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ABSTRACT

Motivation:Microarrays can simultaneously measure the expression

levels of many genes and are widely applied to study complex

biological problems at the genetic level. To contain costs, instead of

obtaining a microarray on each individual, mRNA from several

subjects can be first pooled and then measured with a single array.

mRNA pooling is also necessary when there is not enough mRNA

from each subject. Several studies have investigated the impact of

pooling mRNA on inferences about gene expression, but have

typically modeled the process of pooling as if it occurred in some

transformed scale. This assumption is unrealistic.

Results: We propose modeling the gene expression levels in a pool

as a weighted average of mRNA expression of all individuals in the

pool on the original measurement scale, where the weights

correspond to individual sample contributions to the pool. Based

on these improved statistical models, we develop the appropriate

F statistics to test for differentially expressed genes. We present

formulae to calculate the power of various statistical tests under

different strategies for pooling mRNA and compare resulting power

estimates to those that would be obtained by following the approach

proposed by Kendziorski et al. (2003). We find that the Kendziorski

estimate tends to exceed true power and that the estimate we

propose, while somewhat conservative, is less biased. We argue

that it is possible to design a study that includes mRNA pooling at

a significantly reduced cost but with little loss of information.

Contact: alicia@iastate.edu

1 INTRODUCTION

Microarray experiments are widely used to measure the

expression levels of tens of thousands of genes simultaneously

under different experimental conditions or during different time

periods. One of the major interests in microarray experiments is

to identify genes which are differentially expressed between

conditions or time periods, and enable a deeper knowledge

of complex biological problems at the genetic level. However,

the unit cost of microarrays continues to be high; even for

a moderate number of subjects, cost can be significant. One

option to control costs is to pool the mRNA of a group of

individuals and then run microarrays on the pools rather than

on each individual. Pooling mRNA may also be required when

there is not enough mRNA from each subject to hybridize

individual microarrays.
The effect and efficiency of pooling mRNA in microarray

experiments have been investigated by several researchers.

Kendziorski et al. (2003) showed that pooling is most

advantageous when biological variability (variability across

subjects) in expression level is larger than technical variability

(variability introduced in the experimental process). They also

derived a formula for the total number of arrays and

individuals required in an experiment involving mRNA pools

to obtain gene expression estimates and confidence intervals

comparable to those that would be obtained when analyzing

individual arrays. They concluded that by increasing the total

number of individuals in the experiment, it was possible to

maintain precision of estimates by pooling, while decreasing the

total number of arrays. Shih et al. (2004) also discussed the

impact of pooling mRNA on the power of statistical tests. They

derived an expression to carry out power calculations for a

given number of arrays and individuals. Further, they used

expression data obtained from mice to check the adequacy of

the assumption that mRNA expression levels in the pool are

close to the average expression levels of individuals in the pool.

They showed that the assumption does not hold, especially

when the signals are high.

Both Kendziorski et al. (2003) and Shih et al. (2004) derived

their results on the transformed scale, that is, after the data

were normalized and signal intensity was transformed. Thus,

both studies assumed that the mRNA expression in the pool is

the average expression of individual samples, and applied the

assumption on the transformed scale. This assumption is,

however, not realistic in a biological sense because in the

laboratory, the mRNA is extracted from samples and then

mixed to form an mRNA pool. Therefore, pooling occurs on

the original scale and an assumption that holds on the

transformed scale may not hold before transformation.
In this article, we address the issue of testing for differences

in gene expression across treatments. We assume that the

expression level in a pool is approximately equal to the average

expression of individuals in the pool on the original scale.

More precisely, we assume that the expression level in a pool

is a weighted average expression of individual samples on the

original scale, where weights correspond to the proportional

contribution of each individual to the pool. By including the

weights in the average, we account for the fact that in the*To whom correspondence should be addressed.
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process of combining individual mRNA samples, the mixing

proportions may not be identical and thus, that the pool may

contain more mRNA from some individuals than from others.
Under the assumptions above, we use a single gene as an

example and derive expressions to calculate power under

different treatment effect sizes, number of mRNA pools,

number of individuals per mRNA pool and number of repeated

measurements per pool. We wish to understand how much

power is lost by pooling mRNA. We also wish to find efficient

experimental designs for pooling mRNA samples, while

keeping costs down.

2 SYSTEMS AND METHODS

2.1 Notation and model

Microarray gene expression measurements tend to be right skewed and

thus not normally distributed. Therefore, data are usually transformed

and normalized before statistical analysis. The most common transfor-

mation is the log transformation (Geller et al., 2003). The transformed

data can then be modeled as a linear function of treatment effects and

one or more normally distributed random effects (Han et al., 2004;

Lu 2004; Shih et al., 2004). The sources of variation in a microarray

experiment are multiple and can be generally classified into two groups:

biological variation and technical variation (Chen et al., 2004;

Kendziorski et al., 2003). Biological variation is subject-to-subject

variation in gene expression and is due to subject-specific genetic or

environmental factors. Technical variation arises from the errors that

can potentially be introduced at each of multiple steps in a microarray

experiment. These include RNA sample preparation, microarray

construction, hybridization and washing procedures, and signal

detection methods. Here, we focus on the two major categories:

biological variation and technical variation.

The expression levels of tens of thousands of genes are measured

simultaneously in a microarray experiment. For simplicity of notation,

a single gene is considered in the following derivation and analysis.

The true gene expression level of a gene on the jth individual in the ith

treatment is denoted mij and can be modeled on the log scale as

logðmijÞ ¼ �i þ �ij, ð1Þ

i ¼ 1, 2, . . . ,T, j ¼ 1, 2, . . . ,N. Here, T is the number of treatments

(or conditions), N is the number of individuals per treatment, �i is the

mean gene expression level for the ith treatment and �ij is biological

error which is assumed to be independently, identically distributed as

Nð0, �2
bÞ. We use �2

b to denote the biological variance in gene expression.

Then, the observed gene expression level oij in log scale can be

modeled as

logðoijÞ ¼ �i þ �ij þ �ij ¼ logðmijÞ þ �ij, ð2Þ

where �ij is technical error which is also assumed to be independently,

identically distributed as Nð0, �2
t Þ. Biological and technical errors are

assumed to be independent.

Suppose now that the mRNA from n subjects from the same treat-

ment is combined to form a pool. We use mp
ij to denote true expression

for a gene in the ith treatment group and jth pool. We assume that the

true expression level of a gene in the mRNA pool is a weighted average

of the true expression levels of the gene in all individuals in the same

mRNA pool (denoted mij1, . . . ,mijn) so that

mp
ij ¼

Xn
k¼1

ðwijk �mijkÞ, ð3Þ

where

wijk ¼
zijk

zij1 þ zij2 þ � � � þ zijn
,

i ¼ 1, 2, . . . ,T, j ¼ 1, 2, . . . ,P, k ¼ 1, 2, . . . , n. Here, P is the number of

mRNA pools per treatment and n is the number of individuals per

mRNA pool. Therefore, P � n ¼ N, where N denotes the total number

of individuals per treatment group in the experiment. When n¼ 1, the

experiment involves no mRNA pooling (a microarray is made for

each individual). The random unobservable weight wijk represents the

relative contribution of individual k to pool j in treatment i, and the

expectation of each weight is 1
n. We write the weights as functions of

the zijk, which denote the technical deviations from the ideal pool

containing equal amounts of mRNA from each individual sample.

We assume that the zijk are independently, identically distributed as

Nð1, �2
z Þ, where �2

z denotes the pooling technical variance which is

assumed to be no larger than 0:22 so that the probability of negative

weights will be negligible. If we denote the observed mRNA level in a

pool by opijl, we can then model it on the log scale as:

logðopijlÞ ¼ logðmp
ijÞ þ �ijl, ð4Þ

where, �ijl is technical error as defined earlier and l ¼ 1, 2, . . .R. Here,

R is the number of replicated array measurements per pool and

R � P ¼ A, where A is the total number of arrays per treatment group.

P¼A if each mRNA pool is measured only once. Note that model (4)

for the transformed observed mRNA level in a pool is similar to

model (2) formulated for observed mRNA in an individual array on the

transformed scale.

2.2 Expectation and variance of logðm
p

ijÞ

The distribution of logðmp
ijÞ is analytically intractable, but

simulations and goodness-of-fit testing show that it can be

adequately approximated by a normal distribution (see additional

discussion of this point in Section 4). We will use �p
i and �p2

b to

denote the mean and variance of this normal distribution. We can

then write

logðmp
ijÞ � �p

i þ �ij ð5Þ

and

logðopijlÞ � �p
i þ �ij þ �ijl, ð6Þ

where, �ij is assumed to be independent and identically distributed

Nð0, �p2
b Þ.

We are interested in testing for differences in gene expression

across treatments of the form �i � �j. In this subsection, we

will derive expressions for �p
i and �p2

b and show that

�i � �j ¼ �p
i � �p

j , so that the tests of interest can be conducted

using data from pools.

To derive an expression for �p
i ¼ E ½logðmp

ijÞ�, we expand logðmp
ijÞ

using a Taylor series to obtain

logðmp
ijÞ ¼ logð�pi Þ þ

X1
k¼1

ð�1Þk�1
ðmp

ij � �pi Þ
k

kð�pi Þ
k

, ð7Þ

where �pi ¼ Eðmp
ijÞ. In the Appendix, we show that

�pi ¼ Eðmp
ijÞ ¼ e�iþ�2

b
=2 ð8Þ

and

�p
i
2
¼ Varðmp

ijÞ ¼
1

n
ðe2�iþ2�2

b � e2�iþ�2
b Þð1þ n2�2

wÞ, ð9Þ

where �2
w is the variance of each weight wijk. Thus, using (7), (8) and (9);

a second order approximation to �p
i is given by

�p
i ¼ E ½logðmp

ijÞ� � �i þ
�2
b

2
�

1

2n
ðe�

2
b � 1Þð1þ n2�2

wÞ: ð10Þ
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Also note that, from (9), the kth term of the summation in (7) may be

written as ð�1Þk�1
ðmp

ije
��i��2

b
=2 � 1Þk=k, where

mp
ije

��i��2
b
=2 ¼

Xn
k0¼1

wijk0mijk0e
��i��2

b
=2

by definition of mp
ij. It is easy to show that mijk0e

��i��2
b
=2 has a

log normal distribution that depends only on �2
b and is free of �i.

Thus, for any two treatments i and j,

�i � �j ¼ logð�pi Þ � logð�pj Þ ¼ �p
i � �p

j ð11Þ

using (7) and (8).

To obtain an approximation for �p2
b , we use the Delta method to

obtain

�p2
b ¼ Var½logðmp

ijÞ� � Varðmp
ijÞ=fEðm

p
ijÞg

2

¼
1

n
ðe�

2
b � 1Þð1þ n�2

wÞ, ð12Þ

where the last equality follows from (8) and (9). In the Appendix,

we show that �2
w � n�1

n3
�2
z . Combining with (12), we have

�p2
b ¼ Var½logðmp

ijÞ� �
1

n
ðe�

2
b � 1Þ 1þ

n� 1

n2
�2
z

� �
: ð13Þ

We now note that the random effect �ij in model (6) is an error term

attributable to biological variation in expression level and to the

additional variability that is introduced when pooling mRNA samples.

2.3 Power in a design that includes pooling mRNA

One interesting finding is that �p
i � �p

j ¼ �i � �j (see Expression 11).

Therefore, the hypothesis for testing �p
1 ¼ �p

2 ¼ � � � ¼ �p
T in the design

that includes pooling is equivalent to the hypothesis for testing

�1 ¼ �2 ¼ � � � ¼ �T in a design that involves individual microarrays.

The corresponding F-test statistic for the design with pooling is given by

F ¼
T � ðP� 1Þ

PT
i¼1 Pð �yi�� � �y���Þ

2

ðT� 1Þ
PT

i¼1

PP
j¼1ð �yij� � �yi��Þ

2
, ð14Þ

where yijl ¼ logðoijlÞ.

The null hypothesis of no treatment differences is rejected at

significance level � if the F statistic is larger than FT�1,T�ðP�1Þ,�,

where Fdf1, df2, � is the ð1� �Þ � 100th percentile of a central

F distribution with df1, df2 degrees of freedom.

If the type I error is controlled at level �, power of the test is given by

1� � ¼ PrðFT�1,T�ðP�1Þð	
2Þ4FT�1,T�ðP�1Þ,�Þ, ð15Þ

with non-centrality parameter 	2, where

	2 ¼
P
PT

i¼1ð�
p
i � �pÞ

2

�p
b
2
þ 1

R �
2
t

�
P
PT

i¼1ð�
p
i � �pÞ

2

1
n ðe

�2
b � 1Þ 1þ n�1

n2
�2
z

� �
þ

�2t
R

, ð16Þ

with P and R as defined earlier and �p equal to the mean of �p
i across

treatments.

For a more general test of hypothesis for a linear combination of the

means C�p ¼ d, where �p ¼ ð�p
1 ,�

p
2 , . . . ,�p

TÞ
t with C a known matrix

of constants with full rank r, power is calculated as

1� � ¼ pðFr,T�ðP�1Þð	
2Þ4Fr,T�ðP�1Þ,�Þ, ð17Þ

where the non-centrality parameter is given by

	2 ¼
P

�p
b
2
þ 1

R �
2
t

ðC�p � dÞtðCCtÞ
�1
ðC�p � dÞ: ð18Þ

As in (16), we can approximate this non-centrality parameter by

replacing �p2
b with its approximation in (13).

For notational simplicity, we have assumed balance in the number of

pools per treatment (P), the number of individuals per pool (n) and the

number of arrays per pool (R). The F statistic and power formulas

presented in subsection can be generalized in a straightforward manner

to account for differing numbers of pools per treatment. Differing

numbers of individuals per pool and/or differing numbers of arrays

per pool, however, create problems with the standard assumption of

homogeneity of variance. We have shown that the variance of �yij� is

non-trivial function of the number of individuals per pool (n), the

biological variance (�2
b), variance associated with varying contributions

of samples to each pool (�2
z ), additional technical variance (�

2
t ), and the

number of arrays per pool (R). If n and/or R are not constant for all

pools, the variance of �yij� will not be the same for all values of i and j,

and the tests and power calculations presented in this subsection will

not be valid. Furthermore, if n and/or R vary across pools, the resulting

heterogeneity of variance cannot be easily dealt with by weighting the

observations because optimal weights will depend on unknown variance

components �2
b, �

2
t , and �2

z . Thus, varying numbers of individuals per

pool and/or varying numbers of arrays per pool should be avoided.

3 DISCUSSION

3.1 Comparing estimates of power

The power approximations presented in the previous section

are based on an assumption of normality and Delta-method

approximations. To estimate the impact of these approxima-

tions, we simulated data and calculated power numerically
and using the analytical expressions derived in Section 2.3.

We also compared power from simulation with power

calculated analytically under the Kendziorski model

(Kendziorski et al., 2003).
We simulated individual data under two different scenarios.

For the first scenario, we fixed the number of treatment groups

at three (T¼ 3) and the number of individuals per treatment
group at 100 (N¼ 100). The mean expression difference

between adjacent treatment groups on the log scale

(�1 � �2 ¼ �2 � �3) was assumed to be 0.2, 0.3, 0.4 or 0.5.

Biological and technical variances were fixed at 0.75 and 0.25
(�2

b ¼ 0:75, �2
t ¼ 0:25), respectively. Pooled data under our

model were simulated as a weighted average of five or three

individuals (weight variation was �2
z ¼ 0:052) on the original

scale. Therefore, n¼ 5 and we considered 20 pools per
treatment (P¼ 20). For the second scenario, we simulated less

individuals and less pools with N¼ 15, n¼ 3 and P¼ 5 while

keeping all the other parameters the same. For each scenario,

a one-way ANOVA model was fitted to the simulated pooled
data to test whether the mean expression level was different

across treatment groups. We compared the power of the tests at

�¼ 0.05. Results are presented in Table 1. Power calculated by

simulation was based on 10 000 replicates of the experiment.
The entries in the column labeled ‘Analytical power’ were

calculated under two different models: the proposed model

(Expression 6) and the Kendziorski model (Kendziorski

et al., 2003).
In both scenarios, the predicted power as computed using

the approach proposed by Kendziorski et al. (2003) appears

to be overly optimistic in that it consistently exceeds power
calculated from simulation. This may be because their

approach does not account for the additional variance

introduced in the pooling step and because they assume that

Pooling mRNA in microarray experiments
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mRNA samples can be pooled on the log scale directly. If we

set �2
z equal to zero while keeping all the other parameters

unchanged as in the first scenario and calculate power again by

simulation, we find that the power estimates are 0.383, 0.682,

0.906 and 0.987, which are very close to the power when

�2
z ¼ 0:052. Therefore, the additional variance introduced in the

pooling step does not affect power much, and the assumption

that pooling mRNA occurs on the log scale is the main factor

causing the overestimation in Kendziorski model. On the other

hand, the power computed using the analytical expression in

Section 2.3 is conservative because our estimate for the variance

is conservative. Therefore, true power is at least high as our

predicted power.

3.2 The effect of repeated measurements on power

For a given set of experimental conditions, biological, technical

and weight variation in the pooled data are often fixed.

Therefore, the power of the test for a given set of conditions

depends on the number of pools, the number of repeated

measurements per pool and the number of individuals per pool.

Consider the following example: suppose that there are three

treatment groups (T¼ 3) and 100 individuals per treatment

(N ¼ 100), and let the mean expression difference between

any two adjacent treatment groups on the log scale be 0.5

(�p
i � �p

j ¼ 0:5), which represents a 1.65-fold difference on the

original scale. Suppose that total variation is equal to 1,

biological variance is three times as large as technical variance

(�2
b ¼ 0:75 and �2

t ¼ 0:25), and technical SD in the pooling step

is 5% of the standardized mean (�2
z ¼ 0:052). Then, for a fixed

number of arrays per treatment (A ¼ 5, 10, 15, 20), the effect of

obtaining repeated measurements on each pool on power is

shown in Figure 1. We computed power analytically using

Expressions (15) and (16) with any R and P values that match

the equation R � P ¼ A. Note, however, that R and P will

always have integer values in an actual experiment. Power

decreases as the number of repeated measurements per sample

increases for fixed numbers of individuals and arrays.

Therefore, when the number of subjects is fixed and the

number of arrays is limited, a more efficient strategy is to create

multiple pools and measure each once rather than to create

fewer pools and measure each multiple times. This is consistent

with findings in Kendziorski et al. (2003). In the remainder,

we assume that each pool is measured once (R ¼ 1,P ¼ A).

3.3 The effect of the number of mRNA pools on power

Figure 2 shows power that is computed using Expressions (15)

and (16) when different numbers of pools are created under

various mean expression differences between adjacent treat-

ments (�p
i � �p

j ¼ 0:2, 0:3, 0:4, 0:5). For a fixed number of

individuals, the power of the test based on individual samples is

always higher than when samples are pooled, as would be

expected. Power increases as the number of pools increases, and

it is maximized when P¼N, i.e. when we microarray each

individual. The rate at which power increases with mean

expression difference is relatively high when the number of

pools is small, but relatively low when the number of pools is

relatively large. When the number of pools is large enough

(30 or higher, approximately), we observe no further increase in

the power. For example, under �p
i � �p

j ¼ 0:4, power increased
by 0.2, 0.05 and 0.005 when P increased from 10 to 20, from

20 to 30 and from 50 to 60. The almost flat trend is especially

obvious when the mean expression difference is larger

(�p
i � �p

j ¼ 0:4, 0:5). The slow or almost flat trend in the

power curve makes it possible to find a pooling design with

power that approaches the power that can be achieved with

individual arrays and at the same time control costs. For

example, when n changes from 1 to 2 (individual arrays versus

pools of two individuals per sample), power dropped from

0.9999 to 0.9993, from 0.994 to 0.982 and from 0.91 to 0.85

when �p
i � �p

j ¼ 0:5, 0:4, 0:3. The higher the power of tests

based on individual samples, the higher the number of

individuals that can be pooled together without significant

Table 1. Power of the test for treatment difference computed

numerically by simulation and analytically by the proposed model

and the Kendziorski model

Mean expression

difference

Power calculated

by simulation

Analytical power

Proposed

model

Kendziorski

model

N¼ 100, n¼ 5, P¼ 20

0.2 0.383 0.341 0.396

0.3 0.684 0.669 0.747

0.4 0.909 0.904 0.947

0.5 0.991 0.985 0.994

N¼ 15, n¼ 3, P¼ 5

0.2 0.089 0.090 0.101

0.3 0.159 0.145 0.169

0.4 0.252 0.226 0.274

0.5 0.379 0.334 0.405
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Fig. 1. The effect of repeated measurement on power for different total

numbers of arrays per treatment: T ¼ 3,N ¼ 100,�p
i � �p

j ¼ 0:5,

�2
b ¼ 0:75, �2

t ¼ 0:25, �2
z ¼ 0:052 and A ¼ 5, 10, 15, 20.
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loss of information. For example, when �p
i � �p

j ¼ 0:5, a design
that involves forming P¼ 10 pools with n¼ 10 individuals each

has 90% of the power of the design that involves no sample

pooling, and yet the cost of arrays is only 10% of the cost of

arraying every individual.

3.4 The effect of biological, technical and weight

variability on power

From the results presented in Section 2.3, we know that power

depends on �2
b and �2

t . The effect of the ratio of biological to

technical variance on power is shown in Figure 3. As would be

expected, power in designs that involve pooling samples

increases as the technical variance gets smaller relative to the

biological variance. For example, when the mean expression

difference is 0.5 and the design includes 10 pools of 10 samples

each, power increases from 0.72 when �2
b ¼ �2

t to 0.92 when

�2
b ¼ 4�2

t .
The additional technical variation introduced in the pooling

step does not appear to affect power much (Fig. 4), even if the

pooling technical variance is rather high (�2
z ¼ 0:22). This is

because in the denominator of Expression (16), �2
z is very small

compared to e�
2
b � 1 and �2

t . Also the effect of pooling technical

variation is further decreased by the factor n�1
n2
. Therefore, the

additional technical variation introduced in the pooling step is

not a major factor to consider in power calculation.
Samples of mRNA from individuals are sometimes pooled in

microarray experiments, either because the biological material

available from each individual is not sufficient to array or to

keep costs down. It is to be expected that statistical tests

to detect differences in mean gene expression levels across

treatments will be affected when they are based on pools of

mRNA samples rather than on individual samples, since some

information is bound to be lost. In particular, the power of

F-tests in the usual ANOVA models is expected to decrease

when the experimental design involves pooling of individual

samples.
Several authors have investigated the statistical properties of

F-tests based on pooled mRNA samples (Kendziorski et al.,

2003 and Shih et al., 2004). One limitation in these studies is

that the statistical models adopted imply that the mRNA

samples are pooled on the log scale, which is unrealistic.

We investigated the power of F-tests in ANOVA models when

mRNA samples are pooled, but extended the models so that the

pooling process is carried out on the original scale. In our

formulation, mRNA pools are weighted averages of individual
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mRNA samples and consider the measurement error that is
introduced when pooling potentially different amounts of
mRNA from individuals into a pool. We argue that when

pooling is assumed to occur on the log scale, the power of the
tests is overestimated and propose an approach to calculate
power under the more realistic scenario of pooling on the

original scale.
It is not possible to derive an analytical expression for the

distribution of pooled gene expression on the log scale.

Therefore, we assume that gene expression on the log scale is
normally distributed. To check this assumption, we conducted
simulation studies and found that, at least for the range

common to microarray data, the normality assumption appears
to be reasonable. Our focus is on deriving expressions to
calculate the power of F-tests to detect mean gene expression

difference across treatments in designs that involve pooling.
Because the F-test is robust to modest departures from
normality (Mendes and Pala, 2004), we anticipate that

assuming a normal model for the gene log-expression values
will not have a noticeable effect on our results. We show that
the power estimated using the approach we propose here is

conservative in that it tends to slightly underestimate true
power; therefore, true power is at least as high as the estimates
resulting from implementing the method we propose.

As might be expected, the power of the tests depends not only
on the size of the treatment effect but also on the total number
of individuals and pools, the number of pools per treatment,

the number of replicated measurements obtained for each
pool and the magnitude of biological and technical variability.
For the technical variability, we distinguish the usual variance

introduced in the various steps of microarray experiments and
the variability that is introduced during the pooling process,
resulting from the possibly differential contributions of

individual samples to the pool.
We used simulated gene expression data to compare the

power of F-tests that can be achieved when analyzing

individual mRNA samples and under various pooling designs.
We computed power analytically and also via simulation, and
compared results to those that would be obtained by

implementing the approach proposed by Kendziorski et al.
(2003). We found that given a fixed number of individuals and
arrays, power tends to be higher when a larger number of pools

is measured once than when replicate measurements are
obtained on a smaller number of pools. This holds for all
values of the biological, technical and pooling variabilities

considered in our study. Not surprisingly, we also found that
power of tests based on individual samples is always higher
than power based on pooled samples. For large enough effect

sizes, however, it is possible to design an experiment that
involves pooling mRNA samples that almost achieves the
power that would be obtained when arraying individual

samples, but at a fraction of the cost. Thus, our results suggest
that under some conditions, pooling mRNA samples in
microarray experiments can be a good strategy if cost is a

consideration.
One of the important features of our model is that it attempts

to mimic the pooling process as it happens in the lab.

We assume that the mRNA pool is a weighted average of
expression levels from individual mRNA samples, where the

weights are random variables with mean 1/n. Because the log is

a non-linear transformation, the log of this weighted average

will be different from a weighted average of log-transformed

individual expression levels. Based on (10), we have

�p
i � �i �

�2
b

2
�

1

2n
ðe�

2
b � 1Þð1þ n�2

wÞ:

Simple calculus shows that this function of �2
b is positive

and increasing on the interval ð0, � logð1=nþ �2
wÞ�. When

n� 2, � logð1=nþ �2
wÞ is typically larger than �2

b in microarray

experiments. Thus, the difference between �p
i and �i is expected

to grow larger with �2
b. Shih et al. (2004) assumed in their work

that �p
i � �i ¼ 0 and then tested this assumption using data

collected in a microarray experiment on mice. They found that

the number of genes with significantly different expression

levels across different treatments was higher than that would

have been expected by chance; this effect was even stronger

when expression levels were high. Also, Kendziorski et al.

(2005) confirmed further that the pools and the average of

individuals were not always in agreement for certain genes and

suggested that modeling the pooling process on the transformed

scale could be a possible reason. These results can be explained

well under our model. Since we show that �p
i � �i 40, the 95%

confidence intervals for the difference between mean expression

level in the pool and in individual arrays are not centered at

zero. Further, since the difference between the two means can

be approximated by a positive, increasing function of the

biological variance, and the biological variance tends to be

positively associated with gene expression level, we expect that

the shifting of the confidence intervals will be more pronounced

when the signal is stronger. In addition, confidence intervals

that account for the added variance introduced in the pooling

process are somewhat wider. According to our model and to

the results obtained by simulation, the proportion of genes

that fall outside the 95% confidence intervals discussed by

Shih et al. (2004) is 0.077, 0.096, 0.101 and 0.151 when the

biological variance is 0.2, 0.4, 0.6 or 0.8 respectively, and

the technical variance is held constant at 0.25. These

unexpectedly high proportions can be explained under our

model, which accommodates pooling on the original (rather

than on the log) scale.

One other interesting finding is that after log transformation

and assuming of normality, the expected mean expression

difference in a design that involves pooling is the same as in

a design without pooling, i.e. �p
i � �p

j ¼ �i � �j. Thus, a test

for the hypothesis that �p
i ¼ �p

j is equivalent to the test �i ¼ �j.

This property might not hold under other transformations,

however.
We have focused on power calculation under designs that

pool or do not pool mRNA when testing expression differences

for a single gene. In microarray experiments, tests involve tens

of thousands of genes and the biological variation may differ

from gene to gene. Therefore, pool designs required to reach

a certain power may be different between genes due to

differences in biological variation across genes. Thus, finding

a single efficient design for pooling mRNA which results in the

desired power for all the genes in the microarray experiment

might be a challenge.
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Jung (2005) proposed a microarray sample size calculation

method for the two-group comparison problem that allows

researchers to determine the sample size necessary to identify

approximately r1 differentially expressed genes while control-

ling the false discovery rate (FDR) at a desired level f.

This basic concept is easily extended to the T-treatment

case and designs that involve pooling. Borrowing notation

and concepts from Jung (2005), we have that the

individual significance level necessary for identification of

approximately r1 differentially expressed genes while control-

ling FDR at level f is

�� ¼
fr1

ð1� fÞm0
, ð19Þ

where, m0 is the number of non-differentially expressed genes

among all genes tested. Given ��, we seek values of n and P

such that X
g2M1

�gð�
�Þ � r1, ð20Þ

where, M1 denotes the set of indices of differentially

expressed genes and �gð�
�Þ denotes the power of the ��

level test for gene g that can be approximated using (15)

and (16). Based on the results of our simulation study in

Section 3.1, the use of our power approximation in (22) should

suggest sample sizes that are at least as large as necessary

to identify the desired number of differentially expressed

genes. On the other hand, we would expect the method of

Kendziorski et al. (2003) to recommend sample sizes that are

smaller than those actually needed to achieve the specified

level of discovery.
As in any power and sample size calculation, users are

required to provide the values of unknown parameters like m0

and—separately for each gene—the variance and mean

parameters necessary for computing (15) and (16). While it is

conceivable to estimate such parameters from pilot microarray

experiments, a discussion of such strategies is beyond the

scope of this article. As a starting point in the absence of

pilot data, researchers may wish to assume that effect sizes

and variance components are identical for all differentially

expressed genes, in which case (22) can be simplified as

discussed by Jung (2005).

Whether to pool individuals and how to pool them to

minimize the loss of information are important issues in

microarray experiments. For a fixed total number of indivi-

duals and arrays, a design that includes mRNA pools always

leads to smaller power than a design in which each array

corresponds to an individual. Under some conditions, however,

the loss of power is small, and it is possible to find a low-cost

design which almost achieves the power that can be obtained

when arraying each individual.
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APPENDIX

Expression (8) is derived as follows:

�pi ¼ Eðmp
ijÞ

¼ E ½
Xn
k¼1

ðwijk �mijkÞ�

¼
Xn
k¼1

EðwijkÞ � EðmijkÞ

¼ e�iþ
�2
b
2

Xn
k¼1

EðwijkÞ

¼ e�iþ
�2
b
2 :

To simplify notation in the derivation of (9), we suppress the i

and j subscripts on wijk and mijk. Using this simplification,

we have

�p
i
2
¼ Var mp

ij

h i
¼ Var

Xn
k¼1

ðwkmkÞ

" #

¼ E
Xn
k¼1

wkmk

 !2
2
4

3
5� E

Xn
k¼1

wkmk

 !" #2

¼ E
Xn
k¼1

ðwkmkÞ
2

" #
þ 2

Xn
k¼1

Xn
l4k

E wkmkwlmlð Þ

�
Xn
k¼1

EðwkÞEðmkÞ

" #2

¼
Xn
k¼1

EðwkÞ
2EðmkÞ

2
� �

þ 2e2�iþ�2
b

Xn
k¼1

Xn
l4k

EðwkwlÞ

� e�iþ
�2
b
2

Xn
k¼1

EðwkÞ

" #2
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¼ e2�iþ2�2
b

Xn
k¼1

E wkð Þ
2

þe2�iþ�2
bE

Xn
k¼1

wk

 !2

�
Xn
k¼1

w2
k

2
4

3
5

� e2�iþ�2
b

¼ ne2�iþ2�2
bEðw2

kÞ þ e2�iþ�2
b 1� nEðw2

kÞ
� �

� e2�iþ�2
b

¼ nEðwkÞ
2 e2�iþ2�2

b � e2�iþ�2
b

� �
¼ n ðEwkÞ

2
þ �2

w

� �
e2�iþ2�2

b � e2�iþ�2
b

� �

¼ n
1

n2
þ �2

w

� �
e2�iþ2�2

b � e2�iþ�2
b

� �

¼
1

n
þ n�2

w

� �
e2�iþ2�2

b � e2�iþ�2
b

� �
:

To show that �2
w � n�1

n3
�2
z , we use the multivariate Delta

method. Recall that Var½gðxÞ� � ½g0ð�xÞ�
t�xg

0ð�xÞ where, x is

a random vector with mean �x and variance-covariance matrix
�x and g0ð�xÞ denotes the vector of partial derivatives of g
evaluated at �x. If we let x ¼ ðzij1, . . . , zijnÞ

t and choose
gðxÞ ¼ x1=

Pn
k¼1 xk, then gðxÞ ¼ wij1, �x ¼ ð1, . . . , 1Þt,

�x ¼ �2
z In (where In is the n� n identity matrix), and

@g

@x‘
¼

Pn

k¼1
zijk�zij1Pn

k¼1
zijk

� �2 for‘ ¼ 1,

�zij‘Pn

k¼1
zijk

� �2 for‘ 6¼ 1:

8>>><
>>>:

Thus,

�2
w ¼ Varðwij1Þ � ½g0ð�xÞ�

t�xg
0ð�xÞ

¼
n� 1

n2

� �2

þðn� 1Þ
�1

n2

� �2
( )

�2
z

¼
ðn� 1Þ2 þ n� 1

n4
�2
z ¼

ðn� 1Þ

n3
�2
z :

W.Zhang et al.

1224


