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ABSTRACT

Summary:We propose a statistical model for estimating gene expres-

sion using data frommultiple laser scans at different settings of hybrid-

ized microarrays. A functional regression model is used, based on a

non-linear relationship with both additive andmultiplicative error terms.

The function isderivedas theexpectedvalueofapixel, given thatvalues

are censored at 65 535, the maximum detectable intensity for double

precision scanning software. Maximum likelihood estimation based on

a Cauchy distribution is used to fit the model, which is able to estimate

gene expressions taking account of outliers and the systematic bias

causedbysignal censoringofhighlyexpressedgenes.Wehaveapplied

the method to experimental data. Simulation studies suggest that the

model can estimate the true gene expression with negligible bias.

Availability: FORTRAN 90 code for implementing the method can be

obtained from the authors.

Contact: mizanur@bioss.ac.uk

1 INTRODUCTION

DNA microarrays are proving immensely valuable to cell biolo-

gists, scientists and drug researchers, by being able to track tens of

thousands of molecular reactions in parallel. Microarray technology

aims at assessing the transcript abundances (measured in terms of

fluorescence intensity) of thousands of genes in response to different

experimental conditions or in different tissue samples. One of the

major problems of microarray analysis is that the quantification of

fluorescence intensity does not give direct measurement of messen-

ger RNA (mRNA) abundance of the gene of interest. In addition to

the random noise, measured expression levels are disturbed by a

number of systematic factors. One of the sources of systematic bias

in the intensity measurements is laser scanner setting. The sensit-

ivity level of microarray scanners is adjustable and plays a crucial

role in getting reliable measurement of the fluorescence intensity.

A change in scanner setting transforms the intensity measurements

by a multiplicative constant. A scanner’s sensitivity has to be raised

to a certain level to ensure that the intensity levels of weakly

expressed genes exceed the intrinsic noise level of the scanner

and so become measurable. This may, however, cause another prob-

lem: signal censoring for highly expressed genes. Scanners cannot

record pixel intensities above some software-dependent threshold

(216�1 ¼ 65 535, for a 16 bit computer storage system), so highly

expressed genes can have pixel values which are right censored at

the largest possible value that the scanner software allows. It is not

usually possible to find a scanner setting which is optimal for both

weakly and highly expressed genes. So, it seems reasonable to

consider multiple scanning of the same microarray at different

scanner settings and to estimate spot intensities from these com-

bined data. To illustrate, Figure 1 shows data from four scans of a

single channel of a microarray. The experiment, conducted at the

Scottish Centre for Genomic Technology and Informatics, Univer-

sity of Edinburgh, was designed to examine the effects of ingestion

of apoptotic cells on macrophage gene expression 24 h after admin-

istration and to compare this expression profile against a control of

untreated cells. Each of two arrays containing 9248 spots (repres-

enting 4624 genes each replicated twice) was scanned with an

Affymetrix 428 scanner at four different sensitivity levels and ana-

lysed using Quantarray. Here, the estimated expression level from

scans 1 to 4 for each of 9248 spots has been plotted against that for

scan 1. We see the multiplicative change due to scanner setting

and the effect of pixel censoring at T ¼ 65 535. The challenge is to

estimate the expression level of each gene from data such as these.

Little work has been done so far on adjustment of pixel censoring.

Depending on the type of data used two types of methods have been

found in the literature: methods using pixel level data and methods

using spot summary data. Spatial statistical models on the pixel

level, termed spot shape models, were considered by Ekstrøm

et al. (2004) to predict signal intensities of the censored pixels.

Glasbey C. A., T. Forster and P. Ghazal (submitted for publication)

(2006) proposed a linear model to impute censored pixels based on

the principal components of the uncensored spots on the same array.

The idea of using multiple scan data is also fairly new. Dudley et al.
(2002) used summary data from multiple scans to correct pixel

censoring by combining the linear ranges of each scan onto a com-

mon linear scale. Romualdi et al. (2003) used multiple scan data to

get improved spot summaries through image integration. The prob-

lem of addressing downward bias in the spot summary measures of

highly expressed genes arising due to pixel censoring was con-

sidered, on the basis of summary data from a single scan, by

Wit and McClure (2003). The authors suggested statistical adjust-

ment for pixel censoring based on typically available spot summar-

ies. For every spot, the method uses the observed values of mean,

median and variance statistics to fit a two-parameter probability

model. The median or mean of the fitted distribution, according

to the paper, is a good alternative to the observed median or mean

intensity of that spot. However, the result is dependent on the choice

of distribution for the pixel values and the method is likely to�To whom correspondence should be addressed.
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produce unstable estimates as it uses only three observations to

estimate two parameters. Although better adjustment may be pos-

sible using pixel level data, such data are generally unavailable as

this would involve handling vast datasets.

In Section 2 we propose a statistical model for estimating gene

expressions using spot summary data from multiple scans, and in

Section 3 we fit the model to experimental data. We validate our

approach by simulation in Section 4 and finally in Section 5 we

review the method.

2 MODEL AND ESTIMATION

Suppose that the same microarray has been scanned several (say, m)
times at different sensitivity levels of the scanner. Let yij denote the
observed intensity of the i-th of n spots in the j-th scan. In the

absence of censoring, we assume that the expectation of yij would
be mibj, where mi is the expression level of gene i and bj is the

multiplicative scaling effect due to scanner setting j. The observed
intensity is the average of pixel values. For example, the data plotted

in Figure 1 were produced by Quantarray, using the average of

pixels between the 80th and 95th percentiles contained in a 25 ·
25 square centred on each spot. If some of these pixels are censored

at T then the expectation of yij will be less than mibj. If pixel values

associated with a spot are normally distributed with mean mibj

and variance m2
i b

2
j n

2, where n is a variance scaling term, then

EðyijÞ ¼ T þ ðmibj � TÞF
T � mibj

mibjn

 !

� mibjnf
T � mibj

mibjn

 !

¼ gðmibj‚nÞ‚ðsayÞ‚ ð1Þ

where f(·) and F(·) are the density and distribution functions of

the standard Gaussian random variable, respectively, using expres-

sions for truncated normal distributions (Johnson et al., 1994,

p. 156). We do not believe the normal distribution to be entirely

appropriate, but it yields a mathematically tractable expression for g,

whose precise functional form is probably not important, beyond it

being hyperbolic in shape. Typical curves are shown in Figure 2.

We assume that yij is distributed with location g(mibj,n).
However, rather than assuming a normal distribution, we choose

to use a heavy-tailed distribution to account for the outliers, which

are a feature of the data as illustrated in Figure 1. Specifically, we

assume a Cauchy distribution with scale sij ¼ ðs2
1 þ s2

2m
2
i Þb2

j

q
. In

passing, we note that Cauchy distributions do not have expecta-

tions, and so g could not be derived from it. The combined additive

and multiplicative nature of error variability has been proposed

previously by Ideker et al. (2000), Rocke and Durbin (2001),

Huber et al. (2002, 2003) and Durbin and Rocke (2003), and is

consistent with the data in Figure 1. Purdom and Holmes (2005)

used a heavy-tailed distribution, though in their case they used a

Laplace distribution. The proposed model therefore is

yij � Cðgðmibj‚nÞ‚s2
ijÞ‚ ð2Þ

where b1 � 1 for identifiability. The notation C(a, b2) represents
a Cauchy distribution with location and scale parameters a and b,
respectively.

Model (2) belongs to the class of functional regression model,

a form of Measurement Error model (Cheng and Van Ness, 1999).
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Fig. 1. Scatterplot of scans 1, 2, 3 and 4 versus scan-1 intensity data from a

single channel of a microarray.
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Fig. 2. Rescaled intensities ðyij=b̂b jÞ plotted against estimated gene expres-

sions ðm̂m iÞ. The solid lines indicate the corresponding fitted model.
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Additive and multiplicative dispersion parameters s1 and s2 are

scaled by the corresponding scanning effects (bj) to allow for

increasing variability, as evident in Figure 1, across scans of

increasing sensitivity. For functional regression models it is prob-

lematic to estimate separate scaling terms for each variable. It

is shown in the literature of functional relationships (Cheng and

Van Ness, 1999) that for a simpler model, such as yij � Nðmibj‚d
2
j Þ,

the log-likelihood function L ! 1 as any one of the variance

parameters d2j ! 0. Another option is to consider a structural rela-

tionship, by treating mi as a latent random variable. In the Gaussian

case, as pointed out by Mardia et al. (1979, Exercise 9.2.7, p. 277),
this problem can be approached using a factor analysis model.

However, we prefer not to make assumptions about the distribution

of thems. Therefore, to circumvent problems of estimation, wemake

the simplifying model assumption that the scale parameters increase

in proportion to b across scans.

The log-likelihood function for estimating the parameters of

model (2) can be expressed as follows:

Lðm‚b‚s1‚s2‚nÞ ¼
Xn
i¼1

Liðmi‚b‚s1‚s2‚nÞ‚ ð3Þ

where

Liðmi‚b‚s1‚a2‚nÞ

¼ �
Xm
j¼1

logsij þ log
n
1þ

� yij � gðmibj‚nÞ
sij

�2o� �
: ð4Þ

A challenge of working with this model is the estimation of the large

number (n + m + 2) of parameters. We propose an alternating

algorithm for simultaneous estimation of all the parameters of

model (2) as follows:

(1) Setm¼ y.1 (intensity data of scan-1) as the starting values and
maximize L with respect to all other parameters (b,s1,s2, n),

where m is a vector of dimension n, b is an (m� 1) vector and

s1,s2 and n are scalars. Denote the updated values of other

parameters by (bð1Þ‚s
ð1Þ
1 ‚s

ð1Þ
2 ‚nð1Þ).

(2) Update each mi, (i ¼ 1, . . . , n) individually according to the

following substeps:

(a) For each j, set mi ¼ g�1ðyij‚nð1ÞÞ=b
ð1Þ
j .

(b) Maximize Li with respect to mi alone.

(c) Repeat (a) and (b) for j ¼ 1, . . . ,m.

(d) From among the m updated values of mi, choose the one

withmaximumLi value. Denote the updated vector bym
(1).

(3) Update the (m + 2) parameters in (b,s1,s2, n) by maximizing

L(b,s1,s2, n,m
(1)) for given values of the gene expression

parameters in m(1).

Continue repeating steps (2) and (3), replacing the previous estim-

ates by the updated ones, until gain in the log-likelihood function is

negligible. The substeps under step (2), that update each mi starting

from m different initial values, are essential. Otherwise, the algo-

rithm may be trapped in a local optimum. The simplex method of

Nelder and Mead (1965) using FORTRAN 90 and IMSL Library

was used as an optimization tool. The IMSL routine DUMPOL

implements the simplex method of function minimization.

At each iteration L increases. Therefore, because L is bounded

above with probability 1, the alternating algorithm is guaranteed to

terminate at a local stationary point. For the gene expression para-

meters (m) the likelihood naturally decomposes into n components,

and mi can be estimated by maximizing the i-th component (Li),
which generally has m peaks, one near to the intensity value for

each scan. Multiple starts for each mi therefore improves the chance

of finding the highest peak. However, as is usually the case with

optimization algorithms, there is no guarantee that the global

maximum will be found.

3 EXAMPLE

We apply the method to data from a single channel of two micro-

arrays, one of which is plotted in Figure 1, for the experiment

described in Section 1. CPU time (with a single processor Ultra-1

Sun machine) for executing the program to apply the method

of Section 2 to each microarray took 11 minutes. Estimates of the

parameters (other than m) for both sets of data are tabulated in

Table 1.

Observed intensity data divided by the corresponding scanning

effects (b) for both sets of data are plotted against the corresponding

estimated gene expressions (m) in Figure 2. It is seen that the

estimated gene expressions, particularly for the highly expressed

genes, are more consistent with scan-1 intensity data. This is the

desired case because the data of scan-1, scanned at the lowest level

of scanner’s sensitivity, are likely to be least affected by the pixel

censoring. For weakly expressed genes the model has sufficient

information, from all scans of data combined, for reliable estimation

of the expression values.

Figure 3 shows a plot of standardized residuals against the rank

of estimated gene expressions from one microarray and does not

indicate any obvious model violations. Assessment of model fit is

also possible via likelihood-based criteria such as AIC and GAIC.

However, more pertinent is whether the use of multiple scans can

reduce the signal-to-noise ratio in the estimates of gene expression.

On each array each gene has been replicated twice in such a way

that spot i and i + n/2 represent the same gene where i ¼ 1, . . . , n/2.
To compare the between-replicate variations in the data and fit, we

compute

Sð~mmÞ ¼
Xn=2
i¼1

ð~mmi � ~mmiþn=2Þ
2

½ðm̂mi þ m̂m iþn=2Þ=2�
2
, ð5Þ

where ~mm is replaced by m̂m to assess the multi-scan estimate, and by

y.j/bj to assess the use of scan j alone. Because variability increases

approximately as the square of the expression level, we give

equal weight in S to genes at low and high levels by dividing by

the square of the estimated expression level for each gene. However,

rather than computing this using ~mm, which is downward biased for

censored spots, we use m̂m in all cases.

The results are summarized in Table 2. It is seen that between-

replicate variation in the estimated gene expressions is less than that

Table 1. Estimates of the scanning effects and scale parameters

Dataset Scanning effects Scale

b2 b3 b4 s1 s2 n

Array-1 1.56 2.75 4.32 5.36 0.0068 0.42

Array-2 1.71 2.71 4.53 5.36 0.0051 0.27

Statistical estimation of gene expression
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in any individual scan of data. This suggests that it is possible to

reduce the between-replicate variation of the gene expression meas-

urements by combining the data according to the proposed model

from several scans. Results of Table 2 indicate that by combining

scans we improve the signal-to-noise ratio in the data, particularly

relative to scan 1, which would be the scientists’ preferred single

scan, as the other ones are affected by censoring bias.

4 SIMULATION STUDY

We performed some simulation experiments to check the validity of

the estimation algorithm.We simulated 100 datasets frommodel (2)

using the parameter values as estimated for Array-2 data (Table 1).

For the gene expression parameters we used the same set of values

for both replicates, obtained as the average of the estimated gene

expressions of the two replicates for Array-2 data. Empirical biases

and standard errors of the parameter estimates (other than m) are

summarized in Table 3. It is seen that the parameters (except for

s1 and s2) are estimated with high precision and negligible bias.

There is substantial downward bias in the maximum likelihood

estimates of s1 and s2. This bias, however, does not affect the

estimation of the other parameters and in particular the gene expres-

sion parameters (mi). We have conducted some additional invest-

igation of the bias in scale parameter estimation. It is seen that when

we estimate scale (si) from the model yij � Cðmi‚s
2
i Þ it appears

unbiased. However if we combine the observations over i to estim-

ate a common s from the model yij � Cðmi‚s
2Þ there is downward

bias similar to that shown in the above simulations. The amount of

bias depends on the value of n (number of spots) and m (number of

scans) but the changes are negligible when n exceeds some large

(say, 100) value. From the simulation results we found that Eðŝs2 Þ �
0:4s2 for n� 100,m¼ 4 but each mi is approximately unbiased. We

think, however, that there is little concern as this bias does not affect

the estimation of gene expression parameters. Simulation results

suggest no systematic bias in the gene expressions. We plot empir-

ical biases (as percentage of true values) against the rank of true

values in Figure 4. The bias in estimating gene expression para-

meters is seen to be in an acceptable range, in most cases <0.5%.
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Fig. 3. Standardized residuals against the ranks of estimated gene expressions. The dashed lines show 95% probability limits (±12.71).

Table 2. Comparison of between-replicate variation in data and fit

Dataset Between-replicate variation

Sðm̂mÞ S(y.1/b1) S(y.2/b2) S(y.3/b3) S(y.4/b4)

Array-1 812 958 913 823 927

Array-2 858 1683 1768 882 863

Table 3. Estimated biases and standard errors

Parameters

b2 b3 b4 s1 s2 n

True 1.71 2.71 4.53 5.36 0.0051 0.27

Bias �0.00005 �0.00007 �0.00015 �2.036 �0.00187 0.00077

SE 0.00038 0.00069 0.00111 0.053 0.00008 0.00235

The results are based on 100 simulated datasets.
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5 DISCUSSION AND CONCLUSIONS

Microarray gene expression data obtained as the output of typical

image analysis steps are contaminated, in addition to other factors,

by the scanner’s intrinsic noise level (at the lower end) and by the

pixel censoring (at the upper end). As the problems at the two ends

are in conflict, no unique scanner setting is optimal. Moreover, there

is no objective guideline to date for choosing optimum scanner

setting to address these issues. It therefore seems reasonable to

consider multiple scanning, some at relatively lower sensitivity

levels (ensuring that there is no censoring at the upper end) and

the others at higher sensitivity levels (ensuring the visibility of the

weakly expressed genes over the scanner’s intrinsic noise level) and

combine the information together to get final gene expression meas-

ures. The simplest approach of combining the data through simple

or weighted average over the scans will give a biased result as some

individual scans of data are likely to be affected by pixel censoring.

The proposed model can successfully combine the data of multiple

scanning to get improved gene expression measures throughout the

entire range of intensity data. As the simulation results suggest, the

model is capable of estimating gene expressions adjusting for out-

liers and pixel censoring with reasonable precision and negligible

bias. One strength of the model is that the location function specified

in (1) explicitly captures the trend of the possibly censored spot

summary data. Also, the derivation of the function has a natural

correspondence with the data generation mechanism of microarray

scanners. The choice of the Cauchy distribution for handling out-

liers proved to be better than the robust methods with which we have

experimented. For example, methods of fitting based on using

M-estimation or Least Trimmed Squares (Rousseeuw and Leroy,

1987) require subjectivity about the amount of robustness needed,

e.g. the proportion of observations to be considered as outlying.

The Cauchy distribution is however a reasonable choice on the

grounds of simplicity and objectiveness. Among the few available

methods of its kind in the literature, Dudley et al.’s (2002) method

also considers multiple scan data but loses information discarding

data outside the linear range. The method of Wit and McClure

(2003) considers single scan data and does not suggest a general

pixel distribution. The authors note that their method may produce

unstable estimates as it estimates two parameters using only three

summary statistics, mean, median and variance.

Finally, we consider how the model may be extended. A natural

extension would be to replace the Cauchy distribution by a

t-distribution. This would introduce an additional degrees of free-

dom parameter which would ideally be estimated from the data, and

depend on the tail behaviour. We have conducted some simulation

experiments with such a model. The bias in the estimation of the

scale parameter noted in Section 4 for the Cauchy model is also

present in the estimation of the scale parameter for the t-distribution
model but additionally there is a corresponding bias in the estima-

tion of the degrees of freedom parameter. However, we found that

we get very similar maximum likelihood estimates of the mi as with

the Cauchy model and therefore there was little advantage in using

the slightly more complex model. The Cauchy distribution has a

very slightly heavier tail than the data required, but this did not

cause any problems with the estimation as would have been the

case if the error distribution for the model had been taken to be too

light-tailed, e.g. a normal or a t-distribution with large degrees

of freedom. The use of the Cauchy distribution is convenient and

although it is perhaps slightly too heavy tailed it provides some

extra robustness in the estimation procedure.
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