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ABSTRACT

Motivation: If there is insufficient RNA from the tissues under

investigation from one organism, then it is common practice to pool

RNA. An important question is to determine whether pooling

introduces biases, which can lead to inaccurate results. In this

article, we describe two biases related to pooling, from a theoretical

as well as a practical point of view.

Results: We model and quantify the respective parts of the pooling

bias due to the log transform as well as the bias due to biological

averaging of the samples. We also evaluate the impact of the bias

on the statistical differential analysis of Affymetrix data.

Contact: maryhuar@inapg.fr

1 INTRODUCTION

In microarray experiments, pooling refers to the study design in

which material collected from several individuals is combined

in a pooled sample before hybridization. Labelling and hybri-

dization are then performed on the composite sample. There

are several reasons for pooling. When extraction from a single

individual does not provide enough material, pooling is an

alternative to RNA amplification (Gold et al., 2004). Pooling

is sometimes used to assemble a stable reference condition,

to reduce the number of arrays for cost-saving purposes

(Churchill, 2002), or to reduce the subject-to-subject variability

and thus increase the power of statistical tests (Churchill, 2002;

Churchill and Oliver, 2001; Han et al., 2004; Simon and

Dobbin, 2003).
Pooling design has recently received thoughtful attention

in both statistical and biological publications about gene

expression experiments. Authors mainly focus on two

important questions:

� how to define equivalent designs i.e. what is the required

number of subjects and arrays to achieve a given

power in the statistical analysis (Shih et al., 2004; Wit

and McClure, 2004)?

� is the signal derived from a pool design equivalent to

the average of expression signals from an individual-based

design? This hypothesis, known as biological averaging

assumption (BAA), has been studied on real data (Han

et al., 2004; Kendziorski et al., 2003, 2005).

In this article, we focus on the study of the validity of BAA.

There is no general agreement in the literature. For example, in

Kendziorski et al. (2005), the authors conclude that ‘biological

averaging occurs for most but not all genes’. However in Shih

et al. (2004), the authors find that ‘this assumption may not

hold especially when the signals are strong...the pooling bias

appears to be severer for the Affymetrix arrays’. However, no

quantitative study of a possible pooling bias has yet been made.

There are two reasons why BAA may not hold (Kendziorski

et al., 2005):

� there may be an imperfect averaging of the individual

RNA: Xp is different from (1/ns)
P

i¼1;ns
Xi, where ns is the

number of samples, Xi is the number of labelled and

hybridized RNA copies of a given gene from sample i for

i = 1, ns and Xp is the corresponding quantity for the

pooled sample. We call this bias the pool bias.

� differences between the pool signal and the average of the

individual signals could be due to the log transformation

that occurs in the normalization process [for instance in

the RMA procedure, Irizarry et al. (2003)]. Indeed, the

log transformation is applied to individual samples in

the absence of pooling, and to the pool sample otherwise,

and, for any positive sequence X1,. . .Xn,
1
n

P
log (Xi)

� log(1n
P

Xi). If there is no pool bias, Xp ’ ð1=nÞ
P

Xi

and, as a result, the same equality cannot be true on the log

scale, which is used for further statistical analysis. We call

this bias the log bias.

The overall difference, on the log scale, between the pool

and the mean of the corresponding individuals is called the

pooling bias.

The goal of this study is to provide a better insight on the

pooling bias, to quantify the respective parts of the log bias and

the pool bias and to evaluate their impact on the statistical

differential analysis of Affymetrix data. In Section 2, we define

a general model for the expression measurement at the probe

level. This framework is used in Section 3 to derive some tools

to detect the two biases. We exemplify the two biases on both

simulated and real data, using the Kendziorski experiment

(Kendziorski et al., 2005). Finally, Section 4 is devoted to the

impact of the pooling bias on the differential analysis.

2 GENERAL FRAMEWORK

We consider here a two stage model. In the following

the superscript B (respectively T ) denotes the biological

(respectively technical) variability.*To whom correspondence should be addressed.
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2.1 Model on the expression of genes

The number of RNA copies of gene k from sample i is

modelled by:

Yik ¼ �k þ "Bik; ð1Þ

where �k is the population mean number of RNA copies of

gene k, and "Bik represents an independent random term with

mean 0 and SD �B
k , corresponding to the subject-to-subject

variability. �B
k is assumed to be finite, but may take

different values for different genes. The number of labelled

RNA copies of gene k of sample i, hybridized on the array i,

(the numbering of the sample and of the array are identical) is

modelled by:

Xik ¼ �iYik ¼ �ið�k þ "BikÞ; ð2Þ

where �i is called the efficiency factor, and depends on

the number of cells included in the RNA preparation

and the quality of the hybridization and labelling processes.

In the following, this efficiency factor is assumed to depend

only on the sample RNA preparation and the array i, and does

not depend on the gene and the probe. For a pool of ns samples,

the number of RNA copies of gene k contained in the pooled

sample is

Xpk ¼ �pð�
ðpÞ
k þ "BpkÞ: ð3Þ

If BAA is true, then �ðpÞk = �k for all k.

2.2 Model on the measure of fluorescence at the

probe level

For probe j associated with gene k, the expression measure-

ment, on the log scale, is for the perfect match

logðPMijkÞ ¼ logðXikÞ þ ajk þ "Tijk ð4Þ

¼ log �i þ logðYikÞ þ ajk þ "Tijk; ð5Þ

where ajk is the specific effect of probe j for gene k, and "Tijk is an
independent random term with mean 0 and SD �T, correspond-
ing to the technical variability. The distribution of "Tijk is

assumed to be the same for each probe, each gene and each

slide, and the two sources of variability "Tijk and "Bik are supposed
independent.
At this step the model is quite general since few assumptions

are made on "Bik and "Tijk. Notice that if we note eik = log(Yik),

the previous model can be rewritten

logðPMijkÞ ¼ log�i þ eik þ ajk þ "Tijk;

which is the model used in RMA normalization (Irizarry et al.,

2003). For a pooled sample we have:

logðPMpjkÞ ¼ log �p þ logðYpkÞ þ ajk þ "Tpjk: ð6Þ

3 BIAS QUANTIFICATION

3.1 Pool bias

We consider an experiment where RNA samples are extracted

from ns subjects. The RNA are used to make both individual

samples and a pooled sample of the ns subjects. Each sample is

hybridized on a slide. For a given probe j and gene k, we obtain

the measurements PMijk and PMpjk, respectively for each

individual i, i = 1,. . ., ns and for the corresponding pool p.

The mean expression for a given probe across the samples is:

PMjk ¼
1

ns

Xns
i¼1

PMijk

¼
1

ns

Xns
i¼1

�ið�k þ "BikÞe
ajk e"

T
ijk :

Since "Bik and "Tijk are independent, the mean of PM with respect

to the random variables "Tijk and "Bik is:

EB;T PMjk

� �
¼

1

ns

Xns
i¼1

½�iEBð�k þ "BikÞ�e
ajkETðe

"T
ijk Þ

¼ �ke
ajk

1

ns

Xns
i¼1

�iETðe
"T
ijk Þ

¼ �ke
ajk��ETðe

"T
111 Þ

where �� ¼
1
ns

P
i �i, since "Tijk; i ¼ 1; :::; ns are identically

distributed. For a pooled sample,

PMpk ¼ �pð�
ðpÞ
k þ

1

ns

Xns
i¼1

"BpkÞe
ajk e"

T
pjk :

The expectation of PMpk is

EB;T PMpjk

� �
¼ �pEBð�

ðpÞ
k þ

1

ns

Xns
i¼1

"BpkÞe
ajkETðe

"T
pjk Þ

¼ �p�
ðpÞ
k eajk � ETðe

"T
111 Þ

From these two computations we conclude that

r
ðpÞ
jk ¼

EB;T PMjk

� �
EB;T PMpjk

� � ¼ �ðpÞk �p

�k��

ð7Þ

If �ðpÞk ¼ �k and if �� ¼ �p, i.e. the efficiency factors are similar

for the pool and the individual slides, then

EB;T½PMjk�=EB;T½PMpjk� ¼ 1:
Simulated data are an effective way to illustrate

the theoretical computations above. Simulations are performed

according to Models(2) and (5) with �p = �i = 1. For a given

individual i and a given gene k, we have chosen to set

�k ¼ 1000þ k; �b
k ¼

ffiffiffiffiffiffiffiffi
k�B

p
. Figure 1 a plots the pooled PM

versus the mean of individual PMs. The values of the

parameters are ns ¼ 5; �2
T ¼ 0:1 and �2

B ¼ 0:1 with normal

distribution for the errors. The strong linearity along the line

y = x between PMp and PM illustrates the theoretical

computations above. We observe similar results for different

values of the parameters, provided that �T is not too high

(figures not shown).
We now turn to real data, using the Kendziorski

dataset (Kendziorski et al., 2005). This experiment aims at

comparing gene expression in mammary glands from female

rats fed with two different diets (normal, denoted A and

supplemented with the retinoic X receptor ligand LG100268,

denoted B). RNA samples were obtained for 12 rats in each

condition, and hybridized on Affymetrix RAE230A chips to

measure gene expression for 15 923 genes. Individual RNA
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were also used to construct 6 pools of pairs, 4 pools of triples
and 1 pool of 12 subjects, in each condition. Further
details about this experiment can be found in Kendziorski

et al. (2005).
If we compute the ratio between two individual slides 1

and 2, the same reasoning as above gives:

r1;2jk ¼
EB;T PM1jk

� �
EB;T PM2jk

� � ¼ �k�1

�k�2
¼

�1

�2

This ratio only depends on the efficiency factor of the two
slides, and should be roughly equal to 1. Figure 1b shows that
the PM values of individual A2 versus A3 are distributed along

the line y= x. The whole set of 11 � 12 = 132 individual ratios
varies between0.75 and 1.38, the mean is 1.02 and the SE 0.13.
This confirms that expression (7) gives a good picture of

the biological process.
We observe a different picture for pool data, since the

ratio EB;T½PMjk�=EB;T½PMpjk� is less than one. In Figure 1c,
we consider the individual and pool arrays with ns = 12.

There appears to be a strong linear relationship, but the slope

of the line is 0.75 rather than 1. This low ratio is not due to

array effects, for similar computations on the 21 remaining

pools of pairs, triples and 12 individuals give ratio values less

than one. Except for one pool of pairs, the ratios are lower than

1 and lie between 0.5 and 0.96. The mean ratios are 0.77 for

pools of 2, 0.715 for pools of 3 and 0.725 for pools of 12. These

results are in keeping with the lower level of the mean

expression for the arrays corresponding to pooled samples in

comparison with arrays for individual samples (Fig. 2a).
One may wonder whether the ratio is probe (or gene) specific

or not. Figure 2b and c represents the plot between ratios r
ð1Þ
jk

and rð2Þjk for two different pool samples (pool of 3). Hence ratios

vary greatly from pool to pool for a given probe. The Spearman

correlations between these ratios from pool to pool are equal to

0.29 for the pools of 12 and for pools of 3 the Spearman

correlations are between �0.34 and 0.43 with a mean equal to

0.14. For pools of 2, the mean correlation is equal to 0.08

and lie between �0.58 and 0.60. This argues for a non-specific

ratio for a majority of probes.

Fig. 1. Plot of the pool PM versus the mean of individual PM. Data are simulated according to Models (2) and (5) with gaussian errors. (b) PM of

individual slide A2 versus PM of individual slide A3 (10 000 points presented in place of the total 175 477). (c) Plot of the pool of 12 PM versus the

mean of individual PM (10 000 points presented).

Fig. 2. (a) Boxplots for the mean PM of the arrays for pooled samples and individual samples (conditions A and B, before normalization). (b) plot of

r
ð1Þ
jk ¼ PM

ð1Þ
pjk=PM

ð1Þ
�jk versus r

ð2Þ
jk ¼ PM

ð2Þ
pjk=PM

ð2Þ
�jk ; where the upper index refers to the specific pool of 3 considered (10 000 points presented in place of

the total 175 477). (c) Plot of r
ð3Þ
jk ¼ PM

ð3Þ
pjk=PM

ð3Þ
�jk versus r

ð4Þ
jk ¼ PM

ð4Þ
pjk=

ð4Þ
�jk where the upper index refers to the specific pool of 3 considered (10 000

points presented).
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We computed 2 scores per probe, Shigh and Slow, that count

how often a probe ratio rðpÞjk belongs to the 5% highest

(respectively lowest) ratios for a given pool p. Slow and Shigh

vary between 0 and 22, since we considered the 22 pools all

together. To get the same information at the gene level, we

computed two scores Sg
high and Sg

low per gene, by summing the

scores Shigh and Slow of their associated probes. Each gene is

represented by 11 probes (except for 36 that are represented by

20), meaning that Sg
high and Sg

low vary from 0 to 242. Under the

assumption that no gene is specifically affected by pooling, each

score has a binomial distribution B(n0,p0) with n0 = 22 � 11

and p0 = 0.05. A gene will have a significant specific pool bias if

Shigh or Slow is greater than the 0.05/15 923 quantile of the

binomial distribution, which is 30. In the Kendziorski data, we

found more than 700 genes with either a Sg
low or a Sg

low value

higher than 30, representing 4.6% of the total number of genes.
There are two reasons why the observed ratio rðpÞjk is not 1.

Since

rðpÞjk ¼
�p
��

�
�ðpÞk

�k
;

either �p=�� 6¼ 1 or �ðpÞk =�k 6¼ 1. Of course it could be a

combination of both reasons. From Figure 2 and the

Spearman test we conclude that for a majority of probes the

ratio r
ðpÞ
jk is similar, meaning that pooling induces a overall

lowering effect that is not gene specific. This overall lowering

corresponds to �p=�� 6¼ 1: there is a difference in efficiency

between individual and pool slides. However, we showed that

4.6% of the genes were affected by an additional specific effect

that comes from �ðpÞk =�k 6¼ 1. While there is good hope that

the normalization process eliminates the overall lowering effect

of pooling (since most normalizations correct for a slide effect),

the gene specific effect will not be removed and may affect

the differential analysis.

3.2 Log bias

In this section, we study the bias that exists between the

log-transformed pool signal and the mean of the log

transformed individual signals. We define the log bias for a

given probe j as:

Blog ¼ logðPMpjÞ �
1

ns

Xns
i¼1

logðPMijÞ

According to (5), and dropping the gene index k for the sake of

simplicity, we have for a given gene:

Blog ¼ logðXpÞ þ aj þ "Tpj

� �
�

1

ns

Xns
i¼1

logðXiÞ þ aj þ "Tij

� �

¼ logðXpÞ þ "Tpj �
1

ns

Xns
i¼1

logðXiÞ �
1

ns

Xns
i¼1

"Tij :

We suppose that the BAA hypothesis holds, and again for the

sake of simplicity that �� = �p. We obtain:

Blog ¼ log
1

ns

Xns
i¼1

Xi

 !
þ "Tpj �

1

ns

Xns
i¼1

logðXiÞ �
1

ns

Xns
i¼1

"Tij :

Assuming that the coefficient of variation of Xi is low,
i.e. �B

� � 1, and using logð1þ tÞ � t� t2=2 we get:

Blog ¼ log � 1þ
1

ns

Xns
i¼1

"Bi
�

 !" #
�

1

ns

Xns
i¼1

log � 1þ
"Bi
�

� �� 	

þ "Tpj �
1

ns

Xns
i¼1

"Tij

�

Pns
i¼1 "

B
i

�ns
�
1

2

Pns
i¼1 "

B
i

�ns

� �2
" #

�
1

ns

Xns
i¼1

"Bi
�
�
ð"Bi Þ

2

2�2

� 	

þ "Tpj �
1

ns

Xns
i¼1

"Tij

�
1

2ns

Xns
i¼1

ð"Bi Þ
2

�2
�
1

2

Pns
i¼1 "

B
i

�ns

� �2

þ"Tpj �
1

ns

Xns
i¼1

"Tij

�
1

2�2
1

ns

Xns
i¼1

ð"Bi Þ
2
�

1

ns

Xns
i¼1

"Bi

 !2
2
4

3
5þ "Tpj �

1

ns

Xns
i¼1

"Tij :

Therefore

EBTðBlogÞ �
ns � 1

2ns

�2
B

�2
; ð8Þ

where ns is the number of individuals combined in the pool

sample. Thus, the expression is higher for the pool sample than

for the mean of the corresponding individual samples on the log

scale, and the mean difference, for a given gene, is proportional

to the square of the coefficient of variation of �Bi ;cv <¼ �B=�.
Kendziorski found that for 25% of the genes with the largest

SD, more than 80% have larger values in the pools of two

(Fig. 4A in Kendziorski’s paper). This artefact is well explained

by the distortion of the log transformation that is described

in this section.
Finally pooling results first in a lowering (for the Kendziorski

experiment) of the raw microarray response that varies from

microarray to microarray and secondly in an increase in

the signal on the log scale after normalization, which depends

on the biological variability of each gene. However, the sum of

these two opposite effects is not equal to zero and varies on a

relatively large scale from gene to gene and sample to sample.
Therefore there is some theoretical and material evidence on

the Kendziorski dataset that pooling affects the absolute

measurement of gene expression.

4 DIFFERENTIAL ANALYSIS

An important point is to assess the consequences of pooling
on the differential expression (DE) inference. First, if the

arrays are made with pools composed of the same number of

samples, the efficiency factor �p is more or less the same for

all arrays. Moreover, array to array normalization corrects,

at least partially, the mean effect of the pooling on raw PM

values, so that the efficiency factor should not distort the DE

inference. However, the log bias artefact is not corrected by

normalization precisely because it is produced by normal-

ization. For example, if the mean and the variability of the

expression of a particular gene are increased in condition A in

reference with condition B, its DE will be higher in a pooled
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experiment than in an individual one. Therefore individual

experiments and experiments with pooling may lead to different

conclusions for this given gene. One may think of other

combinations of DE and variability that may lead to conflicting

results.

To assess the impact of the pooling bias on DE, we performed

a differential analysis on individual and pool arrays. For the

individual study, RMA normalization was performed on

the total batch of individual arrays, and genes were then

ranked according to their associated T statistic, giving a unique

reference list of genes. For the pool study, we performed

three different normalization procedures for each pool batch

(pool of 2, 3 and 12):

� Norm1 consists in a simple RMA normalization.

� Norm2 is a two-step normalization procedure. Data

are first corrected for the pool bias: ratios rðpÞjk

are estimated for each probe using the corresponding

individual samples, and according to expression (7). Then

classical RMA normalization is applied on the pool bias

corrected data.

� Norm3 is a two-step normalization procedure, where data

are first corrected for both the pool bias and the log-bias

according to expressions (7) and (8), and then normalized

with RMA.

For each of the three normalized datasets, we ranked the gene

according to their T statistic to obtain three DE lists.
To compare our results with those of Kendziorski, we plotted

the number of DE calls in common between the pool of 2

and reference for lists of fixed size (Fig. 3). We see that the

correction of the pool bias increases the agreement between the

reference and the pool of 12 lists. The additional correction of

the log bias improves the agreement but the gain is very slight.

Results obtained with pools of 3 and pools of 12 are similar
(not shown here).

5 DISCUSSION

In many articles, the BAA refers both to the fact that ‘RNA
abundance levels average out when pooled’, and that ‘average

on the scale or raw RNA abundance will not correspond to
the processed RNA measurement’ (Kendziorski et al., 2005).

Here, we proposed to break down the overall pooling bias into
two parts, the pool bias and the log bias, that are properly

defined by expressions(7) and (8). This distinction allowed us to
describe the pool bias as a combination of an overall effect
which depends on the efficiency factor of each slide, and a gene

specific effect which can be related to the RNA abundance with
and without pooling. We were also able to quantify each part

of the pooling bias. The main conclusions of this study are
the following:

� pooling seems to lower the efficiency of the labelling or
hybridization steps. This artefact, which has been found in
Kendziorski’s experiment, has to be confirmed by other

experimental results. Shih et al. (2004) suggested that
‘a possible reason for this artefact is that mixing of the

RNA may cause some alteration of individual RNA
contributions.’ Such a bias can be easily detected in

experiments by producing a few individual slides to
compare their average signal level to that of pool slides.

The impact of this bias on the differential analysis should
be negligible, since it is mainly corrected by the array to
array normalization step.

� some genes (up to 4.6% of the total number of genes in
the Kendziorski experiment) are specifically affected by
pooling. Specific gene biases are much more difficult to

quantify and correct and would require both pool and
individual slides for the same individuals, which cannot

routinely be done in practice. Such biases could lead to
different results between pool and individual slides analyses.

� the bias induced by the log transformation, included

in most normalization methods, is experimentally and
theoretically well assessed. While this bias is systematic,

we showed that its consequences are of limited importance
in the Kendziorski experiment. Yet it may potentially have
an influence in other experiments, particulary for genes

with high biological variability.

In Kendziorski et al. (2005), the authors observed that

‘for the majority of genes where there was a large [pooling bias],
the difference was similar across biological conditions’.

Considering the two parts of the bias, it is difficult to conclude
whether this may hold for further experiments. On one hand,
for the bias to be 0 the specific gene bias has to be similar in

both conditions. On the other hand, we showed that for a given
gene, the log bias depends on the coefficient of variation cv.

Compared with the log-ratio computed for individuals, the log-
ratio for pools is biased by

cv21 � cv22 ¼
�2
B1

�21
�
�2
B2

�22

Fig. 3. Plot of the proportion of common DE genes between the

individual analysis and the Norm1 normalized pool analysis (black

curve), the Norm2 normalized pool analysis (red curve) and the

Norm3 normalized corrected pool analysis (green curve), versus the size

of the DE list. The pool analyses are performed on the total batch

of pools of 2.
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For a non-DE gene, �1 = �2 and the bias is 0 if �2
B1 ¼ �2

B2. But

for a DE gene �1 > �2, and the bias is 0 only if �2
B1 increases in

proportion to �21.
While the theoretical formulas we derived here are universal,

the computations were all made on a unique set of microarrays.

Futureworkwill consist in applying thepresentedanalytical tools

to additional data to check to what extent the conclusions we

have drawn on the Kendziorsky experiment can be generalized.
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