
Vol. 24 no. 1 2008, pages 71–77
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm347

Gene expression

Correcting for gene-specific dye bias in DNA microarrays using

the method of maximum likelihood
Ryan Kelley1,*, Hoda Feizi2 and Trey Ideker2
1Program in Bioinformatics and 2Department of Bioengineering, University of California, San Diego 9500 Gilman Drive,
La Jolla, CA 92093-0412, USA

Received on November 22, 2006; revised on June 21, 2007; accepted on June 27, 2007

Advance Access publication July 10, 2007

Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: In two-color microarray experiments, well-known

differences exist in the labeling and hybridization efficiency of Cy3

and Cy5 dyes. Previous reports have revealed that these differences

can vary on a gene-by-gene basis, an effect termed gene-specific

dye bias. If uncorrected, this bias can influence the determination of

differentially expressed genes.

Results: We show that the magnitude of the bias scales multi-

plicatively with signal intensity and is dependent on which nucleotide

has been conjugated to the fluorescent dye. A method is proposed

to account for gene-specific dye bias within a maximum-likelihood

error modeling framework. Using two different labeling schemes,

we show that correcting for gene-specific dye bias results in the

superior identification of differentially expressed genes within this

framework. Improvement is also possible in related ANOVA

approaches.

Availability: A software implementation of this procedure is freely

available at http://cellcircuits.org/VERA

Contact: rmkelley@ucsd.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Two-color microarray experiments are an instrumental tool in

modern biology (Young, 2000). In a typical experiment, RNA

is extracted from two samples (populations of cells); labeled

with Cy3 or Cy5 fluorescent dyes, respectively; hybridized to an

array of DNA probes; and imaged with a confocal scanning

device. Due to differences in dye chemistry, the measured

intensity distributions for each dye are not directly comparable.

Several normalizations are commonly applied to address this

issue. First, each intensity distribution is median centered

(Quackenbush, 2002; Tseng et al., 2001). Second, the LOESS

procedure is used to normalize the intensity-dependent bias of

each dye (Yang et al., 2002). In LOESS, the bias at each

intensity is estimated from a window of data points with similar

intensity values. This estimate is then used to correct the

measured values at that intensity. In order to obtain meaningful

results from two-color microarrays, it is important that both of

these biases are corrected.

Recently, an additional source of systematic error in

two-color microarray experiments has been identified

(Dobbin et al., 2005; Dombkowski et al., 2004; Rosenzweig

et al., 2004). Although still dye dependent, unlike the

aforementioned sources of error its magnitude varies according

to each individual measured transcript. Accordingly, this bias

has been termed Gene-Specific Dye Bias (henceforth abbre-

viated GSDB), and even data that have been median centered

and LOESS corrected will display a consistent bias in either the

Cy3 or Cy5 direction for a given probe. This effect has been

observed on a variety of platforms and labeling systems,

including PCR-spotted and short oligonucleotide arrays used in

conjunction with either direct or indirect labeling methods

(Dobbin et al., 2005). In addition to this work with two-color

arrays, sequence-specific effects have been reported within

single color array systems such as Affymetrix GeneChips

(Hekstra et al., 2003; Naef and Magnasco, 2003). These effects

can confound the discovery of differentially expressed genes

(false negatives) or, depending on the experimental design, lead

to their erroneous identification (false positives) (Dombkowski

et al., 2004).
In a proper experimental design, the dyes used to label a

given sample are balanced. That is, every microarray experi-

ment is duplicated by one that reverses the Cy3 versus Cy5

labeling orientation of the samples (i.e. such that Cy5 labels

the first sample and Cy3 labels the second). Dye balancing

mitigates gene-specific dye bias because the direction of bias

alternates from replicate to replicate such that the average

effect is zero. However, although the mean bias is zero the

variance across replicate measurements is now greatly increased

by the presence of gene-specific dye bias. Increased variance, in

turn, decreases the sensitivity in identifying differentially

expressed genes.

Recognizing the limitations of dye balancing experiments,

the problem of GSDB has been addressed using a variety

of sophisticated experimental and bioinformatic techniques.

Rosenzweig et al. (2004) proposed to handle GSDB with a

modified experimental design utilizing the addition of control

microarrays. They found that employing their strategy with 10

replicate microarrays could yield comparable technical*To whom correspondence should be addressed.
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accuracy to a 16 replicate experiment performed with a
traditional balanced design. Using an analysis of variance
(ANOVA) model, Martin-Magniette et al. (2005) developed a

test statistic (the label bias index) to measure the extent of
GSDB across a microarray and discussed possible ramifications

on the design of indirect comparison experiments. In a related
approach, Dobbin et al. (2005) characterized GSDB as well as

other sources of systematic error such as cell-line specific bias.
Correcting for GSDB within an ANOVA framework, they
found significant differential expression for 18% more genes

than if such a correction was not applied. Without a gold
standard set of differentially expressed genes, however, it is

unclear whether this represents an increase in the number of
true or false positives.
One limitation of ANOVA is that the general linear

framework does not capture all of the complex errors that
could possibly influence a microarray experiment. Therefore, in

parallel to ANOVA, several groups have proposed more
advanced microarray error models, e.g. that capture both

additive and multiplicative errors influencing each measured
dye intensity (Huber et al., 2002; Ideker et al., 2000; Rocke and
Durbin, 2001). A maximum-likelihood approach is then used to

optimize model parameters and to score differentially expressed
genes. On the one hand, these models have the potential to

more closely reflect the true error structure. On the other, it is
unclear whether the additional complexity is warranted, and

none of these models have been updated to account for the
presence of GSDB.
Here, we present our efforts to both characterize gene-

specific dye bias and to extend a maximum-likelihood error
modeling approach to correct for its influence. By conducting

the identical gene expression experiment using two different
labeling systems, we demonstrate that correcting for the
presence of GSDB results in the improved detection of

differentially expressed genes.

2 METHODS

2.1 Error model

The proposed error model expands upon previous work to determine

differentially expressed genes through the incorporation of both

multiplicative and additive error (the VERA error model) (Ideker

et al., 2000). To extend this model to capture GSDB, it is conceptually

possible to model this bias as either a multiplicative or additive error

term. Equation (1) displays a concise representation of the error model

as originally proposed with additional terms to capture GSDB as

multiplicative error.

xij ¼�xi 1þ "xij þ IðCy5Þ�
i

� �
þ �xij ð1Þ

yij ¼�yi 1þ "yij þ IðCy5Þ�
i

� �
þ �yij ð2Þ

"x �Nð0, �"x Þ, "y � Nð0, �"y Þ,Corrð"x, "yÞ ¼ �" ð3Þ

�x �N 0, ��x
� �

, �y � N 0, ��y
� �

ð4Þ

Alternatively, to model bias as additive error, Equations (1) and (2) are

replaced with (5) and (6), respectively.

xij ¼�xi 1þ "xij
� �

þ IðCy5Þ�
i
þ �xij ð5Þ

yij ¼�yi 1þ "yij
� �

þ IðCy5Þ�i þ �yij ð6Þ

Here, (xij, yij) are the observed dye intensities for gene i in replicate j.

The variable � is the true underlying intensity for each dye, while " and

� represent multiplicative and additive error terms, respectively. Each of

these error terms is normally distributed with mean zero and distinct

SD, �. The multiplicative errors "x and "y may be highly correlated

(with coefficient �"). It is also possible to include a correlation term for

the additive errors; however, in practice, this correlation is near zero.

Extending beyond previous work, the model is given the additional

gene-specific bias term �. This correction is only applied if the values

are taken from Cy5 intensity data, as enforced by the indicator function

I(Cy5). The symmetric model, in which the correction is applied to the

Cy3 channel only, would perform identically with the exception that the

learned bias terms would be negated.

To fit the model to gene expression data, for each gene a total of

three parameters (�x, �y, �) must be learned, in addition to the five

global error parameters ð�"x , �"y , �", ��x , ��y Þ shared over all genes.

Maximum-likelihood estimates of all parameters are derived via an

iterative procedure implemented in the MATLAB programming

language (Ideker et al., 2000). Briefly, after selection of initial values

for all parameters, the global error parameters are optimized to

maximize the likelihood function utilizing a conjugate gradient

approach (Press and Numerical Recipes Software (Firm), 1997).

These new global error estimates are then held constant during a

similar estimation of the gene-specific parameters (�x, �y, �). These two

optimizations continue to alternate in an iterative fashion until

estimates for all parameters have converged. Through simulation, it is

apparent that the parameters estimated in this fashion are subject to

bias due to small-sample size (i.e. small numbers of replicates).

Appropriate corrections are applied to remove this bias, as described

in Supplementary Figures 1 and 2.

Following parameter estimation, a generalized likelihood ratio test is

used to assess the extent of differential expression for each gene.

According to this test statistic, the likelihood of the expression data for

a gene under the optimal model parameters (numerator of the

likelihood ratio) is compared to the likelihood of the same data under

an alternative model with the constraint �x¼�y (the ‘null’ hypothesis

of no differential expression; denominator of the likelihood ratio).

2.2 Assessing dye bias

The VERA error model incorporating bias as an additive term was

applied to the set of control data (see Section 2.4). For each gene,

a single bias term � was learned. To determine the relationship between

overall intensity and the magnitude of bias, the ‘lowess’ function in R

(with default parameters) was used to calculate a smoothed estimate

of the absolute value of bias as a function of the average value of

�x and �y.

2.3 ANOVA analysis

Within an ANOVA framework, different methods can be used to

estimate differential expression based on how the residual error for each

gene is determined. The R/maanova package defines four such

measures: F1, F2, F3 and Fs (Wu, 2003). F1 is the usual F-statistic,

which determines the residual error independently for each gene, while

the remaining measures represent different ways of pooling the residual

error over multiple genes (Cui et al., 2005). F3 models a single residual

averaged over all genes, while F2 sets the residual for each gene as an

average of its F1 and F3 estimates. The Fs statistic is similar to the F2,

but uses the heterogeneity of the error estimates to inform the exact

weighting of the average. As a fifth measure, the R/VarMixt package

(Delmar et al., 2005) was used to model residual error as a mixture of

different sub-populations of genes, as employed by Martin-Magniette

et al. (2005) in their earlier assessment of GSDB (see Section 1). In each

of these five cases, a fixed ANOVA model was employed using the

factors Array, Dye and Sample. In the case of the non-dye-bias-

corrected analysis, Dye was not used as a factor.
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2.4 Sample growth and treatment

In total, 12 microarray experiments were performed, 4 control

(comparing untreated versus untreated) and 8 treatment (comparing

untreated versus mild hydrogen peroxide treatment). In each control

microarray experiment, a single colony of BY4741 (ATCC, Manassas,

Virginia, USA) was used to inoculate 10ml of YPD media. Following

overnight growth at 30�C, this culture was then resuspended in 100ml

media at an OD600 of 0.1 and placed in an orbital shaker at 30�C.

Following growth to OD600¼ 0.6, the culture was split into two 50ml

portions and allowed to continue growth to OD600¼ 1.0. Cells were

then harvested by centrifugation at 3000 r.p.m. for 5min. Pellets were

immediately frozen in liquid nitrogen and stored at �80�C. Handling of

the mild hydrogen peroxide treatment samples was similar, except that

one member of each aliquoted pair was treated with 0.1mM hydrogen

peroxide 1 h prior to collection.

2.5 RNA extraction, labeling and hybridization

RNA from each sample was isolated via phenol extraction followed by

mRNA purification [Poly(A)Purist, Ambion, Catalog # 1916]. Purified

mRNA from the control experiments was labeled with dUTP

incorporating either Cy3 or Cy5 dye (CyScribe First-Strand cDNA

labeling kit, Amersham Biosciences). The eight hydrogen peroxide

treatment pairs were broken into two equal-sized groups of four pairs

each. In one group, dUTP-labeled dye was used to label the transcripts,

while in the other group, dCTP-labeled dye was substituted. Within

each group, Cy3 and Cy5 labelings were assigned to create a balanced

design. Complementary labelings (Cy3 versus Cy5) were hybridized to

an Agilent oligonucleotide expression array (Catalog # G4140B).

2.6 Data acquisition and analysis

Arrays were scanned using a GenePix 4000A and quantified with the

GenePix 6.0 software package. Prior to further analysis, the data from

each array were subjected to background and quantile normalization

(Bolstad et al., 2003).

2.7 Comparing replicates

Each error model (VERA and the five ANOVA variants) was used to

rank genes according to their significance of differential expression, for

both the dUTP-labeled and dCTP-labeled sets of replicate microarray

experiments (hydrogen-peroxide treated versus untreated). For a given

rank cutoff, a superior GSDB correction method should result in higher

overlap between the sets of differentially expressed genes identified by

the two labeling methods. To ensure that this overlap is due to the

enhanced identification of true positives and not shared false positives,

a ‘baseline overlap’ value was also calculated between ordered lists

derived from the dCTP-labeled treatment series and the control series

(see Section 2.4). Since there are no truly differentially expressed genes

in the control series, any overlap in this comparison represents shared

false positives or random overlap events. The actual overlap was

reported after subtracting this baseline value.

To assign significance values of differential expression to the control

series, two of the four arrays must be arbitrarily assigned as the

‘forward’ labeling. Since there are three equally valid such assignments,

the baseline overlap was determined in all three configurations and the

average was used.

3 RESULTS

3.1 Characterizing gene-specific dye bias

We first performed a series of microarray controls to confirm

and further characterize the extent of gene-specific dye bias.

Two samples of mRNA extracted from yeast undergoing

exponential growth in identical conditions, were directly labeled

with either Cy3 or Cy5 dyes conjugated to dUTP. These labeled

samples were co-hybridized to an Agilent v2 Yeast Oligo

Microarray, and ln(Cy3/Cy5) ratios were determined for each

gene following median and quantile normalization. Additional

cultures, mRNA extractions and hybridizations were analyzed

to generate a total of four separate microarray replicates.

Since mRNA for each labeling was extracted from identical

conditions, the true log ratio for all genes is zero. When

examining multiple replicates, the observed log ratio deviates

from zero due to various sources of error, such as uncontrol-

lable biological variation between replicates and noise in the

experimental analysis. If there is no gene-specific bias, the value

of this deviation will vary around zero and will not be repro-

ducible across replicates. However, as shown in Figure 1, this is

strikingly not the case. When comparing two control experi-

ments, the correlation over all log ratio values is at least 0.85,

illustrating the presence of clear gene-specific bias. Since the

only difference between the numerator and denominator of the

log ratio is the dye used for labeling, this gene-specific effect

must be dye bias. For the most affected genes, the bias effect

alone can cause the ratio to deviate by more than 2-fold. Such

a deviation can easily influence determination of differential

expression.
To further investigate the source of bias, we computed the

correlation between the dye bias of each gene and the frequency

of each nucleotide (A, C, G, T) in the sequence representing the

gene on the microarray (Fig. 2). Gene-specific dye bias was

measured as the average natural log ratio (Cy3/Cy5) over the

four replicate control hybridizations. The most significant

correlation was found with adenine content (Fig. 2A). Since the

cDNA was labeled with Cy3 or Cy5 dyes conjugated to dUTP

(the complement of adenine), the bias is thus proportional to

the number of incorporated dye molecules. This result is then

consistent with the less efficient incorporation of Cy5 dye by

the polymerase.

3.2 Formulating an error model

It is possible to model bias as either a multiplicative or additive

error term (see Section 2). If the values of �x and �y vary

substantially, the effect of an additive bias term will be different

than a multiplicative one (i.e. only a multiplicative bias term

will scale with the magnitude of �). However, this distinction is

irrelevant if the true intensity values for each dye (�x and �y)

are equal. While this is generally not true, it is the case for the

control experiments presented previously. Therefore, control

data can be used to decide if it is more appropriate to model

bias as a multiplicative or additive error term.

Using an additive error model, we learned bias values for

each gene in the control data. Figure 3 shows the relation

between the absolute magnitude of this bias and the mean

signal intensity. Across different genes, there is a clear

multiplicative relationship between the magnitude of bias and

the mean signal intensity. An equivalent result was determined

when a multiplicative error model was applied instead. Since

bias terms tend to increase multiplicatively with mean intensity,

Correcting for gene-specific dye bias
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Fig. 1. Gene-specific dye bias in oligonucleotide arrays. Gene-specific dye bias is present and highly reproducible in an oligonucleotide expression

microarray system. The scatter plot of panel A details a comparison of log ratio values from two separate control experiments. The inset in the upper

left quantifies all six pair-wise correlations among the four replicate control experiments. As a different perspective on the same information, panel B

presents the four replicateCy3 versus Cy5 intensity values for several genes (numbers 1–8) with apparent large gene-specific dye bias.

Fig. 2. Bias strength is related to labeled nucleotide. The upper left panel shows that strongest correlation between gene-specific dye bias in a dUTP-

labeled control experiment and nucleotide content is with the frequency of adenine.
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it is likely more appropriate to model bias as a multiplicative

error term.

3.3 Benchmarking model performance

We next set out to determine whether the VERA model was

able to correct for the presence of gene-specific dye bias in

experimental data. The original set of control expression

profiles was analyzed with both the corrected (multiplicative

bias) and uncorrected (no bias) models. Figure 4 displays the

distribution of ln(�x/�y) values from each analysis. In the case
of the corrected VERA method, the spread of log ratio values is
much tighter around the origin. Quantitatively, the variance of

the uncorrected log ratios is 5.2� 10�3, compared to 3.4� 10�3

for the corrected algorithm. Thus, following bias correction
the observed ratios tend to be closer to the true expected value

of zero.
To further validate our approach and to benchmark it against

other methods that have been proposed for correcting dye bias,

we performed two additional sets of experiments. In each
experimental set, we profiled the response of yeast to mild
oxidative stress (0.1mM hydrogen peroxide versus nominal

conditions) over four replicate microarrays. The only difference
between sets was that in one case, dUTP was used in the labeling
process, while in the other dCTP was used. Since the frequency

of the labeled nucleotide within a sequence is related to its gene-
specific bias (see Section 3.1), the two labeling schemes create

different gene-specific dye biases while preserving the same true
changes in gene expression. A method that correctly accounts
for and eliminates the effect of gene-specific dye bias should

maximize the agreement between these two data sets.
Figure 5 compares the ability of different methods to

recover differentially expressed genes in the dUTP-labeled set

that were identified in the dCTP-labeled set also. Previous
methods to correct for GSDB model the effect as an ANOVA
factor. To implement this approach, we relied upon the

MAANOVA and VarMixt packages (Delmar et al., 2005;
Wu, 2003). Since the true number of differentially expressed
genes is unknown, this comparison was performed over a range

of thresholds for calling differentially expressed genes (Irizarry
et al., 2005). At nearly all possible points in this range, the bias
corrected VERA approach displayed the best performance.

This was followed by the corrected ANOVA statistic and the
uncorrected VERA approach. ANOVA results are reported for

the Fs statistic; as it previously showed the best performance
over a wide range of simulated data (Cui et al., 2005). At a rank
threshold of 300, the overlaps for all methods are significantly

enriched over random (hypergeometric P-value¼ 5.4� 10�9 for
uncorrected Fs statistic). The improvement of performance
of the corrected VERA algorithm over the uncorrected one

is also significant at the same rank threshold (binomial
P-value¼ 3.5� 10�5). Comparison to alternative versions of
the F-statistic (F1, F2, F3 and VarMixt) are available in

Supplementary Figure S3.
When the choice of labeled nucleotide is changed from dUTP

to dCTP, one would expect the correlations between dye bias

and nucleotide content to be altered as well. Indeed, in the
dCTP labeling experiments, we observed the strongest dye bias
correlation was with guanine frequency (correlation¼ 0.39)

rather than adenine frequency as observed earlier for dUTP.
This reinforces the finding that the choice of labeled nucleotide

has a strong impact on gene-specific dye bias.

4 DISCUSSION

The performance of VERA improved significantly when
corrected for GSDB. For the ANOVA F2, Fs and VarMixt
statistics, dye-bias correction also improved performance

(Fig. 5 and Supplementary Fig. S3), while little to no
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Fig. 3. Gene-specific dye bias is multiplicative in nature. The VERA

error modeling procedure is applied to control data and used to

determine the values of the parameters �x, �y and � for each gene.

Here, the smoothed estimate of the absolute value of � is plotted as a

function of the mean value of �x and �y. The data used to generate this

smoothed line is also displayed as individual points.
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Fig. 4. Application of dye-bias correction reduces variance in a control

experiment. The solid curve represents the probability distribution of

log ratio values determined following application of the corrected

VERA method to control data. Conversely, application of the

uncorrected VERA approach to the same data results in a distribution

of log ratio values with larger variance (dashed line).
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improvement was observed for the F1 and F3 statistics. For the

F1 statistic, it is likely that the lack of shared error estimates

across genes in combination with the small sample size made

accurate error estimation difficult, even with dye-bias correc-

tion. For the F3 statistic, the estimate of error is identical for all

genes by definition. Therefore, since the dye-bias correction in

the ANOVA framework affects only the relative determination

of gene-specific residual error, the F3 rankings of differential

expression must be identical with and without correction.

VERA’s greater agreement between dCTP- and dUTP-labeled

experiments (compared to ANOVA) is likely due to its more

complex error model, which accounts for both additive and

multiplicative errors. The ANOVA models account for multi-

plicative error only (which becomes additive after log transfor-

mation of the intensity values). On the other hand, ANOVA

provides a flexible framework that can be easily extended to

handle additional factors influencing an experiment (e.g. cell-

line, treatment, dye, array).
While error models such as these can mitigate the effect of

gene-specific dye bias, it would always be preferable to remove

or reduce such bias if possible. Having identified nucleotide

content as one contributing factor, this information might be

useful in the future design of arrays. For example, probes might

be chosen so as to minimize variation in adenine nucleotide

content. An alternative might be to use a mix of labeled

nucleotides during first strand cDNA synthesis.

In the exploratory phase of this work (see Section 3.1), we

used the average ratio values determined from control

experiments as an estimate of gene-specific dye bias. Only

later (see Sections 3.2–3.3) was this bias modeled explicitly in

the context of a probabilistic framework incorporating other

errors. However, this raises an important question. Is an error

modeling process required at all? Alternatively, one could

simply estimate bias values from replicated controls and

directly apply these estimates to future experimental results.

One problem with this simpler approach is that not all genes are

highly expressed under control conditions. The signals asso-

ciated with low intensity genes would still be dominated by

error, especially when these genes become highly expressed in

some other (non-control) condition. In addition, Rosenzweig

et al. (2004) noted that the gene-specific dye bias can be

somewhat variable between experiments. Therefore, the values

learned in a control experiment may be inapplicable, whereas

the maximum-likelihood model is custom-fit to each experi-

mental data set.
In a properly balanced microarray experiment, the influence

of gene-specific dye bias on the production of false-positive

measurements is mitigated, if not eliminated. As Dobbin et al.

(2005) noted, the predominant effect is the generation of more

false negatives. In addition, gene-specific effects can alter the

ordering of significant genes, which many statistical methods

rely upon. How important is it then to correct for gene-specific

dye bias? This is a question that cannot be addressed in a

universal manner. As shown by our experiments with different

labeled nucleotides, the magnitude of gene-specific dye bias is

apparently platform specific, and its impact depends critically

on this magnitude in relation to the magnitude of the expression

changes occurring in the biological system. Certainly, if the

reliable identification of subtle differential expression changes is

desired, then correcting for this systematic bias is crucial.

Fig. 5. The dCTP- versus dUTP-labeled expression data is compared for different analysis methods. Since the true number of differentially expressed

genes is unknown, the calculation is performed over a range of values (x axis). The y axis shows the number of genes assumed to be significant in both

labeling approaches after correcting for any bias in the method (see Section 2.7).
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In summary, we have presented a method for correcting

gene-specific dye bias with a maximum-likelihood model and

test for differential expression. This method can effectively

learn the parameters of the systematic bias without the need for

additional control microarray experiments. An implementation

of this algorithm is freely available at http://cellcircuits.

org/VERA/.
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