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Abstract
Background: Microarray technology has become a very important tool for studying gene
expression profiles under various conditions. Biologists often pool RNA samples extracted from
different subjects onto a single microarray chip to help defray the cost of microarray experiments
as well as to correct for the technical difficulty in getting sufficient RNA from a single subject.
However, the statistical, technical and financial implications of pooling have not been explicitly
investigated.

Results: Modeling the resulting gene expression from sample pooling as a mixture of individual
responses, we derived expressions for the experimental error and provided both upper and lower
bounds for its value in terms of the variability among individuals and the number of RNA samples
pooled. Using "virtual" pooling of data from real experiments and computer simulations, we
investigated the statistical properties of RNA sample pooling. Our study reveals that pooling
biological samples appropriately is statistically valid and efficient for microarray experiments.
Furthermore, optimal pooling design(s) can be found to meet statistical requirements while
minimizing total cost.

Conclusions: Appropriate RNA pooling can provide equivalent power and improve efficiency and
cost-effectiveness for microarray experiments with a modest increase in total number of subjects.
Pooling schemes in terms of replicates of subjects and arrays can be compared before experiments
are conducted.

Background
Researchers are increasingly realizing the importance of
true biological replicates for assessing statistical confi-
dence in microarray experiments [1–6], but replication is
often hindered by financial or technical constraints. One

problem is that large, prefabricated microarray chips can
be relatively expensive, driving up the total cost of an
experiment. (In fact, the cost of a subject is often lower.)
Another obstacle to using replicates is that the biological
tissues from which RNA is extracted can often be of such

Published: 24 June 2003

BMC Bioinformatics 2003, 4:26

Received: 02 December 2002
Accepted: 24 June 2003

This article is available from: http://www.biomedcentral.com/1471-2105/4/26

© 2003 Peng et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all 
media for any purpose, provided this notice is preserved along with the article's original URL.
Page 1 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-4-26
http://www.biomedcentral.com/1471-2105/4/26
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/26
small quantity by nature that it is technically difficult to
get enough RNA sample from one subject for hybridiza-
tion to one array [3]. Either or both of these problems
have motivated biologists to pool RNA samples together
before hybridization. Many research papers using this
method have been published [3–5], but the statistical
properties of pooling have not been explicitly addressed.
There are two different approaches of sample pooling.
One is dubbed "complete pooling", where all samples
from one treatment group are pooled onto one chip and
there is no replication of chips for one treatment. This
approach does not provide an estimate of variability
among chips and therefore can not be used for statistical
analysis. The other approach is dubbed "sub-pooling",
where subsets of samples are randomly selected and
pooled onto one chip but there are still multiple chips
within each group. Here we investigated the statistical
properties and the technical and financial implications of
the second, sub-pooling approach.

Results
Simulation study of statistical characteristics
First, simulated microarray data were used to investigate
the statistical properties (see Methods for details). Figure
1 shows the simulated power curves (for two-sample t
tests) with respect to different α levels (i.e. type I error
rates), effect sizes (i.e. differences of the means divided by
common standard deviation), and sample sizes. Some
well-known statistical properties are shown here: power
increases with effect size and/or sample size when other
conditions are fixed (e.g. curve 8 vs. curve 5, or curve 4 vs.
curve 1); but it decreases when α level is lowered with
other conditions being fixed (e.g. curve 8 vs. curve 4).
However, the main purpose of Figure 1 is to demonstrate
the effect of pooling. Consider curves 5 to 8, all of which
have α level fixed at 0.05. Without pooling, nine replicates
per group (curve 8) give much higher power than three
replicates per group (curve 5). With pooling, power curves
are intermediate. Both curve 6 and curve 7 reveal the
power of pooling nine samples onto three chips each. The
difference between them is that equal pooling with repli-
cates in the same pool contributing equally (curve 7) has
better power than non-equal pooling (curve 6). See meth-
ods section for statistical justification. Notice that power
curve 7 is not very far from power curve 8, with only one
third the number of chips being used.

Figure 2 shows that approximately equivalent power to
non-pooling can be achieved if the number of gene chips
is reduced but the number of samples is increased. The
simulated power curves for two-sample t tests for different
pooling schemes under the same type I error rate control
are very similar. In this figure, n25c5 means that RNA
samples from 25 subjects are randomly pooled onto 5
chips with 5 subjects contributing equally to each pool.

Specifically, the power of (n25c5) ≈ power of (n24c6) ≈
power of (n22c11) ≈ power of (n21c7) ≈ power of
(n20c20). Notice that power of (n25c5) ≈ power of
(n20c20), which suggests that by randomly pooling RNA
samples from 5 subjects onto one chip with equal contri-
butions, we can decrease number of chips needed per
group from 20 to 5 while number of subjects per group
only needs to be increased from 20 to 25. As will be
shown later, this may have great financial consequences.

"Virtual" pooling example using data from an Affymetrix 
microarray experiment
Blalock et al [2] investigated the correlation of gene
expression with cognitive impairment in rats of different
ages. Original data were from 29 Affymetrix microarrays.
To further study the effect of pooling, we used 24 of the 29
arrays to do "virtual pooling". Namely, we first randomly
selected 24 arrays and assigned them to two groups. P-val-
ues from two-sample t-tests on individual genes were
recorded. Next, in each of the two groups, we "virtually"
pooled the 12 samples onto 6, 4, 3 arrays respectively
(assuming equal contribution in each pool). The statisti-
cal tests were then conducted on the "pooled" data with
degrees of freedom being reduced to 10 (i.e. 2*(6-1)), 6
(i.e. 2*(4-1)), or 4 (i.e. 2*(3-1)), respectively. The P-val-
ues from the "pooled" data were then plotted against the
original P-values. As shown in Figure 3, there is a good
agreement of the P-values among the pooling schemes for
the majority of the genes among the pooling and no pool-
ing schemes. Table 1 shows that a moderate percentage of
those genes that are found to be significant at a fixed α
(0.05) level can be picked up by designs with pooling at
the same α level. Multiple-testing adjustment was not
considered here because it is a separate statistical issue.
Note that "virtual" pooling serves as indirect evidence
only.

Effect size considerations
Because we are testing hundreds or thousands of genes at
the same time, it is not easy to determine the effect size
needed for power or sample size estimation. Effect size
can vary from experiment to experiment, from one kind of
biological sample to another, as well as from gene to gene.
If we set the goal of an experiment to detect all genes that
are differentially expressed at any scale, then the sample
size needed to do so would be prohibitively large. There-
fore, we need to set up a realistic goal, say, to detect genes
with effect size ≥ 0.5. For a two-sample t test, this means
the true difference between the means is one half of the
common standard deviation. Empirical data from many
experiments suggest that this goal is often achievable. A
pilot study is also desirable to obtain an estimate of
approximate effect size for specific experiments and genes.
To assist researchers in making such estimates, we include
here some empirical results from several experiments
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conducted in our core facility, which may provide a rough
idea regarding the range of effect sizes that might be real-
istically expected with one type of microarray – the
Affymetrix oligonucleotide GeneChip® array. Of course,
the reader should be cautious in relying on these num-
bers, as they are estimates based on pilot studies from
only one microarray core facility.

Financial implications of sample pooling and optimal 
pooling design
Since a microarray chip often costs more than a biological
subject and we have more than one pooling design to
achieve the same statistical control, it is possible for us to
search for the most cost effective pooling design while

maintaining the desired statistical properties. For a given
combination of maximal type I error rate, minimal power,
and the estimated or expected effect size to be detected,
there are multiple pooling designs that may satisfy these
conditions. We can compare the total cost of chips and
subjects for each design and choose the one with minimal
total cost, provided it is technical feasible. While this is a
simplified economic framework (because it does not con-
sider other cost in the experiment), it manifests the major
point of the financial efficiency with pooling. An example
function written in R language used to automate the
searching and comparing process is attached as an addi-
tional file.

Relationships among type I error rate, sample size, effect size, and power with or without poolingFigure 1
Relationships among type I error rate, sample size, effect size, and power with or without pooling. Note: n is the 
number of biological replicates per treatment group; c is the number of gene chips per group; a is the type I error rate; EQ 
means that samples are pooled with equal contribution; NE means samples do not contribute equally when pooled together 
(weights assigned randomly to each chip: 0.7, 0.2, and 0.1).
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Discussion
Assessing variability on a per gene basis is an increasingly
important aspect of microarray analysis. In the present
paper we demonstrate that variance could be estimated
accurately with different pooling schemes, and that the
chip cost (and therefore experimental cost) can be dra-
matically affected by decisions regarding the pooling
scheme employed. Many researchers are aware that repli-
cates of biological samples are needed to assess experi-
mental error. Even though thousands of genes are
interrogated simultaneously on each chip, estimates of
variance based on these measures do not of course include
biological variance for any single gene in question. In this
paper, we addressed the question of how many replicates
are needed to achieve adequate power while considering

an efficient technical procedure that is applicable in
microarray experiments.

Since the specific design and data processing of microar-
rays can cause some confusion about what constitutes true
replicates, it is important to distinguish technical repli-
cates from biological replicates. In the Affymetrix microar-
ray, 11 to 20 probe pairs are used to measure expression
level of a probe set. It is important to note that these
duplicated probe pairs are different measurement units
rather than experimental units. The true biological repli-
cates are the arrays (provided that they do not measure the
same biological sample). An estimate of variability among
the probe pairs reveals the precision of the measurement
at the probe level but not the variability among biological
samples. The latter is usually what is needed when

Approximately equivalent power curves under different pooling schemesFigure 2
Approximately equivalent power curves under different pooling schemes. Power curves generated for two-sample t 
tests. Equal pooling assumed. Legend: n is the number of subjects per treatment group; c is the number of arrays per group. 
The five pooling schemes with different choices of number of subjects and number of arrays have approximately equivalent 
power curves when type I error rate is controlled at 0.05.
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Scatter plots of the P-values with different "virtual" pooling schemesFigure 3
Scatter plots of the P-values with different "virtual" pooling schemes. On Y-axis are the P-values from two-sample t-
tests for 8799 genes on the RGU34A gene chip with no pooling (12 subjects, 12 arrays per group). On X axis are the P-values 
from two-sample t-tests for pool size 2 (12 subjects, 6 arrays per group), pool size 3 (12 subjects, 4 arrays per group), and pool 
size 4 (12 subjects, 3 arrays per group), respectively.
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conducting statistical hypothesis testing in order to make
inferences about differential gene expression under vari-
ous treatment or environmental conditions. Confusion
between technical duplicates and biological replicates can
sometimes lead to misconceptions in conducting and
interpreting statistical tests. Based on the intensity read-
ings on the probe pairs, Affymetrix Microarray Suite Ver-
sion 5.0 gives a "change P-value" for the comparison
analysis of each probe set ("gene") between a baseline
chip and an experiment chip (MAS V 5.0 manual) based
on Wilcoxon signed rank test. According to the manual,
the change P-value indicates the significance of the differ-
ence between the experimental chip and the baseline chip.
However, it should be noted that a significant difference
of gene expression between a single chip from the experi-
mental group and a single chip from the baseline group
can not provide statistical evidence to show that the two
groups are different. Often the goal of comparing a treat-
ment group to a control group is to detect the true differ-
ence of the population means, and the "change P-value"
is not the appropriate P-value for that goal.

To overcome the difficulty of estimating the variance of
microarray data with few or no biological replicates, so-
called "cross-gene models", "global error models" or
"local error models" have been proposed [7,8]. According
to such models, genes with similar expression levels from
the same chip can be "borrowed" to construct a pseudo
sample as the basis to estimate the "global" or "local"
errors for each individual gene. This is very appealing
because "Statistical group comparisons can now be done
on experiments without replicates by using the global
error model"[8]. However, these algorithms are based on
two implicit assumptions that are difficult to support:

(1). The measurement of the expression of a gene on one
single chip can be used to estimate the true population
mean expression of that gene. This assumption is often
false because an observed intensity can be far from the true
mean with moderate or high probability. For example,
even if gene expression measurements follow a perfect
normal distribution, the chance that a measurement falls
beyond one standard deviation from the mean on either
side is as large as 32%.

(2). Genes with similar measurement values "share" the
same variance within the treatment group. This assump-
tion may be reasonably accurate for some genes (e.g.
those with low expression intensities), but empirical
observations show that it is clearly not true for all genes,
especially for those with high intensity.

The cross gene error model references for support the two
component error model proposed by Rocke et al [9] and
Durbin et al [10] but those papers made it very clear that
true replication could not be circumvented, especially to
estimate variances for genes with high expression. (For
additional discussion on different sources of error in
microarray experiments, see [10–13].)

Except under very restrictive models, duplicate observa-
tions per chip do not provide valid estimates of variability
among subjects. Hence, multiple chips per treatment
group, each measuring an RNA sample from a separate
biological subject or pooled groups of subjects, are
required for statistical analysis. However, this approach
often entails financial and/or technical difficulties. To
address these issues, we tested RNA sample pooling and
showed that it provides an efficient alternative solution.
Because arrays are usually more expensive than subjects,
sample pooling frequently may help defray the total cost
of an experiment. The larger the difference between the
cost of a single array and that of a single subject, the more
the sub-pooling strategy will save. Simulated microarray
data and "virtual pooling" of actual data utilized here as
well as statistical theory suggest that the underlying prin-
ciples of this proposal are sound. Note that even with
pooling, we still show a requirement for reasonable repli-
cation of (pooled) arrays because there is no other way to
assess biological variation.

A limitation of our current study is that we have yet to
conduct a definitive experiment in which the same biolog-
ical samples are compared with or without pooling.
Although this has not been done, we nevertheless have
indirect supporting evidences from multiple actual micro-
array experiments. After analyzing data from over 50
research projects (with replications) done in our facility, we
have consistently seen smaller within-group variability

Table 1: Agreement of significant genes between "virtual" pooling and no pooling with data from one real experiment. Note: total 
number of "genes" on the chip = 8799, α = 0.05. Pool size=number of subjects per chip (# subjects per group/ # chips per group)

Pool size # of subjects per group # of arrays per group # of significant genes % agreement between pooling and no pooling

1 12 12 228
2 12 6 152 67%
3 12 4 108 47%
4 12 3 111 49%
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(and more genes with significant differences) in experi-
ments using appropriate RNA pooling strategies than
those with approximately the same number of arrays that
did not employ pooling. This observation implies that
experiments with pooling have greater power than those
without pooling for a fixed number of chips, when condi-
tions are comparable (i.e. similar experimental condi-
tions, statistical methods and multiple testing correction
procedures, etc.). In addition, a recent study [5] found
high correlation between the intensities from the calcu-
lated pool and those from the actual pool using the same
samples, (although in that study the pooling effect on
reducing variance was not explicitly addressed).

RNA pooling may also have adverse consequences, and
can be inappropriate in some cases. Pooling should not be
used if inferences are needed for single subjects. For exam-
ple, when the goal of the research is to correlate gene
expression with some other variables measured at the sub-
ject level [2] or to identify gene profiles that help classify
individual subjects and predict their membership in
groups (e.g. cancer patients vs. normal patients). Pooling
will also prevent later analysis of the data on variables that
may have been ignored initially. As an example, suppose
that we pooled all samples from the same gender and
compared the differential expression of some genes
between the two genders. This would make it impossible
to subsequently analyze differential gene expression
related to aging effects since samples from different ages
would have been pooled together. The researcher must
decide at the outset whether the potential loss of informa-
tion is outweighed by the increased statistical power and
cost-efficiency of the design. Similarly, pooling will pre-
vent users from finding differences in expression that
might divide only one set of samples. For example, if the
goal of the experiment is to find genes that help differen-
tiate subtypes of colon cancers rather than between colon
cancer and healthy tissues, then it is inappropriate to pool
cancer subtypes.

As pointed out by one reviewer, sample pooling is able to
reflect group-specific variance, but assumes that residual
individual variance is not influenced by the group varia-
ble. While this assumption may be a reasonable first
approximation, it does not allow for the possibility of a
cross-product relationship in which a group-specific vari-
able (for example, toxic exposure) might lead to informa-
tive sub-states that exhibit separate groups of coordinately
regulated responsive genes as a function of the extent to
which the individual responds. Thus, there may also be
loss of information regarding possible cross-product rela-
tionships by pooling. The experimenter should be aware
of this caveat before deciding to pool samples.

There are also a few technical concerns with pooling. The-
oretically, the more samples pooled, the greater the
improvement in power. Practically, however, researchers
may be reluctant to pool more than five samples to one
chip due to technical limitations, and here we restricted
our comparisons among pool sizes to no more than five.
Further, we recommend pooling RNA samples instead of
tissue or cell samples, because the variability at the tissue
level is usually larger than at the RNA level. However, as
long as equal contribution is assured, pooling at the tissue
level should not make a big difference.

Finally, although we used only Affymetrix oligonucleotide
data models as examples in this paper, the same principles
should be readily applicable to two color cDNA arrays as
well. In general, pooling should have similar advantages
for more complex experimental designs (such as factorial
designs, time course designs, etc.), when inferences are
being made at the group level.

Conclusions
Appropriately designed RNA sample pooling can provide
adequate statistical power, and improve efficiency and
cost-effectiveness, for many types of microarray experi-
ments when inferences are made at the group level. How-
ever, researchers have to consider the pros and cons of
pooling for their experimental objectives. Designing opti-
mal pooling schemes to achieve statistical control with
minimal total cost is readily possible before the experi-
ments are conducted.

Methods
Mixtures of Individual Gene Expressions
Gene expression levels for a single gene for n subjects will
be denoted as X1,...,Xn. If the RNA samples from p subjects
are randomly selected and pooled, then we can model the

resulting gene expression level as , where
w1,...,wp are the mixing coefficients. These coefficients may
be random. If the original gene expression levels, X1,...,Xn,
are identically and independently distributed random var-
iables with mean µ and variance σ2 and the mixing coeffi-
cients are independent of the individual gene expression
levels, then we have

σ2 / p ≤ Var (X*) ≤ σ2.  (1)

This result follows immediately from the fact that

and
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Since , (1) follows. Note that the lower

bound is achieved when the mixing coefficients are equal;
i.e., uniform mixing. This shows that RNA pooling
reduces variance and the minimal variance of the mixture
is achieved with equal pooling.

Relative Efficiency
As far as the number of chips needed is concerned, the rel-
ative efficiency of pooling n subject to n/p chips with uni-
form mixing can be computed as:

as n → ∞ and p/n → 0. Hence, when p samples are equally
mixed, we need approximately 1/p of the original number
of chips to achieve similar power with pooling when both
n is large and p/n is small. This is a large sample result and
does not take into account the loss of degrees of freedom
for the test. Next, we consider the effects of both aspects
on statistical power.

Power Equivalence
Although pooling RNA samples with uniform mixing sub-
stantially reduces the variability among chips within a
group, this may not result in an increase in power while
testing differences among groups with a fixed number of
subjects. Here we investigate the power of the two-sample
t-test. Let X1,...,Xn be identically and independently dis-
tributed with N(µ1, σ1

2) and Y1,...,Yn be identically and
independently distributed with N(µ2, σ2

2). For simplicity,
let σ1

2 = σ2
2 = σ2. Suppose we use two-sample t-test to test

H0: µ1 = µ2 against Ha: µ1<µ2. Without pooling, the t statis-
tic follows the central t distribution f(t, df1) with df1 = 2(n
- 1) under H0; while under Ha, it follows a non-central t
distribution with df1 and non-centrality parameter

, which is inversely related to the standard

deviation σ. For a fixed α level, we can find a critical value
t0 under H0 such that . To compute the
power, we only need to find the rejection region corre-
sponding to t0 under the alternative non-central t distribu-
tion g(t, df1, δ): . Now when the
n samples are randomly assigned into pools of size p with
equal mixing, power is decreased because the degrees of
freedom are reduced to df2 = 2(n/p - 1), which makes the
tails of the central t distribution under H0 heavier and thus
the critical value t0* will be further from 0, while the non-
centrality parameter is unchanged:

 (since the vari-
ance is reduced to σ2/p and the number of chips reduced
to n/p). However, if n + k subjects with pool size p are
compared to n subjects without pooling, then the power
change is not monotonic. The loss of power due to reduc-
tion of degrees of freedom will be partially compensated
by gain of power due to increase of effect size. This can be
seen by noting that the non-centrality parameter for pool-
ing is now ,
which is non-trivially larger than . This
shifts the alternative distribution further away from the
null distribution and thus increases power. Hence we
have heuristically shown that the power change is not
monotonic when decreasing replication of chips while
simultaneously increasing number of subjects. This
implies that power can be preserved with the right choice
of (subject) sample size and pool size. Many statistical
software packages, such as R, S Plus or SAS, have built-in
functions for both central and non-central t distributions
and thus we can write programs to evaluate the power
change or equivalent power curves under different pool-
ing schemes. For two sided two-sample t test or experi-
ments with more than 2 treatment groups, we can use the
central and non-central F distributions rather than t distri-
butions. The power equivalence should be very similar.
Readers not very familiar with the above statistical con-
cepts are referred to [14–16].

Simulation study
To investigate the above properties, we generated random
samples based on two-treatment design and then com-
pared the performance of different pooling schemes. We
simulated microarray data as follows: randomly generate
a data matrix of 5000 rows and 2n columns, with each

Table 2: Observed effect sizes of data from some experiments with Affymetrix microarrays.

Study Subject # of arrays per group Genome % of genes with effect size ≥ 0.5

1 cell line 9 RGU 34 30.3
2 rat 10 RGU 34 18.1
3 rat 16 RGU 34 21.5
4 mouse 6 MGU 74 16.5
5 human 14 HGU133A 10.6
6 human 25 HGU133A 38.9
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row represents one gene and each column represents one
subject. The first n subjects are random samples from a
normal distribution with mean µ1 and standard deviation
σ; the last n subjects are random samples from a normal
distribution with mean µ2 and standard deviation σ,
where . For each row, µ1 was generated
from a uniform distribution U(0, 30000) and standard
deviation σ is set to be 0.2 * µ1. The effect size δ was spec-
ified for every data matrix.

Simulation of power curves without pooling: for δ from 0
to 4.0, n from 3 to 30, we generated data matrices and
then performed two-sample t tests on each row between
the first n observations and the last n observations. For
each specified δ, n and α level (0.05 or 0.01), we repeated
the above simulation 1000 times and recorded the
proportion of rejections, Rα, δ, n, for each iteration. We
then calculated the averaged Rα, δ, n as the simulated
power.

Simulation of power curves with pooling: similar to the
above with the only difference being that the two-sample
t tests were performed on first m pools and last m pools,
where each of the m pools is the average of p subjects ran-
domly selected from the original n subjects. Note that n =
m*p and we used sampling without replacement. This is
to simulate the scenario of equal pooling.
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Table 3: Comparison of different pooling schemes and total cost using model data. Several pooling designs that can achieve power at 
least 0.8 while controlling type I error rate at 0.01 for an effect size of 1.0 are shown. Assuming a microarray chip costs $1000 and a 
subject costs $300, the total cost for each design is also computed and the optimal design with the minimal total cost is underlined. A 
function written in R (a free statistical software downloadable at http://www.r-project.org) to perform the above search automatically 
is attached as additional file.

Number of chips per group pool size power Total cost

7 5 0.84 35000
8 5 0.91 40000
8 4 0.83 35200
9 4 0.89 39600
10 3 0.82 38000
11 3 0.87 41800
14 2 0.82 44800
26 1 0.82 67600
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