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ABSTRACT

Motivation: Microarray data must be background corrected to

remove the effects of non-specific binding or spatial heterogeneity

across the array, but this practice typically causes other problems

such as negative corrected intensities and high variability of low

intensity log-ratios. Different estimators of background, and various

model-based processing methods, are compared in this study in

search of the best option for differential expression analyses of small

microarray experiments.

Results: Using data where some independent truth in gene

expression is known, eight different background correction alter-

natives are compared, in terms of precision and bias of the resulting

gene expression measures, and in terms of their ability to detect

differentially expressed genes as judged by two popular algorithms,

SAM and limma eBayes. A new background processing method

(normexp) is introduced which is based on a convolution model. The

model-based correction methods are shown to be markedly superior

to the usual practice of subtracting local background estimates.

Methods which stabilize the variances of the log-ratios along the

intensity range perform the best. The normexpþoffset method is

found to give the lowest false discovery rate overall, followed by

morph and vsn. Like vsn, normexp is applicable to most types of

two-colour microarray data.

Availability: The background correction methods compared in this

article are available in the R package limma (Smyth, 2005) from

http://www.bioconductor.org.

Contact: smyth@wehi.edu.au

Supplementary information: Supplementary data are available

from http://bioinf.wehi.edu.au/resources/webReferences.html.

1 INTRODUCTION

Two-colour microarray experiments quantify the relative gene

expression between experimental samples for thousands of
probes simultaneously. The pixel intensities from the Cy3

(green, G) and Cy5 (red, R) images are surrogate measures for

the amount of hybridization between the RNA samples and the

immobilized probe sequences.
Image analysis software returns foreground and background

intensities for each spot. The foreground is an overall measure

of the intensity of the spot while the background is a measure of

the ambient signal. Background fluorescence can arise from

many sources, such as non-specific binding of labelled sample

to the array surface, processing effects such as deposits left after

the wash stage or optical noise from the scanner. Removal of

ambient, non-specific signal from the total intensity is known as

‘background correction’.
Most image analysis programs return ‘local’ background

intensities, obtained from the mean or median of the pixel

intensity values surrounding each spot. Local background is

arguably an unbiased estimate of the local non-specific signal,

so subtracting it from the foreground intensity gives in principle

an unbiased estimator of the true signal due to hybridization.

Although well motivated, this traditional approach produces

corrected intensities with undesirable statistical properties.

It produces negative intensities whenever the background

intensity is larger than the foreground intensity, leading to

missing log-ratios, sometimes for a substantial proportion of

probes on an array. Even when not missing, the log-ratios are

highly variable for low intensity spots.
The problems caused by this ‘fanning’ phenomenon have

been widely noted (Beibbarth et al., 2000; Bilban et al., 2002;

Finkelstein et al., 2002; Kooperberg et al., 2002). The most

common reaction in the applied literature has been to filter out

low intensity spots, even though this is another cause of missing

values. Another response has been to develop methods which

incorporate variance-intensity dependence into the differential

expression analysis (Baggerly et al., 2001; Newton et al., 2001;

Yang et al., 2002a). Yet another has been to transform the

corrected intensities to try to stabilize the variability over the

intensity range (Cui et al., 2003; Durbin and Rocke, 2004;

Durbin et al., 2002; Huber et al., 2001, Kafadar and Phang,

2003; Rocke and Durbin, 2003).

The above strategies take background correction as a given.

In this article, we take a step back and consider whether*To whom correspondence should be addressed.
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different background correction methods might avoid or

mitigate the problems in the first place. Avoiding background

correction altogether is recommended by Yang et al. (2001a)

and Tran et al. (2002). Qin et al. (2004) examined the effect of

background correction on bias and the ability to detect spike-in

ratio controls. Background correcting the intensities did not

improve the detection of DE genes, but the log-ratios from the

spike-in genes were systematically underestimated when no

background correction was performed.
Another possibility is to replace local background with a

different image analysis measure. The morph background

measure in the Spot software (CSIRO, North Ryde,

Australia) and the TVþL1 model background of Yin et al.

(2005) are non-linear filters which give lower, less variable

values than local background. Yang et al. (2002b) found the

morph background estimate performed best in terms of bias-

variance trade-off, compared with no background, constant

background or local background, producing more extreme

t-statistics for known differentially expressed (DE) genes.
The third possibility is to process the background estimate

other than by subtraction. Edwards (2003) tapers the back-

ground to avoid negative corrected values. Kooperberg et al.

(2002) gives an empirical Bayes model to estimate the true

signal. The limma software (Smyth, 2005) provides a model-

based adjustment (normexp) which requires less input informa-

tion than that of Kooperberg et al. (2002). This method has

proven successful in applied studies (Gilad et al., 2006; Peart

et al., 2005) but has not yet been the subject of a comparative

study. The variance stabilizing models of Huber et al. (2002)

and Durbin and Rocke (2004) incorporate additive components

which avoid negative intensities.
The aim of this article is to compare available background

correction alternatives. We consider a specific context which is

very common in experimental medicine, where the aim is to

detect DE genes from a microarray experiment with a relatively

small number of biological replicates. The popular algorithms

SAM (Tusher et al., 2001) and limma eBayes (Smyth, 2004) are

selected as representative of state-of-the-art statistical differ-

ential expression methods. Both of these algorithms increase

statistical power in small microarray experiments by ‘bor-

rowing’ information between probes. This article examines

which background correction methods perform best in concert

with these differential expression methods.
Section 2 outlines the eight background correction methods

considered. Section 3 describes the data sets used to assess the

methods. Section 4 discusses the major results in terms of bias,

variance and differential expression and Section 5 presents our

recommendations.

2 CORRECTION METHODS

The usual assumption of background correction for two-colour

microarray data is that the background signals, Rb and Gb, are additive

to the true signals, R and G on the raw intensity scale. Given the

observed foreground intensities, Rf and Gf, this allows the true signal to

be estimated by subtracting the foreground and background values,

such that R ¼ Rf � Rb and G ¼ Gf � Gb. The corrected intensities are

then used to form the log-ratio, M ¼ log2ðR=GÞ, and average log-

intensity, A ¼ 1
2 log2ðRGÞ, for each spot.

We compare eight background correction methods (Table 1) which

use different estimates for Rb and Gb and different processing methods

(variants on subtraction) for removing background signal. The methods

are outlined below with details in Supplementary Material. All are

implemented in the backgroundCorrect function of the limma software

package. The standard method can produce negative corrected

intensities while the other methods produce strictly positive corrected

intensities.

Standard: The traditional correction method uses local background

estimates for Rb and Gb and subtracts them from the foreground values.

In this article, mean foreground and local median background estimates

from GenePix Pro 3.0 (Axon Instruments, Union City, CA, USA) are

used.

Kooperberg: Kooperberg et al. (2002) suggest an empirical Bayes

model involving a convolution of normal distributions to background

adjust the signal from each spot. Observed foreground and background

mean intensities and their SDs, along with the number of foreground

and background pixels for each spot in a given channel are used in this

model. Numerical integration is applied to obtain the expected value

of the true signal in each channel for each spot. We implemented this

method by modifying Charles Kooperberg’s S-Plus code (supplied in

a personal communication). In practice, the method is restricted to

GenePix data.

Edwards: A simpler strategy to avoid negative intensities is suggested

by Edwards (2003), who adjusts the foreground intensities by

subtracting the background when the difference between the fore-

ground and background is larger than a small threshold value. When

the difference is less than the threshold, subtraction is replaced by a

smooth monotonic function. This method is applied with local median

background estimates from GenePix.

Normexp: The normexp method is based on the same normal plus

exponential convolution model which has previously been used to

background correct Affymetrix data as part of the popular RMA

algorithm (Irizarry et al., 2003; McGee and Chen, 2006). Two changes

have been made to the method for use with two-colour arrays. First, the

convolution model is fitted to the background subtracted signals for

each channel separately. Second, the kernel density parameter estima-

tion method used in RMA has been replaced by maximum-likelihood

estimation, which is more sensitive to the true parameter values. In

order to make maximum likelihood numerically feasible, a saddle-point

approximation is used to simplify the mathematical form of the

likelihood function. In this article, GenePix data (mean foreground,

median background) was corrected using this model.

Normexpþoffset: A slight variation on the normexp method is to add

a small positive offset, k, to move the corrected intensities away from

zero. This is a simple variance-stabilizing technique, analogous to the

started-log approach described by Rocke and Durbin (2003). It should

reduce the variation of the low intensity M-values, since

log2½ðRþ kÞ=ðGþ kÞ� will be close to 0 for R and G both small relative

Table 1. Summary of the background correction methods considered

Method Data extraction software Bg estimate Adjustment

Standard GenePix Pro 3.0/4.0 Local median Subtraction

Kooperberg GenePix Pro 3.0/4.0 Local mean Model

Edwards GenePix Pro 3.0/4.0 Local median Model

Normexp GenePix Pro 3.0/4.0 Local median Model

Normexpþoffset GenePix Pro 3.0/4.0 Local median Model

Vsn GenePix Pro 3.0/4.0 Local median Model

Morph Spot 2.0 Morph Subtraction

No background GenePix Pro 3.0/4.0 None None
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to k. The use of an offset is effective here because normexp produces

corrected intensities which are positive but may be close to zero. The

value k¼ 50 was chosen on the basis of our previous experience with

cDNA microarray experiments.

Vsn: The variance stabilization method of Huber et al. (2002)

calibrates the data from each channel between arrays and uses a

generalized arcsinh transformation of the data instead of the logarithm.

The arcsinh function is defined for negative values, which ensures

negative corrected signals can be handled. At high intensities, the

arcsinh transform is equivalent to the regular log-ratio, whereas at low

intensities it is close to the difference between the transformed

intensities. This method is implemented in the vsn software and can

be accessed in limma using the function normalizeBetweenArrays by

choosing the method¼‘vsn’ option. Note that the returned intensity and

expression measures from this function are log base 2, rather than the

vsn default of natural logarithms, to allow comparability with the other

methods. In contrast to the other seven methods in this study, vsn

operates on all the arrays together rather than for each array separately,

and background corrects and normalizes the intensity data in one

operation. For all other methods, a separate normalization step is

required.

Morph: The morph background, described in Yang et al. (2002b),

gives lower, less variable estimates of the background than the local

estimates. The morph background is obtained by performing a

morphological opening, which involves applying an erosion operator

(local minimum) followed by a dilation (local maximum) using a

window of fixed size for each image. This background measure is

available in the image analysis software Spot (CSIRO, North Ryde,

Australia) and GenePix Pro 6.0 (Axon Instruments, Union City, CA,

USA). In this article, the mean foreground and morph background

obtained from the Spot software are used.

No background: equivalent to setting Rb ¼ Gb ¼ 0. In this article,

GenePix mean foreground is used with this option.

3 TEST DATA

3.1 Spike experiment

This article uses three test data sets. The first uses Lucidea
Universal ScoreCard (LUS) controls (Amersham Biosciences)

to assess bias. Twelve copies of the LUS control probe set were
printed on nine cDNA microarrays. The spots were printed in
side-by-side duplicate pairs, to make 24 spots in total for each

control probe. The arrays were also printed with a 13K clone
library, but here we analyse the control probes only. Test and

reference control RNA was spiked into the RNA samples prior
to labelling to produce known fold changes (Table 2). The
arrays were scanned on a GenePix 4000B scanner and image

analysed using Spot and GenePix. All eight background
correction methods were applied and, for methods other than

vsn, the resulting log-ratios were normalized using global loess
(Yang et al., 2001b) with a span of 0.6. The larger than usual

span is appropriate because of the smaller than usual number of
spots. The duplicate spots for each probe were combined using
the method of Smyth et al. (2005), as would be done for a

differential expression analysis, to give an estimated log2-fold
change, �̂, for each copy of each probe.

3.2 Mixture experiment

The second data set is from Holloway et al. (2006). Six RNA
mixtures consisting of mRNA from MCF7 and Jurkat cell-lines

in known relative concentrations (100%:0%, 94%:6%,

88%:12%, 76%:24%, 50%:50% and 0%:100%) were com-

pared to pure Jurkat reference mRNA on 12 cDNA micro-

arrays printed with a Human 10.5K clone set. A dye-swap pair

of arrays is available for each of the six mixtures, making

12 arrays in total. All eight background correction methods

were applied and, except for vsn, the data was normalized using

print-tip loess (Yang et al., 2001b). The data was analysed by

fitting probe-wise non-linear regression equations to the

12 arrays, to evaluate the precision and dynamic range of

the microarrays, as described by Holloway et al. (2006). This

analysis produces an estimate T̂i of the MCF7 to Jurkat fold

change for each probe i, a reliable estimate because it combines

information from the entire mixture series. It also provides a

SD �̂i which estimates the between-array measurement error for

that probe.

3.3 Quality control study

The final data set is a quality control study of 111 of the same

10.5K Human cDNA arrays used for the Mixture experiment.

It is used as a source of independent truth for our false

discovery rate comparison. All arrays were hybridized with

MCF7 (Cy3) and Jurkat mRNA (Cy5). Spot image data was

morph background corrected and print-tip loess normalized.

A large proportion of the genes are expected to be DE between

the two samples. We chose the top 30% of genes ranked by

moderated t-statistic (Smyth, 2004) as DE, and the bottom

40% as non-DE. This gave 3098 DE and 4130 non-DE genes.

4 RESULTS

4.1 Heavy versus light background correction

The normalized M- and A-values for one array from

the Mixture experiment are shown in Figure 1. This array

has 100% Jurkat on both channels, so there is no true

differential expression. The differences between the background

correction methods for the same raw data are striking. Most

obvious is that some background correction methods

produce M-values which are much more variable than others,

and this fanning is most apparent at low A-values. The

differences would be visually even more striking if the vertical

scale of the plot was not truncated for compactness. The

M-values for this array are actually as large as 7.5 for standard

Table 2. Summary of LUS controls in the Spike experiment

Control True log fold change A DE?

U03Med log2(3)¼1.58 Medium Yes

U10Med log2(10)¼3.32 Medium Yes

D03Med �log2(3)¼�1.58 Medium Yes

D10Med �log2(10)¼�3.32 Medium Yes

U03High log2(3)¼1.58 High Yes

U10High log2(10)¼3.32 High Yes

D03High �log2(3)¼�1.58 High Yes

D10High �log2(10)¼�3.32 High Yes

Calibration log2(1/1)¼0.00 Low/medium/high No

M.E.Ritchie et al.
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background, 9.6 for Kooperberg, 7.4 for Edwards, 5.5

for normexp and 4.6 for vsn. Only normexpþoffset,

morph and no background show all the data on the plots.

MA plots for the other mixture comparisons are supplied as

Supplementary Material.
The second striking feature of Figure 1 is that the back-

ground methods with less variable M-values also give

compressed ranges of A-values. The most extreme is no

background, for which the A-values start at nearly 8 rather

than at 0.

The hidden cost of standard subtraction, which is not

depicted in Figure 1, is missing values. Across all 12 arrays of

the Mixture experiment, 16.8% of the M-values are missing for

the standard method. The Kooperberg method also gave an

occasional missing value, 14 or 0.01% in total, and the other

methods gave none.

Taking these features into account, we can place the

background correction methods broadly on a continuum for

which standard background and no background form the

extremes. At one end are methods which change the foreground

Fig. 1. MA-plots obtained using different background correction methods for a self-self hybridization of pure Jurkat from the Mixture experiment.

Comparison of background correction methods
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intensities relatively little giving intensities which are offset
away from zero and low M-value variability. At the other end

are methods which change the foreground intensities the most,
giving a full range of intensities down to zero and highly

variable M-values. The background methods can be ordered in
this way from low to high offset as: standard, Kooperberg,

Edwards, normexp, vsn, morph, normexpþoffset and no
background.
For the array in Figure 1, high offset and low M-value

variability is desirable because the true M-values are zero. For
other arrays with genuine differential expression, compression

of the M-values may appear as bias. A major aim of this study
is to determine where this trade-off should be drawn for

confident assessment of differential expression.

4.2 Precision

The overall results from the Mixture experiment are now

presented. The residual SD for each probe (�̂i) is a measure of
the precision with which the expression values returned by the

microarrays follow the pattern of the mixing proportions.
Figure 2 shows the trend in variability for each background

method. For ease of comparability, the A-values have been
standardized to be the same for each method. The vertical scale

is log2-variance, so each unit on the vertical axis corresponds to
a 2-fold change in variance or a halving of statistical

information.
Most of the background methods show a trend to increasing

precision at higher intensities. The trend is strongest for low
offset methods and weakest for high offset methods, with no

background and normexpþoffset actually reversing the trend at
the lowest intensities. It is clear that higher offsets give higher

precision, although the different methods converge at higher
intensities. The Kooperberg and Edwards methods give

unexpectedly low precision at medium intensities and vsn
gives unexpectedly low precision at high intensities.

Interestingly, we found that by varying the offset k used for
normexp, we could nearly match the precision curves obtained

from the standard method, from morph and from the
no background method (see Supplementary Material). We

conclude that precision is largely a function of offset, but that
the Kooperberg, Edwards and vsn methods are somewhat less

precise than their effective offsets would predict.

4.3 Bias

It is to be expected that higher precision, purchased by

compressing the intensity range, will result in attenuated
signal as well. This is confirmed by examining the MCF7-

Jurkat log-fold changes, (log2 T̂i), estimated from the Mixture
experiment. Figure 3 shows boxplots of the log-fold changes

arising from each method. The spread of fold changes is clearly
less for the higher offset methods, although the largest fold

changes are nearly as great in all cases.
To examine whether a smaller spread of fold changes can be

interpreted as bias, we turn to the Spike experiment data. The
predicted log-ratios for the LUS controls (see Table 2) were

recovered more closely by some background correction
methods than others. Figure 4 shows the M-values for the

non-DE calibration controls and the DE D03Med ratio

controls for a typical slide. The vsn method produced

M-values which were systematically off target, being too low

for both calibration and ratio controls. Using vsn to normalize

the LUS controls together with the experimental probes did not

alleviate the problem. The other methods produced M-values

which were unbiased for the calibration controls and slightly

attenuated towards zero for the ratio controls. The amount of

attenuation increases steadily with the size of the effective

offset, with the exception of vsn. The pattern was similar

but less pronounced for the high intensity ratio controls

(see Supplementary Material). Similar results were found

for all the arrays in the Spike experiment (Supplementary

Material).
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To summarize the bias for each background method, the

mean absolute bias of the estimated log2-fold changes, j�̂i � �j,
was computed over all the control probes, where � is the true

log2-fold change given in Table 2. In order of increasing

bias, the methods were Kooperberg (0.213), standard (0.219),

Edwards (0.219), normexp (0.238), vsn (0.263), morph (0.284),

normexpþoffset (0.305) and no background (0.342). Again, the

ordering is from low to high offset methods. This shows that

high offset for background correction translates to high bias as

well as high precision.

4.4 Assessing DE

We now assess differential expression using arrays from the

Mixture experiment. Ignoring the self-self hybridizations, the

Mixture experiment consists of five dye-swap pairs of arrays.

We assessed differential expression between MCF7 and Jurkat

using each pair of arrays separately. The RNA mixtures vary

from 100 to 50% MCF7, so the magnitude of the fold changes

will vary from one pair of the arrays to another, but the set of

DE genes should be the same in each case.
Using only two arrays to find DE genes presents a

challenging problem, because there is only one degree of

freedom available to estimate genewise SDs. The level of

difficulty further increases with the concentration of Jurkat in

the MCF7:Jurkat RNA mixture. The use of ordinary t-tests or

other traditional univariate statistics to assess differential

expression would be disastrous (Smyth, 2004). Instead we use

two of the most popular algorithms for microarray differential

expression which have the characteristic of ‘borrowing’

information between genes. These algorithms have the ability

to make statistical inferences with some confidence even for

small numbers of replicate arrays. Genes were ranked in terms

of evidence for differential expression using SAM regularised

t-statistics (Tusher et al., 2001 and using empirical Bayes

moderated t-statistics (Smyth, 2004). The statistics were
calculated using the samr (http://www-stat.stanford.edu/�tibs/
SAM) and limma software packages, respectively.

To assess the success of the differential expression analyses,
an independent determination of which genes are truly DE is
required. We selected the top 30% of genes from the quality

control study as unambiguously DE and the bottom 40% as
unambiguously non-DE. The remaining 30% of genes were
treated as indeterminate and are not used in the analysis.

Figure 5 shows the number of false discoveries for each
method versus the number of genes selected by ranking the
genes using jtj-statistics, from largest to smallest for limma

eBayes (a) and SAM (b). The curves have been averaged
across the five dye-swap pairs. The curves show that the high
offset background correction methods generally do better

than low offset methods, with the best performance
achieved by normexpþ offset, then morph, then vsn. The
standard method of background subtraction is by far the worst

method.
Comparing the SAM and limma results, SAM gives some-

what more false discoveries but this effect is more marked for
some background methods than others. SAM does nearly as
well as limma for the best three background correction

methods, but its performance trails off more rapidly than that
of limma when presented with less than optimal background
values. In particular, SAM is much worse than limma for the

no background choice. With limma, the no background option
does nearly as well as the best methods, whereas it is the second
worst method with SAM. SAM is also noticeably poorer for the

low offset methods Kooperberg and Edwards.
We investigated why SAM should perform so poorly with the

no background option. The issue appears to be the amount of

moderation which is done of the genewise sample variances or
standard errors. Limma smoothes the genewise variances
towards a common value, controlling the degree of smoothing

by the ‘prior degrees of freedom’ (pdf) (Smyth, 2004). With the
no background option, limma estimates the pdf to be 5.4 on
average, indicating that a large amount of smoothing is

occurring. By comparison, limma uses pdf of only 1.7 on
average for the standard background method, indicating much

less smoothing of the variances. The general trend for the
limma analyses is that more smoothing is done for the high
offset background methods. In SAM, the amount of smoothing

is controlled by the exchangeability factor s0 added to the SD in
the denominator of the t-statistic. The exchangeability factor is
a percentile of the SD values, and the percentile indicates the

amount of smoothing. For the no background method, s0 was a
low percentile (35th, 20th, 65th, 35th and 65th for each mixture)
which indicates only modest smoothing is done. By compar-

ison, SAM uses the 100th percentile, the maximum allowed
value, in every case with normexp. It appears that SAM is less
able than limma to adapt the amount of smoothing to all

situations.

5 DISCUSSION

Our study has shown that the different background correction
options differ markedly in terms of bias and precision, and that

bias and precision need to be traded off as they are competing
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requirements. We assessed this trade-off in terms of false

discovery rates in the context of a small-scale microarray

experiment.
Our first result is that the standard and most common

method of background correcting microarray data is far worse

than other methods, resulting in a sizeable number of false

discoveries. We hope that the traditional practice of subtracting

local background will gradually disappear given that better

options are readily available. Abandoning the standard back-

ground correction method would also avoid the chronic

problem of missing values, which greatly complicate down-

stream data analysis. All the other methods considered return

strictly positive intensities and avoid missing values. The

performance of the other extreme, no background correction,

was better but still poor when used with the SAM algorithm.
The best performing background methods are those which

best stabilize the variance as a function of intensity, namely

normexpþoffset, morph and vsn, in that order. Despite the fact

that these methods are more biased than the standard method,

tending to attenuate the signals somewhat, the improvement in

precision has been shown to outweigh the increase in bias for

the purpose of detecting differential expression. It is interesting

to note that normexpþoffset and morph appear to give the

best stabilization of the variance as a function of intensity in

Figure 2, even beating vsn, which is explicitly designed to

stabilize the variance.

The morphological opening background estimator, morph, is

to date available only in Spot software or as a user-determined

option in GenePix Version 6.0. The model-based method

normexpþoffset appears to give the same benefits as morph but

can be used with any image analysis software.
For this study, we chose the offset k for normexpþoffset

based on our previous experience with cDNA microarray

experiments. In practice, the value of k is chosen by examining

MA-plots of the microarray data, and choosing the offset so as

to visually stabilize the variability of the M-values as a function

of intensity. A more numeric algorithm could be devised, for

example k could be chosen to maximize the prior degrees of

freedom estimated by limma in a linear model analysis.

However, we have not found results to be sensitive to the

specific value of k used, i.e. good results are typically obtained

for a range of sensible values (Supplementary Material).

Durbin and Rocke (2004) have previously shown how an

additive offset can behave as a simple but effective variance

stabilizing transformation. Our offset k is similar to the offset c

in their started-log transformation and to the free parameter in

their generalized-log transformation. This relates directly to the

continuum that we observe in Section 4 from light to heavy

background correction methods. Our normexpþoffset has

many properties similar to the started-log transformation.

A key advantage of normexp however is that positivity of the

corrected intensities is enforced before the offset is applied. This

ensures that the offset is comparable for all spots and arrays

regardless of the background level, and allows the offset to be

chosen purely to stabilize the variance rather than having to

achieve positivity at the same time.

The two differential expression methods, SAM and limma,

had comparable performance with the best background

correction methods, but limma was better able to adapt to

background options with different characteristics.
Our study did not focus on normalization methods, but the

unusual biases noted on some arrays after vsn normalization

were less evident in the loess normalized data. This suggests

that the removal of intensity-dependent trends in the data can

improve the accuracy of the expression measures. Removal of

such trends are not possible using the linear normalization

procedure used in vsn.
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