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Abstract
Background: Quality-control is an important issue in the analysis of gene expression microarrays.
One type of problem is regional bias, in which one region of a chip shows artifactually high or low
intensities (or ratios in a two-channel array) relative to the majority of the chip. Current practice
in quality assessment for microarrays does not address regional biases.

Results: We present methods implemented in R for visualizing regional biases and other spatial
artifacts on spotted microarrays and Affymetrix chips. We also propose a statistical index to
quantify regional bias and investigate its typical distribution on spotted and Affymetrix arrays.

We demonstrate that notable regional biases occur on both Affymetrix and spotted arrays and that
they can make a significant difference in the case of spotted microarray results. Although strong
biases are also seen at the level of individual probes on Affymetrix chips, the gene expression
measures are less affected, especially when the RMA method is used to summarize intensities for
the probe sets. A web application program for visualization and quantitation of regional bias is
provided at http://www.discover.nci.nih.gov/affytools.

Conclusion: Researchers should visualize and measure the regional biases and should estimate
their impact on gene expression measurements obtained. Here, we (i) introduce pictorial
visualizations of the spatial biases; (ii) present for Affymetrix chips a useful resolution of the biases
into two components, one related to background, the other to intensity scale factor; (iii) introduce
a single parameter to reflect the global bias present across an array. We also examine the pattern
distribution of such biases and conclude that algorithms based on smoothing are unlikely to
compensate adequately for them.

Background
Microarrays and other new high-throughput technologies
are changing the way molecular biology is practiced.
However microarray platforms and protocols are still
under development, and the causes of common errors
and artifacts are still not completely understood or con-

trolled. Over time and replications, many types of errors
seem almost random. Others, however, affect many gene
expression measures at once, introducing systematic
biases into the data. Most statistical methods are designed
to deal with measures corrupted by random noise;
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methods to deal with systematic biases are not so well
developed.

Spotted arrays
Over the extent of a single spotted microarray, factors such
as temperature, liquid flow rate or RNA diffusion rate may
differ among different regions on the array. Often, wash-
ing is less thorough near the edges of a slide, contributing
to higher local off-spot background near the edges. High
local background usually pushes up the spot measures,
although not always predictably. To detect such technical
artifacts, it is now standard practice to examine images of
slides for pronounced irregularities and high back-
grounds. Such examination can identify many types of
faults, but even a skilled technician may miss regions of
higher than average intensity in Affymetrix arrays or mod-
erate biases in the ratios calculated for spotted arrays,
since the vast majority of spots appear dim in images cal-
ibrated for the dynamic range of the brightest spots. At the
moment there is no way of quantifying regional biases,
and a lot is left to the technician's judgment.

Affymetrix arrays
To address such issues, Affymetrix has gone to great
lengths to standardize their procedure. However, uniform
results are rarely achieved in practice. Often a bubble
remains after filling an Affymetrix cassette. This bubble
will not travel uniformly over the chip during hybridiza-
tion mixing and may get stuck or move in an irregular cir-
cuit. Scratches and other manufacturing imperfections can
make a difference. Scratches are sometimes visible with
the aid of software such as dChip [1] or RMA [2].
Although a skilled technician can identify some of the
grosser faults by examining the images of hybridized
Affymetrix chips, he or she has no current standard for
measuring how serious the problems are or for knowing
whether other sorts of systematic problems are evading
scrutiny.

Current practice in quality assessment for spotted arrays
considers individual spot measures, such as area and sig-
nal/noise ratio [3]. Current quality metrics for Affymetrix
arrays consider 3'/5' ratios for selected genes and spike-in
ratios. These quality metrics don't take variation within a
slide or chip into account. We show here that such bias,
which is currently ignored, can be a significant problem.

Methods
All computation was done within the R programming
environment [11], and the Affymetrix analysis used the
affy package [12].

Detection of regional bias on spotted arrays
An effective way to present information about regional
biases is through plots or maps of the ratios or signals over

the chip surface. For two-color arrays it is natural to plot
ratios as a function of position. Because all ratios are rep-
resented at the same brightness, such a plot makes it much
easier to see patterns of regional bias than does inspection
of the raw image file. Such a plot is shown in Figure 1A.
Similar plots are available through arrayMagic [4]. How-
ever we still face the problem that many different ratios
(high and low) are juxtaposed on the slide, making it dif-
ficult to see subtle but consistent biases.

Many two-color microarray experiments focus on a single
tissue but use a common reference RNA not specific to the
tissue. In such a design, two neighboring probes will often
show consistently different red/green ratios across all
slides, reflecting the typical abundance of the probes'
mRNA targets in the samples relative to the common ref-
erence. We would like to compare each slide's probe ratios
with a standard ratio profile, reflecting the typical abun-
dance of all mRNA species in the tissue under study rela-
tive to the reference. We approximate such a common
standard by computing, for each probe, the 20%-trimmed
mean of the probe's log ratios, across all slides. In doing
so, we are assuming that the biological variation due to
sample and the regional biases on each slide will tend to
balance out over the whole experimental set.

For each slide we then compute the difference between
the log ratio of each spot and the spot's average log ratio
over all of the pertinent arrays:

(1) di,j = log2(Ri,j/Gi,j) – mi; mi = trim(log2(Ri,k/Gi,k)),

where d is the difference, i indexes the spot, j indexes the
particular slide, k indexes all slides, and trim refers to the
20% trimmed mean of a set; Ri,j and Gi,j are the red and
green channel intensities of spot i on chip j. When these
differences di,j are represented as colors over the area of
the chip, then often the high and low ratio values are
clearly concentrated in some sub-regions. An example is
shown in Figure 1B. More examples are in the Supplemen-
tary Material. Because the probes for most co-regulated
sets of genes are distributed widely throughout the chip,
we don't expect that a biological process would generate
such a pattern. Hence, such regional inhomogeneity of
ratios must be a technical artifact.

Affymetrix arrays
Affymetrix raw data are considerably denser (per unit
area) than spotted array data, so a deeper investigation is
possible. We present several types of plots here showing
different aspects of bias. The first (Figure 2, upper left)
shows how the raw intensity data look if we present
brightness on a logarithmic scale. Ref [5] shows a similar
plot. Because of the log transformation, this plot brings
out detail in the low range (intensity values typically
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between 50 and 150). Typically, this low range contains
more than half the probes on a chip. Such a plot often
shows striations because probes of similar sequence are
placed in rows.

Even more than with spotted array ratios, it is difficult to
see subtle spatial patterns on an Affymetrix chip image
because neighboring probes show such a wide range of
different intensities next to one another. To make biases
visible we would ideally like to compare individual slides
with a standard that represents a good, uniform hybridi-
zation. Ideally, we would like to have many replicate
slides of at least one representative sample and to use their
average as a standard. In practice we rarely have such rep-
licates. Hence, in the approach to be presented here, we
construct a reference for the Affymetrix chips (hereafter

called the 'standard' chip) by taking a trimmed mean of
each probe across all chips (from the same tissue) in the
experimental series. In the calculations here, we use a 20%
trim, which seems to work satisfactorily. This standard
chip ideally represents the probe intensities for a 'typical'
sample in the experimental series – a virtual sample of the
same tissue type with expression values intermediate
among those of all samples in the experimental series. We
then plot the differences between log values on each chip
and the standard chip:

(2) di,j = log2(Inti,j) – trim(log2(Inti,k)),

where i indexes the probe, j indexes the chip, and k
indexes all chips; Inti,j is the intensity of probe i on chip j.
A plot of dij is shown in Figure 2 at upper right. We note

The advantages of using a reference to highlight regional biasesFigure 1
The advantages of using a reference to highlight regional biases. Figure 1A shows log2 spot ratios at a constant inten-
sity. Red corresponds to a log ratio of greater than 0.5; yellow to a log ratio of 0, and green to a log ratio of less than -0.5. Fig-
ure 1B shows the log2 ratios for the same slide relative to the averages of the log2 ratios across all the slides. Figure 1C shows 
the log ratios for the same slide after background subtraction. The right portion of the bottom row in each print-tip group was 
spotted with buffer only.
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Regional biases on an Affymetrix chipFigure 2
Regional biases on an Affymetrix chip. An Affymetrix chip is represented in log2 scale at upper left and the ratio of the 
same Affy chip to the standard chip at upper right. Each pixel of the original image represents one probe. The color legend is 
shown at bottom; bright red represents off-scale high, and white represents off-scale low. Blue rectangles in the upper plots 
indicate non-coding probes. In the lower row are images for background and scale factor for the same chip. The left plot rep-
resents the local background – the lowest levels achieved by probes on this chip relative to the lowest levels achieved by 
probes in the same region in other chips. The lower right plot represents the effective sensitivity or local scale factor – the log 
ratio of values of typically bright probes on this chip, to their values across the other chips. The scale factor captures all the 
variation seen in the top right image while the background image shows almost no variation. This clear separation between 
background artifacts and scale factor artifacts is typical in Affy chips. This chip is within the range of acceptable by our QC pro-
tocol (see discussion).
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that the differences {di,j} reflect discrepancies from an
average, and cannot detect regions on a slide which con-
sistently show the same bias.

Using the greater density of probes on an Affymetrix chip
we can investigate in more detail how the log differences
in equation (2) (i.e., the log ratios of intensities) between
the sample chip and standard chip) differ from one region
to another. To estimate the log difference in local back-
ground of a region, we adopt a heuristic procedure, first
selecting those probes with intensities in the lowest one-
fifth of probe intensities for the chip as a whole. Then we
compute the 20%-trimmed mean of differences between
the log2-intensities of the selected probes on the chip and
the corresponding probes on the standard:

(3) Pj = trim(log2(Inti,k)

(4) bg = trim(log2(Inti,j) -Pj) | Pj < qP,0.2).

Here, trim(x|S) represents the 20%-trimmed mean of the
variable x restricted to the set S, and Inti,j represents the
intensity of probe j on chip i, Pj represents the log2-inten-
sity of probe j on the standard, and qP,a represents the a-th
quantile of probe intensities on the standard chip.

To compute the log2 scale factor, S, we use the 20%-
trimmed mean among the highest 20% of probe intensi-
ties in the region:

(5) S = trim(log2(Inti,j) – Pj | Pj > qP,0.8).

We then construct heat maps of the log2 background fac-
tor (bg) and log2 scale factor (S) over the chip. When
these plots are placed side by side (the bottom left and
right plots in Figure 2), we see regions in which the back-
ground is raised but the scale factor is unaffected, and vice
versa. Further examples are in the Supplementary Material.
The code for making such plots for Affymetrix chips is
available on our website http://www.dis
cover.nci.nih.gov/affytools.

Quantitation of regional bias
It is important to have some scale on which to measure
the distortions introduced by spatial effects, and to have
some idea how much difference these distortions make to
the final estimates of gene expression. The simplest esti-
mate is correlation between each probe intensity or ratio
and the average of its four neighbors. For spotted arrays
the measure of correlation is

(6) R = < rlm, (rl,m-1+rl,m+1+rl-1,m+rl+1,m)/4 >,

where l indexes rows, m indexes columns, and rl,m is the
log2 red-green ratio at a spot indexed by l and m. In the

case where all slides use a common reference, then the dif-
ference between the log2 ratio of the spot and the average
signal from that spot may be used, as described earlier.
The notation <x,y> refers to the Pearson correlation
between variables x and y over all values of l and m in the
array. For an array with no regional bias, R would equal 0;
for one with regional bias, R > 0. For Affymetrix arrays we
computed R using the difference between the log2 ratio of
each probe and the average signal from that probe, and we
used only neighbors within rows, because neighbors
within a column include the corresponding mismatch
probes, which should be highly correlated with the perfect
match probe.

Measuring effect of regional biases on estimates
To test how much biases affect the expression estimates,
we selected several very clean-looking chips from several
different studies and systematically distorted their CEL file
data by multiplying regions of various sizes by factors of
1.41 and 2, corresponding to log2 changes of 0.5 and 1.0.
The distortion patterns were selected to mimic patterns
that we observe in real chips. We then estimated the gene
abundances using the MAS5 and RMA algorithms in the
affy package of Bioconductor. The results did not depend
much on the exact shape of the region distorted, and
results were comparable using different chip types (not
shown).

Results
We investigated several hundred spotted microarrays and
Affymetrix chips, from over a dozen different studies,
finding noticeable bias in almost all slides and in most
chips. Many of the studies included some slides or chips
whose regional biases were severe enough to compromise
at least part of the study.

Spotted arrays
Using our methods we find both sharply defined, high-
contrast artifacts, and diffuse regional biases. The most
common sort of regional bias on spotted arrays is associ-
ated with high backgrounds of one color over a region. It
is usually supposed that background subtraction removes
such biases. We find, however, that the standard method
of subtracting the off-spot local background from each
channel does not effectively correct regional biases (see
Figure 1C) and sometimes introduces them (see Figure 2).
The implicit model underlying background subtraction is
that the amount of non-specific DNA binding to the sub-
strate around a spot is equal to that within the spot and
additive to the target-specific binding within the spot.
There are several different mechanisms that cause fluores-
cent signal outside of the spots – such as direct binding of
dye or labeled cDNA to substrate, reflection from sub-
strate, and binding of labeled target to smeared probe –
and only some of them will contribute additively to the
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measured signal on spots. We think that the issue of
adjustment for background needs more thought than is
usually given it.

Affymetrix chips
We find three major types of spatial artifact on Affymetrix
arrays:

1) Obvious, distinct artifacts with sharp boundaries; most
of those defects cover less than 5% of chip area.

2) Regional shifts in non-specific signal background: in
wide areas of the chip the tenth percentile may be as much
as 50% higher than the corresponding quantile over the
remainder of the chip

3) Regional shifts in scale factor: in wide areas, the highest
values of both PM and MM appear to be up to 50% lower
than corresponding values in other areas; the scale factor
appears very uneven, and shows a characteristic turbulent
appearance.

We suspect that artifacts of type 2) and 3) are also present
on spotted arrays, but we do not detect them as readily
because the density of features is lower.

By looking in such detail, we find many irregularities in
even the best Affymetrix chips. Since probes for each gene
are distributed across the chip, however, a modest area
(5–10% of the chip area) of affected probes is not a seri-
ous problem. A robust statistical method, such as MAS5,
dChip, RMA, or the PLIER method, will down-weight
those values, as described later. The problems become
more serious when large (more than 20%) regions of the
chip are higher in intensity than other regions by a factor
of 1.5 or more. If we use a linear algorithm without outlier
removal, then the values for some probes may be changed
more than 1.5-fold, and the few high-intensity probes
may dominate estimates for genes by these methods. If
one used a linear algorithm on the log-scale then the dis-
tortion over the chip should roughly average out for each
probe set. However, it is difficult to predict the effect on
estimates made by a robust algorithm such as MAS5 or a
linear model, such as Li-Wong, RMA or PLIER, because
such methods remove outliers, and these may be found
preferentially in one region of the chip. Below, we investi-
gate empirically the effects of regional biases on gene
expression estimates from robust algorithms.

Typical measured biases
On spotted arrays we find typical correlations R between
raw ratios of 0.05 to 0.1 and typical correlations using log
ratios relative to the average of 0.1 to 0.2. Some slides
show correlations as high as 0.6 in log ratios relative to the
average.

On Affymetrix chips we find, as did Workman, only slight
correlation using intensities. The correlations are much
stronger for ratios of individual probes to their typical
values, as instantiated in the 'standard' virtual chip. A
good chip will typically show correlations in ratio relative
to standard between nearest neighbors of 0.1 to 0.2. We
observe the highest correlations along horizontal straight
lines in the most recent generation of chips. That is so
because probes with similar sequence motifs are often
printed on lines (Earl Hubbell, Affymetrix Inc, personal
communication), and sequence similarity may predict
similar responses to many variations in conditions.

Effect of regional biases on Affymetrix estimates
Table 1 shows the effects of simulated regional bias on
gene expression for one particular sample on a Human
Focus array. Systematic experiments with other array types
yield comparable results.

As expected, both MAS5 and RMA are fairly robust to
small distortions but, as would be expected, both
methods do worse as more distortion is added to the chip
images. RMA is notably more robust than MAS5 to the
moderate distortions commonly found in Affymetrix
chips. However, RMA does worse than MAS5 when the
perturbation is most serious. A little thought makes the
reason clear: RMA aims to fit the majority of the intensi-
ties on each chip well; it down-weights probes that appear
too high or too low relative to the majority of others in the
probe set, according to the pattern on other chips. When
half of the chip is raised in intensity values relative to the
other half, then roughly half the probes for each gene lie
in each region. RMA fits one half well and discounts the
other half.

Discussion
Consequences for data analysis
As described above, chips with significant regional distor-
tions can be expected to yield gene expression estimates
that differ significantly from the true values. Other, less
distorted chips in a group will show expression values
more indicative of the biology. Several studies that have
come to the first author from leading core facilities
include chips with very large spatial distortions that went
undetected by the (rigorous) QC at the facility. Good intu-
ition leads the data analyst to suspect certain outliers and
to include others. However, data analysts prefer to have
some objective criterion to reject outliers. In our experi-
ence, most chips that are outliers relative to their experi-
mental groups show large regional distortions.

Rather than rely on intuition to discard outliers, we can
use a systematic chip QC process to put outlier detection
on a firm footing. We recommend that users note the R
statistic, as defined in equation 6. We find that the R sta-
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Table 1: Effect of deliberate regional bias distortions on MAS5 estimates

Region .05 .10 .25 .50

Factor
1.4 RMA <.001 .011 .019 .029

MAS5 .019 .031 .047 .063
R .426 .549 .69 .74

2.0 RMA .001 .003 .039 .35
MAS5 .034 .057 .100 .155
R .647 .764 .864 .89

Entries for RMA and MAS5 in the table are fractions of probe set abundance estimates (i.e., gene expression estimates) changed by more than 0.5 
on a log2 scale as a consequence of the bias introduced. The rows labeled R report values of the local correlation, R.

An example where background subtraction induces regional biasFigure 3
An example where background subtraction induces regional bias. The left image shows the raw spot ratios relative 
to average; the middle image shows ratios of the off-spot local background, the right image shows the ratios after background 
subtraction. The color legend for all three images is at bottom.
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tistic is a useful guide to the degree of distortion in expres-
sion measures as summarized in Table 1. Users can decide
how much distortion they are willing to live with, and
select slides with R statistics accordingly. Our standard
practice is to run the bias detection program in batch on a
new set of chips, and to discard chips with R values
exceeding 0.5. For chips with R values between 0.4 and
0.5, we scrutinize the images provided by our program,
and decide whether the flaw is large and concentrated (in
which case a robust procedure will limit damage to only a
few probe sets), or moderate and pervasive, in which case
more probe sets will be notably affected.

The discovery of systematic bias leads a statistician to try
to compensate. Our QC visualization method is based on
ratios, and ratios to a standard are a natural choice for nor-
malization. Smoothing is an approach to spatial variation
favored by many statisticians, and several authors have
proposed compensations for microarray spatial biases
using smoothed fits to bias [6-8]. However, those meth-
ods have not met with unqualified success [8,9].

We are not sanguine about the prospects for normaliza-
tion by smoothing. Our observation is that the biases rep-
resented in the ratio plots show abrupt transitions from
one region within a slide to another and also occur in
complex filigree patterns. Often regions within the same
print-tip group on a spotted microarray slide show appar-
ent regional biases as large as do regions at greater dis-
tances on a slide (see Supplementary Figures). Sometimes
there is a repeating pattern of biases in all print-tip groups.
Smyth [10] has suggested that such repeating patterns
derive from different quality 96-well plates used for print-
ing the arrays. He proposes a print-order normalization,
but many arrays show non-repeating, non-random pat-
terns of bias, which can't be compensated in that way.

A reasonable question is whether regional biases in
Affymetrix chips can be eliminated by comparing PM with
MM. In fact, we find that a plot of log (PMij) – log (MMij)
values for a chip, relative to the same quantities for the
average chip, shows much less regional bias than does a
plot of log probe intensities relative to their averages. That
observation suggests that, in practice, the MAS5.0 PM cor-
rection reduces regional biases in scale factor, whereas the
RMA procedure does not. In the same way, the MAS5.0
background correction reduces regional biases in back-
ground, whereas the RMA procedure does not. However
our results in synthetically distorted chips suggest this
advantage of the MAS5.0 procedure is telling only in the
presence of strong regional bias (R>0.4).

Conclusion
We have shown that regional biases are common on
microarrays, and that in some cases they may be responsi-

ble for apparent large differences in gene expression. We
have presented methods for visualizing and quantifying
the levels of regional bias (and other spatial artifacts). In
our judgment the most practical way to use information
about regional biases on microarrays is in the quality
assessment step, rather than in an attempt to compensate
for it. We hope that others will use the tools we have pro-
vided at http://www.discover.nci.nih.gov/affytools to vis-
ualize and quantify these biases on their microarrays.

Supplementary Material is online at http://dis
cover.nci.nih.gov/host/spottedQC.jsp
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