multiplicity, the
Wilcoxon rank sum test is more conservative and less
powerful than the Fisher-Pitman test or the parametric t-

Table 3: Type I error rates and power in the presence of ties. The type I error rates and power were evaluated under different error 
distributions and varying number of ties. The values inside and outside parenthesis are type I error rates and power, respectively. The 
cell sample size N = 5.

Dist # of ties FT PFT MRT

N 2 0.729 (0.051) 0.726 (0.051) 0.684 (0.052)
5 0.730 (0.056) 0.730 (0.054) 0.682 (0.052)
10 0.724 (0.053) 0.715 (0.051) 0.687 (0.051)

U 2 0.589 (0.054) 0.577 (0.052) 0.495 (0.052)
5 0.580 (0.050) 0.568 (0.046) 0.493 (0.051)
10 0.554 (0.048) 0.539 (0.046) 0.482 (0.048)

LN 2 0.391 (0.032) 0.455 (0.041) 0.581 (0.048)
5 0.411 (0.039) 0.465 (0.054) 0.585 (0.056)
10 0.412 (0.031) 0.448 (0.043) 0.589 (0.045)

CN 2 0.563 (0.038) 0.594 (0.051) 0.730 (0.053)
5 0.575 (0.040) 0.599 (0.048) 0.735 (0.056)
10 0.597 (0.044) 0.613 (0.054) 0.741 (0.057)

C 2 0.244 (0.023) 0.397 (0.057) 0.533 (0.052)
5 0.262 (0.022) 0.370 (0.050) 0.562 (0.049)
10 0.292 (0.030) 0.368 (0.048) 0.558 (0.055)

Table 4: Type I error rates and power of different tests for interaction effects. The type I error rates and power of the three different 
tests for interaction effects were evaluated under different error distributions. The values inside and outside parenthesis are type I 
error rates and power, respectively.

Dist N FT PFT ART EG (PFT) EG (ART)

N 5 0.711 (0.055) 0.697 (0.053) 0.698 (0.048) -0.020 -0.018
10 0.952 (0.051) 0.951 (0.051) 0.947 (0.051) -0.001 -0.005

U 5 0.565 (0.049) 0.548 (0.045) 0.520 (0.050) -0.030 -0.080
10 0.891 (0.047) 0.891 (0.048) 0.833 (0.047) 0.000 -0.065

LN 5 0.405 (0.031) 0.430 (0.040) 0.579 (0.048) 0.062 0.430
10 0.576 (0.038) 0.593 (0.045) 0.893 (0.050) 0.030 0.550

CN 5 0.525 (0.035) 0.540 (0.044) 0.718 (0.045) 0.029 0.368
10 0.812 (0.043) 0.817 (0.050) 0.969 (0.051) 0.006 0.193

C 5 0.239 (0.014) 0.336 (0.029) 0.523 (0.044) 0.406 1.188
10 0.274 (0.022) 0.364 (0.056) 0.859 (0.052) 0.328 2.135
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test [15]. It was further demonstrated that the discreteness
of the exact permutation distribution of the Wilcoxon test
is responsible for the conservatism [16]. Because of this,
the Baumgartner-Weiß-Schindler test is recommended, as
its exact permutation distribution has more non-zero
mass probabilities and capable of generating richer small
p-values than the Wilcoxon test. It is worthy pointing out

that as the Bonferroni procedure is almost always more
conservative than other multiple testing procedures, it will
suffer most from the discreteness problem of the permu-
tation distribution. Other multiple testing procedures
impose less stringent p-value thresholds, therefore they
are affected by the discreteness problem to a lesser extent.

Our rank methods face the same issue as they use the per-
mutation distribution to obtain p-values. It is crucial to
examine how the discreteness of permutation distribution
affects the performance of the MRT. We plotted the p-val-
ues (in log scale) of the MRT versus those of the FT in the
connection to the first simulation study of testing for the
treatment effects with 1000 runs. Figures 1a – 1c, corre-
sponding to N = 2, 5, 10, depict the agreement between
the MRT and FT tests under the log-normal noise, in
which the perfect agreement is indicated by the solid 45°
division line. We comment that (i) the symmetry around
the 45° division line decreases as the number of replicates
N increases, this implies that the MRT becomes more
capable of producing extreme p-values than the FT test.
Thus when N is 5 or larger, the permutation approach
works reasonably well for the MRT method; and (ii) when
N is small, say 2, the p-value of the MRT is often bounded
due to the limited number of distinct probability mass
points. For the example of the 2 × 2 design, as the permu-
tation is carried out within each covariate group, the
number of different permutation configurations equals

. With N = 2, the number of possible different per-
mutations is limited to only 36, so there are at most 36
different probability mass points. When N increases to 5,
the resulting number of permutations increases to 6.35 ×
104, which considerably alleviates the problem of dis-
creteness and improve the performance of the MRT. When
N increases to 10, the corresponding number of permuta-
tions increases to 3.41 × 1010, and consequently further
lessens the discreteness problem.

In order to fully understand the effect of the discreteness
of the permutation distribution, it is of interest to com-
pare the p-values from the permutation method to the p-
values obtained from the true distribution. Under the null
situation, it is known that the p-values of MRT obtained
from the true distribution should follow a uniform distri-
bution on (0, 1), and the corresponding cumulative
distribution function (CDF) should be the straight line y
= x, x ∈ (0, 1). Figure 2a to 2d provide the comparisons of
the empirical CDFs of the permutation p-values versus the
CDF of the true p-values for MRT test under the null
situation when N = 2, N = 5, and N = 10. It is observed that
with N = 2, the CDF of permutation p-values appears as a
step function due to the discreteness at the limited
number of probability mass points. The overall curve does
not match very well with the CDF of the true p-values.
When the sample size increases to 5 and 10, the

Comparison of the MRT test vs the parametric FT testFigure 1
Comparison of the MRT test vs the parametric FT 
test. The P-values of the MRT test (X-axis) vs the FT test (Y-
axis) under lognormal distribution were plotted under the 
logarithm scale. The replicate number ranges from 2, 5 to 10.
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agreement between the CDF of permutation p-values and
the CDF of true p-values greatly improves and majority of
the two curves overlap with each other. Therefore the
plots suggest that the discreteness problem of permuta-
tion p-values is almost diminished with sample sizes
greater than 5. In addition, the CDFs of the p-values from
the chi-squared approximation are plotted in these fig-
ures. It is shown that the discrepancy between the CDFs of
the chi-squared p-values and true p-values is generally
larger than that between the permutation p-values and the
true p-values. For instance, the Figure 2d is a zoomed
image of the Figure 2c into the p-value range of (0, 0.25),
it is shown that the CDF of the chi-squared p-values falls
high above the y = x line indicating large inflation of type
I error rate, while the CDF of the permutation p-values
matches well with the y = x line. In conclusion, the permu-
tation method provides a better control of type I error rate
and therefore is more preferable compared to the chi-
squared approximation in small sample size scenario.

Biological data analysis
We now illustrate the proposed MRT and ART methods as
well as their competitors, the FT and the PFT methods, to
analyze the gene expression data collected from six brain
tissue regions in two mouse strains [35]. The data is
obtained from [36], which contains a subset of 1000
genes. The purpose of the study was to investigate the
genetic components contributing to the neurobehavioral
differences between two mouse strains. For each mouse
strain, the samples were obtained from 6 tissue regions,
which can be viewed as a clinical covariate with 6 levels.
For each mouse strain and a specific tissue, the expression
profiles of two biological replicates were assessed. The p-
values of the MRT versus respective p-values of the FT and
the PFT were plotted and the MRT appears to be less capa-
ble of producing extreme p-values than the FT due to the
low replicate numbers. In fact, this discreteness phenom-
enon has been unveiled in the simulation study through
Figure 1.1. It was further shown that for the majority of
genes the MRT and the PFT agree with each other. Among
the top 100 genes selected by the MRT, 61 genes were
selected by the FT and 77 genes were selected by the PFT.
We then selected 57 genes that were identified as differen-
tially expressed in two mouse strains by all the three meth-
ods in their top 100 rankings. To verify if these selected
biomarkers really play any biological roles in the
neurological phenotypic differences in mouse strains, we
explored the gene functions by NetAffx Analysis Center in
Affymetrix website [37]. The complete list of the functions
of these 57 genes are available from the authors' website.
Among these 57 genes, 24 genes share similar functions
related to protein binding, transfer activity, signal
pathway, receptor activities and mitochondrial electron
transport chain, which are known to be essential to the
function of nervous system. Another 14 genes share

The empirical CDFs of the P-values of the MRT testFigure 2
The empirical CDFs of the P-values of the MRT 
test.The empirical cumulative distributions of the P-values of 
the MRT test obtained from the permutation method or the 
chi-squared approximation are compared with that of the 
true p-value under the null situation. The y = x line denotes 
the CDF of true p-values; solid curve denotes the CDF of 
permutation p-values; dashed curve denotes the CDF of chi-
squared p-values. Figure 2d is the zoomed image of the Fig-
ure 2c into the p-value range of (0, 0, 25).
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(d) Zoomed image of N = 10 in the range of (0, 0.25) on X-axis
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similar functions related to muscle movement, catalytic
activity, kinase activity, hydrolase activity, and two other
genes are related to hormone regulations, which are all
related to the proper function and the regulation of nerv-
ous system. In total, 40 genes out of our list of 57 genes
exhibit biological functions attributing to the phenotypic
difference in the two mouse strains. Figure 3 displays that
the selected 57 genes yield a clear separation of the sam-
ples from the two mouse strains. Therefore, the common
list of genes identified by these three methods provides a
reliable list of biomarkers.

If more exploratory research can be afforded to look for
other genes, it is suggested to investigate the genes
identified exclusively by the MRT (not by either the FT or
the PFT). This extra list might provide a potential list of
candidate genes that did not pass the two F-tests due to
non-normal distributed noise in the data. To scrutinize
this list, we also investigated the functions of 19 genes
remaining in the list. The information regarding these 19
genes' functions is also available from the website as
above. Among these 19 genes, 11 genes share similar func-
tions as protein binding, transfer activity, signal pathway,
receptor activities, mitochondrial electron transport
chain, catalytic activities and kinase activities. It remains
inconclusive if the other 8 genes can be supported as true
positives due to the lack of known biological evidence.

As selecting the top listed genes only provides the set of
most favorable candidates, no probabilistic statement can
be attached to the findings. Alternatively, we can assess
the significance of the findings under the multiple testing
framework. Instead of using the stringent Bonferroni pro-
cedure, we applied the Benjamini and Hochberg's linear
step-up procedure to control false discovery rate (FDR)
[38]. As this procedure selected genes based on the
ordered p-values, the significant genes were chosen con-
secutively down the top gene lists. By Controlling the FDR
at level 0.05, the parametric F-test found 13 significant
genes, 8 of which were found by either the permutation F-
test or the nonparametric rank test. Given that there are
only two replicates in the data set, it is not surprising that
permutation-based methods identified a smaller number
of significant genes, due to the discreteness of the permu-
tation distribution discussed above.

The interaction effect can arise when the effect of changing
mouse strain is disproportional over different brain
regions. The ART, FT and PFT were applied to test for the
interaction effects between the mouse strains and the tis-
sue regions. Comparison of the p-values from the ART
versus the respective p-values from the FT and the PFT
demonstrate a good deal of agreement among the three
methods. Since the permutation was carried out on the
basis of 24 aligned observations, the number of distinct
permutations is so large that the discreteness problem is
alleviated. Among the top 100 genes selected by the ART,
80 and 80 genes appeared in the top 100 rankings by the
FT and the PFT, respectively. To visualize the interaction
effects, for each gene the two profile curves for the two
mouse strains were plotted representing the average
expression levels over the six brain regions. Figure 4 pro-
vides examples of the profile curves of genes which are
identified as having interaction effect by all the three
methods versus genes which are found to have no interac-
tion effects. For genes with no interaction effect, the two
curves have parallel trends and differ by a vertical shift

The common list of genes identified by all the three methodsFigure 3
The common list of genes identified by all the three 
methods.The figure provides the common list of 57 genes 
identified by all the three methods in their top 100 rankings 
as differentially expressed in two mouse strains of the data of 
Sandberg et al. (2000).
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corresponding to the strain effect. In contrast, for genes
with interaction effect, the two curves exhibit rather differ-
ent patterns and even intersect with each other. For
instance, the level of probe AA209596 was higher by two-
fold in the cerebellum of strain 129SVEv compared with
the C57BL/6 cerebellum. By contrast, in the entorhinal-
cortex region the level of probe AA209596 was lower by a
factor of 1.2-fold in 129SVEv. Thus the differential expres-
sion between the two mouse strains reverses direction in
two different brain regions. Probe AA209596 corresponds

to gene TIMM13 which is translocase of inner mitochon-
drial membrane and has prominent expression in the
large neurons in the brain. The TIM family plays impor-
tant role in neurological behaviors as mutation of TIM
gene is linked to neurobehavioral disorders such as deaf-
ness. Our finding suggests that the strain effects and brain
region effects interact to regulate the expression of
TIMM13. This analysis exemplifies how certain interact-
ing mechanism behind gene expression can be unveiled
via the interaction test on multifactorial microarray data.

Discussion
Because there is a loss of information whenever the origi-
nal data is collapsed to ranked data, the abandonment of
parametric methods may not be cost-effective in all set-
tings. In this article we have thoroughly investigated the
positives and negatives of the proposed nonparametric
rank tests versus the parametric ANOVA tests: (1) Due to
the information loss, the rank tests are marginally less
powerful than the ANOVA tests for normal, uniform or
other light-tailed distributions. On the other hand, our
simulation illustrated that the rank tests are substantially
more powerful than the ANOVA tests if the data follow
heavy-tailed, skewed or asymmetric distributions. (2) Our
investigation also demonstrated that reasonable number
of replicates (N ≥ 5 for 2 × 2 design) are required to lessen
the discreteness of permutation distribution encountered
by the rank tests to evaluate p-values. In contrast, when the
normality assumption is validated, the p-value of the par-
ametric ANOVA statistic can be evaluated from the exact F
distribution. (3) In the presence of severe outliers, the
robust rank tests is more favorable than the parameter
ANOVA tests. (4) When it is difficult to characterize the
distribution of the data, the proposed distribution-free
rank tests are useful to conduct an appropriate and pow-
erful analysis.

As the comparative properties of rank tests relative to
ANOVA tests are distribution dependent, distribution
diagnostics can help the practitioners to determine which
test will yield better power for a specific data set. Graphic
inspections such as box-plot and normal probability plot
offer a convenient way to visualize the shape of the under-
lying distribution. To quantify the magnitude of the devi-
ation from normality, the Shapiro-Wilk test can be
performed [39]. Let x[1],...,x[N] be the ordered values of N
independent and identically distributed observations. Let
z[1],...,z[N] denote the vector of the associated quantiles of
the standard normal distribution. The Shapiro-Wilk statis-
tic is defined as the squared correlation between the
ordered data values (sample quantiles) and the normal
quantiles:

Comparison of genes with and without interaction effectsFigure 4
Comparison of genes with and without interaction 
effects.For each specific gene, two expression profiles are 
plotted for each of the two mouse strains across six brain 
regions-amygdala, cerebellum, cortex, entorhinalcortex, hip-
pocampus and midbrain, which are denoted by 1 to 6 on x-
axis. Figure 4a provides the expression profiles of four genes 
without interaction effects. Figure 4b provides the expres-
sion profiles of fours genes with interaction effects.
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For data that are really generated from normal distribu-
tion, the W statistic would be close to one. A smaller value
of W indicates more deviation from normality. To further
discern the deviation due to heavy-tail from the deviation
due to light-tail, another statistic W* similar to the above
Shapiro-Wilk statistic can be formed. The W* is defined as
the correlation between the sample quantiles and the
quantiles from a uniform distribution. As a result, the rel-
ative sizes of W and W* indicate the tail property for a
given distribution. For instance, data generated from a
heavy-tailed distribution would yield W > W*. This is
because the correlation between a heavy-tailed distribu-
tion with the medium-tailed normal distribution should
be stronger than that with the light-tailed uniform
distribution. A reasonable threshold value τ for the statis-
tic W will be determined by the comparative property of
the nonparametric test relative to the two parametric F
tests. A simulation-based approach can be invoked to
numerically calculate this cutoff value. We illustrate such
a procedure in a design model with R = 2, C = 2 and N =
5. The noise εijn were simulated from a normal distribu-

tion. Let ε[1],..., ε[20] be the ordered noise. We gradually
introduced heavy-tailedness into the data set by pulling
the left and right end points of the ordered list of noise
further away from the center. Each time a new data set was

generated with  = ε[i], for i = 4,..., 17, and  = ε[i] * d,

for i = 1, 2, 3, 18,19, 20, and d was chosen from the vary-
ing range of 1.1, 1.3,..., 3. The corresponding W and the p-
values of the FT, PFT and MRT tests were recorded for the
data set. The result was summarized based on 1000 repli-
cations. In Figure 5, the empirical power curves of the
three competing methods were plotted against the varying
level of W. Our simulation demonstrates that as heavy-
tailedness is introduced into the data set, W level
decreases correspondingly. When W value is above 0.92,
the two parametric methods outperform the nonparamet-
ric method. When W value is below 0.92, the nonpara-
metric method is superior to the two parametric
competitors. Thus for the specific design setting that we
simulated, we choose a threshold value of τ = 0.92. If W
<τ and W > W*, we would recommend the use of the non-
parametric method. Among many sources of the normal-
ity violation discussed above, if τ = 0.92 was used as the
cutoff, we found about 10% of genes in the data set of
Sandberg et al. [35] whose expression measurements are
from heavy-tailed distributions.

With regard to future extensions of the proposed meth-
ods, the tests discussed above can be applied to a high-
way layout by collapsing these covariates into one. For
example, a covariate with J levels and another covariate
with K levels can be combined as a single factor of JK lev-
els, so that the treatment effects can still be tested using
the above two-way layout. When the data contains contin-
uous covariates in certain applications, one can simply
apply the proposed rank test method on the basis of resid-
uals, the differences between the observations and the
least squares fitted values calculated by using all the con-
tinuous covariates. Furthermore, it is possible to extend
our methods to accommodate the dependence or hetero-
scedasticity which might occur in the microarray data sets.
If the variances vary across different covariate groups, j =
1,..., J, the MRT statistic can still be employed to test for
treatment effects using the standardized overall rank Zijn
[25]. To deal with two-way models with repeated meas-
ures on one factor or on both factors, the rank statistic can
be extended to a quadratic form incorporating an esti-
mated covariance matrix reflecting the dependence struc-
ture in the data [40].

In this article, we have focused on the interaction effects
between multiple attributing factors to the gene expres-
sion. Currently there has been an increasing interest in
studying interactions between genes as opposed to clinical
factors. To address this problem, we could select a number

Empirical power curves of three competing methods with respect to Shapiro-Wilk statisticFigure 5
Empirical power curves of three competing methods 
with respect to Shapiro-Wilk statistic. The empirical 
power curves of the three competing methods – MRT, FT 
and PFT, are plotted against the varying level of Shapiro-Wilk 
statistic. The Shapiro-Wilk statistic is employed to assess the 
magnitude of the heavy-tailedness in the distribution.
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of genes and treat their expressions measurements as
explanatory variables. The biological phenotype of inter-
est can be chosen as the response variable. Then a linear
model can be fitted linking the gene expressions and bio-
logical phenotype. The aforementioned interaction tests
can be applied to this setting to investigate the possible
interactions among the genes.

Conclusion
We have presented a set of nonparametric tests to detect
treatment effects, clinical covariate effects, and interaction
effects for multifactorial microarray data. These methods
can be extended to accommodate high-way layouts, con-
tinuous covariates, dependent observations and
heteroscedasticity which might occur in the microarray
data sets. The proposed nonparametric procedures will
prove to be of wide use in microarray data analysis as they
can accommodate various noise distributions across
genome.

Methods
Rank test for treatment effects
The first hypothesis H01 is formulated to test for treatment
effects in two-way layout. Correspondingly, we have
proposed a modified rank transform (MRT) test. This test
standardizes the rank scores before plugging them into
the analysis of variance formula. For simplicity in
notation, we suppress the index k, as all the observations
in the model are from a specific gene k. Let Rijn denote the
rank of Xijn among all of the observations and define

. Let

 denote the sample vari-

ance of ranks within the jth column. Define the
standardized rank score Zijn = Rijn/sj. Denote the marginal
and overall averages of the standardized rank scores by

and . The proposed modified rank

transform statistic takes the following form:

It has been shown that the standardization procedure is
essential for the validity of the MRT method as the nonlin-
ear rank transformation introduces the heteroscedasticity
into the ranked data [25]. To assess the significance of the
rank statistic, the permutation method will be invoked to
provide p-values of the observed statistic. In implementa-
tion, we randomly relabel I treatment groups within each
of J covariate levels. Namely, the set of observations

X1j1,..., X1jN,..., XIj1,..., XIjN are shuffled within column j for
1 ≤ j ≤ J. For illustration purpose, consider a microarray
data set with the covariate consisting of six different tissue
regions and the treatment consisting of two distinct
mouse strains. The six covariate levels correspond to the
six tissue regions. To generate a permuted data set, for the
2N measurements obtained from the same tissue region,
we randomly assign N of them to the first mouse strain
and assign the remaining observations to the second
mouse strain. Repeat this procedure until we have per-
muted for all the tissue regions to generate a new per-
muted data set. Then we calculate the proportion of the
resulting statistic (3) being equal to or larger than the
observed statistic over 10,000 permutations to obtain the
permutation p-value.

Rank test for interaction effects
The second hypothesis H02 is formulated to test for inter-
action effects in two-way layout. To address this testing
problem, the ART test is proposed to perform the analysis

of variance test on the ranked residuals,  of the

aligned observations .

Here  and  are the Hodges-Lehmann estimates of the

two main effects given by

Again, with low replicates, we propose to use the permu-
tation method to compute p-values under the null H20. In
implementation, we randomly relabel both indices i and
j within all the aligned observations and obtain the empir-
ical p-value over 10,000 permutations.

Rank test for main effects
The third hypothesis H03 is formulated to test for main
effects in the absence of interaction effects in a two-way
layout. We propose to employ the rank transform statistic
suggested in [21] which is formulated as follows:

The resulting RT statistic asymptotically follows a χ2 distri-
bution with I – 1 degrees of freedom. Likewise, we can test
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if there is a difference of gene expression among the clini-
cal covariate levels for gene k, using a test statistic similar
to (4), with only indexes I and J being swapped.

Authors' contributions
XG and PS developed the methods and wrote the
manuscript.

Acknowledgements
This work is supported by Natural Sciences and Engineering Research 
Council of Canada grants. We thank Hong Xu and Rui Liu for their assist-
ance to the implementation of the algorithms. We are grateful to the Editor 
and two referees for their helpful comments that improved the manuscript.

References
1. Hunter L, Taylor RC, Leach SM, Simon R: GEST: a gene expres-

sion search tool based on a novel Bayesian similarity metric.
Bioinformatics 2001, 17(Suppl 1):S115-S122.

2. Zhao Y, Pan W: Modified nonparametric approaches to
detecting differentially expressed genes in replicated micro-
array experiments.  Bioinformatics 2003, 19:1046-1054.

3. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov
Coller HJP, Loh ML, Downing JR, Caligiuri MA: Molecular classifi-
cation of cancer: class discovery and class prediction by gene
expression monitoring.  Science 1999, 286:531-537.

4. Carey, 2004 HowTo Use the Bioconductor edd package
[http://www.bioconductor.org/]

5. Newton MA, Kendziorski CM, Richmond CS, Blattne rFR, Tsui KW:
On differential variability of expression ratios: improving sta-
tistical inference about gene expression changes from
microarray data.  Journal of computational biology 2001, 8:37-52.

6. Townsend JP, Hartl DL: Bayesian analysis of gene expression
levels: statistical quantification of relative mRNA level
across multiple strains or treatments.  Genome Biology 2002,
3:1-71.

7. Townsend JP: Multifactorial experimental design and the tran-
sitivity of ratios with spotted DNA microarrays.  BMC
Genomics 2003, 4:41.

8. Townsend JP: Resolution of large and small differences in gene
expression using models for the Bayesian analysis of gene
expression levels and spotted DNA microarrys.  BMC
Bioinformatics 2004, 5:54.

9. Tseng GC, Oh MK, Rohlin L, Liao JC, Wong WH: Issues in cDNA
microarray analysis: quality filtering, channel normalization,
models of variations and assessment of gene effects.  Nucleic
Acids Research 2001, 29:2549-2557.

10. Kendziorski CM, Newton MA, Lan L, Gould MN: On parametric
empirical Bayes methods for comparing multiple groups
using replicated gene expression profiles.  Statistics in Medicine
2003, 22:3899-3914.

11. Li C, Wong WH: Model-based analysis of oligonucleotide
arrays: Expression index computation and outlier detection.
Proc Natl Acad Sci USA 2001, 98:31-36.

12. Dudoit S, Yang YH, Speed TP, Gallow MJ: Statistical methods for
identifying differentially expressed genes in replicated cDNA
microarray experiments.  Statistica Sinica 2002, 12:111-139.

13. Park PJ, Pagano M, Bonetti M: A nonparametric scoring algo-
rithm for identifying informative genes from microarray
data.  Pac Symp Biocomput 2001:52-63.

14. Wu TD: Analysis gene expression data from DNA microar-
rays to identify candidate genes.  Journal of Pathology 2001,
195:53-65.

15. Troyanskaya OG, Barber ME, Brown PO, Botstein D, Altman RB:
Nonparametric methods for identifying differentially
expressed genes in microarray data.  Bioinformatics 2002,
18:1454-1461.

16. Neuhäuser M, Senske R: The Baumgartner-Weiß-Schindler test
for the detection of differentially expressed genes in repli-
cated microarray experiments.  Bioinformatics 2004,
20:3553-3564.

17. Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL: Sex-depend-
ent gene expression and evolution of the Drosophila
transcription.  Science 2003, 300:1742-1745.

18. Kerr MK, Martin M, Churchill GA: Analysis of variance for gene
expression microarray data.  J Comput Biol 2000, 7:819-837.

19. Pavlidis P, Noble WS: Analysis of strain and regional variation
of gene expression in mouse brain.  Genome Biology 2001,
2:0042.1-0042.15.

20. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H,
Bushel P, Afshari C, Paules RS: Assessing Gene Significance from
cDNA Microarray Expression Data via Mixed Models.  Journal
of Computational Biology 2001, 8:625-637.

21. Conover WJ, Iman RL: On some alternative procedures using
ranks for the analysis of experimental designs.  Communications
in Statistics 1976, A5:1349-1368.

22. Brunner E, Neumann N: Rank tests for the 2 × 2 split plot
design.  Metrika 1984, 31:233-243.

23. Brunner E, Neumann N: Two-sample rank tests in general
models.  Biometrical Journal 1986, 28:395-402.

24. Brunner E, Neumann N: Rank tests in 2 × 2 designs.  Statistica
Neerlandica 1986, 40:251-271.

25. Akritas MG: The rank transform method in some two-factor
designs.  Journal of the American Statistical Association 1990, 85:73-78.

26. Akritas MG: Limitations of the rank transform procedure: A
study of repeated-measure designs, Part I.  Journal of the Amer-
ican Statistical Association 1991, 86:457-460.

27. Akritas MG: Limitations of the rank transform procedure: A
study of repeated-measure designs, Part II.  Statistics and Prob-
ability Letters 1993, 17:149-156.

28. Wilcox RR: Applying Contemporary Statistical Techniques Academic
press/Elsevier; 2003. 

29. Hájek J, Sidák Z: Theory of rank tests New York: Academic Press; 1967. 
30. Mansouri H, Chang GH: A comparative study of some rank

tests for interaction.  Statistica Sinica 1995, 19:85-96.
31. Mansouri H: Aligned rank transform tests in linear models.

Journal of Statistical Planning and Inference 1999, 79:141-155.
32. Auxiliary Simulation Results   [http://www.math.yorku.ca/~xin

gao/biosupport.html]
33. Reiner A, Yekutieli D, Benjamini Y: Identifying differentially

expressed genes using false discovery rate controlling
procedures.  Bioinformatics 2003, 19:368-375.

34. Storey JD, Tibshirani R: Statistical significance for genomewide
studies.  Proc Natl Acad Sci USA 2003, 100:9440-9445.

35. Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka
L, Mayford M, Lockhart DJ, Barlow C: Regional and strain-specific
gene expression mapping in the adult mouse brain.  Proc Natl
Acad Sci USA 2000, 97:11038-11043.

36. Pavlidis P: Using ANOVA for gene selection from microarray
studies of the nervous system.  Methods 2003, 31:282-289.

37. Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, Valmeekam V, Sun S,
Kulp D, Siani-Rose MA: NetAffx: Affymetrix probesets and
annotations.  Nucleic Acids Res 2003, 31:82-86.

38. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing.  Journal of
the Royal Statistical Society, Series B 1995, 57:289-300.

39. Shapiro SS, Wilk MB: An analysis of variance test for normality
(complete samples.  Biometrika 1965, 52:591-611.

40. Thompson GL: A unified approach to rank tests for multivari-
ate and repeated measures designs.  Journal of the American Sta-
tistical Association 1991, 86:410-419.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12801864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12801864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12801864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.bioconductor.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11339905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11339905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11339905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14525623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14525623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11568891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11568891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12805547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12805547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12805547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11382364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11382364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747616
http://www.math.yorku.ca/~xingao/biosupport.html
http://www.math.yorku.ca/~xingao/biosupport.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12883005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12883005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11005875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11005875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519953

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Principle of the method
	Single gene analysis
	Table 2
	Table 3
	Table 4

	Global array analysis
	Biological data analysis

	Discussion
	Conclusion
	Methods
	Rank test for treatment effects
	Rank test for interaction effects
	Rank test for main effects

	Authors' contributions
	Acknowledgements
	References

