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Abstract
Background: Reverse transcription followed by real-time PCR is widely used for quantification of
specific mRNA, and with the use of double-stranded DNA binding dyes it is becoming a standard
for microarray data validation. Despite the kinetic information generated by real-time PCR, most
popular analysis methods assume constant amplification efficiency among samples, introducing
strong biases when amplification efficiencies are not the same.

Results: We present here a new mathematical model based on the classic exponential description
of the PCR, but modeling amplification efficiency as a sigmoidal function of the product yield. The
model was validated with experimental results and used for the development of a new method for
real-time PCR data analysis. This model based method for real-time PCR data analysis showed the
best accuracy and precision compared with previous methods when used for quantification of in-
silico generated and experimental real-time PCR results. Moreover, the method is suitable for the
analyses of samples with similar or dissimilar amplification efficiency.

Conclusion: The presented method showed the best accuracy and precision. Moreover, it does
not depend on calibration curves, making it ideal for fully automated high-throughput applications.

Background
The reverse transcription polymerase chain reaction (RT-
PCR) is the most sensitive method for the detection of
specific mRNAs [1]. However, due to the exponential
nature of the PCR amplification process, small differences
in amplification efficiency among samples may led to very
different product yields, making RT-PCR unsuitable for
quantitative purposes. The use of exogenously added
standard sequences as internal competitors has overcome

partially this issue [2-4], but the setting up of the system
must be done for each target sequence taking into account
multiple error sources [5], making competitive PCR
unsuitable for high-throughput applications. The recent
introduction of fluorescence techniques and instruments
able to quantify the DNA content in each cycle had lead in
the last years to the development of real-time PCR [6-8].
Because the high sensitivity of fluorescent product detec-
tion, real-time PCR does not rely on end-point analyses.
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Moreover, cycle-by-cycle data generated by real-time PCR
provides information about the kinetics of the amplifica-
tion process, overcoming the limitations of classical RT-
PCR. Recently, the introduction of double-stranded DNA
specific dyes [9] allowed the quantification of multiple
targets without the need of specific fluorescent probes,
making real-time PCR a popular method for microarray
data validation [10].

Most currently used real-time PCR data analysis methods
are based on determining the threshold cycle (CT), which
is the cycle number at which a fixed amount of product is
formed [11]. The comparative CT method, a broadly used
semi-quantitative one, is based on the exponential
description of the PCR process assuming constant ampli-
fication efficiency equal to 1 [12]. However, in our appli-
cations of SYBR-Green I real-time PCR, we have found
amplification efficiency always lower that 1. Moreover, it
has been shown that a difference as small as 4% in PCR
efficiency could be translated to 400% error in compara-
tive CT method based quantifications [13]. Thus, reliable
quantitative real-time PCR depends on good estimations
of PCR efficiency. Several methods have been proposed
for amplification efficiency estimation. One of them uses
a dilution curve to estimate the amplification efficiency of
each target sequence [14], while the others estimate the
amplification efficiency from single reaction data [13,15-
17]. Here we introduce a new mathematical model based
on the classic exponential description of the PCR, in
which amplification efficiency was modelled as a sigmoid
function of the product yield. The model was validated
with experimental data and it was used for the develop-
ment of a new method for real-time PCR data analysis.
This model based method for real-time PCR data analysis
(MoBPA) estimates PCR amplification efficiency from sin-
gle sample reaction data, eliminating the need of calibra-
tion curves, which is a drawback for high-throughput
implementations [18]. Moreover, MoBPA showed the
highest accuracy and precision compared with previous
methods when used for quantification of samples ampli-
fied with similar or dissimilar efficiency.

Results and discussion
The model
According to its discrete nature, the PCR process can be
expressed by the difference equation,

Tn+1 = Tn·(1 +E n);  En ∈ (0,1)  (1)

where Tn is the PCR product yield at cycle n, and E is the
amplification efficiency of the reaction. In a previous
work, we have modelled the amplification efficiency as a
linear function of the product yield (model 1; Fig. 1A) [5].
However, a recent kinetic description of the real-time PCR
showed a sigmoid relationship between the effective

amplification efficiency and the product yield, either
whether primer, nucleotides or DNA polymerase become
limiting [19]. This prompted us to evaluate two additional
empirical models describing the amplification efficiency
as a function of PCR product yield: a three parameters,
and a two parameters sigmoid models (models 2 and 3;
Fig. 1B and 1C). Both models imply that the amplification
efficiency change dynamically also during the exponential
phase, which is in agreement with the work of Liu, et.al
[15]. However, our models differ from the sigmoid
description of the PCR reaction, because we model the
amplification efficiency as a function of the product yield,
instead of describing it as a function of the cycle number.
The models were fitted to the same real-time PCR dataset
comprising 1723 PCR reactions, with initial target
amount spanning 9 orders of magnitude and CT values
that range from 10 to 35.9. Despite the fact that the three
models explained more than 95% of the data variance,
only models 2 and 3 showed a random distribution of
residuals (Fig. 1). To identify the best way of describing
the amplification efficiency, we compared the models
using a corrected form of Akaike's Information Criterion
(AIC) [20]. Model 3 AIC value was lower than model 1
and 2 (p < 10-15 and p < 10-4, Wilcoxon paired test, respec-
tively). Thus, the following two parameters sigmoid
expression for E was used through this work,

where Tm and b are parameters to be fitted by non-linear
regression. There is no relationship between these param-
eters and kinetic parameters such as Fmax and k [18], since
our model is defined as a function of the product yield
instead of the PCR cycle number.

The intrinsic amplification efficiency Ei (i.e. the putative
amplification efficiency for a product (or template)
amount equal zero)[5], is useful for T0 estimation (see
below), and can be obtained from Eq. (2) as,

Model based estimation of the initial template amount 
(T0)
In dsDNA binding dye protocols, real-time thermocyclers
generate fluorescence intensity data. For most applica-
tions in which the dsDNA binding dye is in great excess, it
can be assumed that the fluorescence intensity is propor-
tional to the amount of double stranded DNA (product
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yield) [18]. However, it has been shown that this is not
always the case [21]. Our model parameters are fitted with
fluorescence intensity data, thus the product yield (Tn)
will be expressed in arbitrary fluorescent units, as the ini-
tial template amount (T0). Since the fluorescent dye will
be in great excess when compared to the initial template
amount, we can assume that T0 is proportional to the ini-
tial template amount, and so the semiquantitative com-
parison between different samples using T0 is valid.

The simplest way to estimate T0 is assuming that amplifi-
cation efficiency at cycle CT (ECT) is very similar to Ei. This
assumption is usually correct because CT is defined at
small amounts of PCR product. Then, solving Eq. (1) for
n = CT and assuming constant amplification efficiency we
obtain:

TCT = T0 (1 + E)CT  (4)

from which,

T0 = TCT (1 + E)-CT  (5)

Ei can be estimated from Eq. (3), and the efficiency
parameters b and Tm can be obtained fitting Eq. (2) to
real-time PCR data by non-linear regression (see methods
for details). Then, T0 is calculated assuming E = Ei. Since
Eq. (5) is a power function of the amplification efficiency,
small errors in the estimation of Ei can be translated to
strong errors in T0 estimation. These errors can be mini-
mized using CT values as small as possibly, and estimat-

ing the amplification parameters with pooled data from
replicates to improve Ei estimation accuracy. Replicates
must be done by splitting a master-mix containing all
components of the PCR to minimize the variability intro-
duced be the operator.

To test this method, we amplified three serial dilutions of
cDNA from mouse midbrain with β-actin specific primers.
Pooled data from triplicate experiments were used for Ei
estimation, which were 0.835, 0.852 and 0.856 for dilu-
tions 10, 1 and 0.1, respectively. Estimations of T0 from
this data were accurate and precise for CT values calcu-
lated from small PCR product yields, but led to different
absolute quantification results for higher CT values (Fig.
2A and 2B). However, since amplification efficiencies are
similar, the relative error of quantifications was independ-
ent of the product yield at which the CT was calculated
(Fig. 2C). To test the performance of the CT method when
amplification efficiencies are not the same, we amplified
the same amount of mouse midbrain cDNA with β2-
microglobulin specific primers, but using different
amounts of Taq DNA polymerase (Fig. 2D). Amplification
efficiencies estimated with our approach from triplicate
results were 0.855 and 0.915 for 0.1 and 0.25 units of Taq
DNA polymerase, respectively. Then, an increase of only
7% in amplification efficiency led to errors in the quanti-
fications that were directly related to the PCR product
yield at which the CT was calculated (Fig. 2E).

We formulated an alternative more robust method for T0
estimation that does not rely on product threshold deter-

Models for PCR amplification efficiencyFigure 1
Models for PCR amplification efficiency. The effective amplification efficiency for each PCR cycle was calculated as Tn+1 /
Tn – 1, where Tn and Tn+1 were the PCR product yield at cycles n and n+1 respectively. Data points are the effective amplifica-
tion efficiency vs. PCR product yield from a representative PCR reaction performed in triplicate. Lines are the fit of models 1 
(A), 2 (B) and 3 (C) to the experimental data. Inserts are the residuals for each fit. The determination coefficient (R2), cor-
rected Akike's Information Criterion (AIC) and the best fit value for Ei ± asymptotic standard error are shown in the graphs. Ei 
for model 3 was calculated from Eq. (3). Model 1 was fitted by linear regression, while models 2 and 3 were fitted by non-linear 
regression.
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minations. This alternative method is based on the fit of
Eq. (1) and (2) to real-time PCR data by non-linear regres-
sion to obtain the best-fit estimators for the parameters b,
Tm and T0. This approach does not assume constant
amplification efficiency and estimates T0 from all the data
points that fall into the exponential-linear growth phase
instead of using only the product yield at cycle CT. Analy-
sis of experimental results showed that T0 estimations
were precise and accurate (Table 1). However, fitting the
model to experimental data showed a strong correlation
between T0 and both model 3 parameters b and Tm. This
means that experimental data do not define the model
unambiguously, leading to large uncertainty in the esti-
mation of T0 (see standard error of T0 in Table 1). To over-
come this problem, we propose a two-step procedure
called Model-Based method for real-time PCR data Anal-
ysis (MoBPA). In the first step of the MoBPA procedure,
we obtain good estimators for b and Tm parameters by fit-
ting model 3 (Eq. 2) to experimental data. In the second
step, we replace b and Tm in Eq. 2 with the values esti-
mated in step 1, and then fit Eq. 1 to experimental data to

obtain a good estimator for T0. T0 estimations by MoBPA
were as precise and accurate as using the CT method for
small PCR product yield-derived CT values (Fig. 2C and
2E), and the asymptotic standard errors were approxi-
mately 10 fold smaller (Table 1).

Comparison of MoBPA with previous methods
Next, we evaluated the performance of different methods
for quantification when amplification efficiency for differ-
ent samples is not the same. For this, we analysed two dif-
ferent datasets: 1) in-silico generated data of real-time PCR
runs starting at the same initial template amount but dif-
fering in their intrinsic amplification efficiency; and 2)
real experimental data obtained by amplifying the same
amount of mouse midbrain cDNA with β2-microglobulin
specific primers, but with different amounts of Taq DNA
polymerase (Fig. 2D).

Simulation data was generated in-silico from eqs. (1) and
(2), using parameters that resemble real PCR runs. Results
from amplification of mouse midbrain cDNA with β-actin

Effect of CT on the initial template amount estimationFigure 2
Effect of CT on the initial template amount estimation. (A) Product yield vs. cycle number for the amplification of 
three serial dilutions (0.1, 1 and 10) of cDNA from mouse midbrain with β-actin specific primers performed in triplicate. Hor-
izontal lines show the values for the product yield at which CT was calculated. (B) Ratios between each T0 determination and T0 
estimated for dilution 1 at the smallest CT value. T0 was calculated assuming constant amplification efficiency and using different 
amounts of PCR product for the estimation of CT values. Data points are the mean for triplicates. (C) Relative error for the 
quantification of data presented in A. Bars are the relative error of quantification as percentage (mean ± SEM for triplicates). 
(D) Real-time PCR amplification of the same mouse midbrain cDNA sample with β2 microglobulin specific primers using 0.1 
and 0.25 units of Taq DNA polymerase. Horizontal lines show the values for the product yield at which CT was calculated. (E) 
Relative error for the quantification of data presented in D. Bars are the relative error of quantification as percentage (mean ± 
SEM for triplicates).
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and β2-microglobulin specific primers were used to esti-
mate plausible values for the simulation parameters. The
analysis of these simulation results must be taken with
care, because we used the same model for generating and
fitting the data, so some overfitting is expected. However,
we also evaluated the performance of the different meth-
ods on real PCR data. To obtain different amplification
efficiency in our PCR runs, we used two different amount
of DNA polymerase. Efficiencies estimated with our
approach from triplicate results were 0.855 and 0.915 for
0.1 and 0.25 units of Taq DNA polymerase, respectively.
The use of more than 0.25 units of DNA polymerase did
not led to additional increments in amplification effi-
ciency, while PCR with less that 0.1 units of DNA
polymerase showed no product. We also tried to partially
reduce the PCR amplification efficiency by adding Mg2+

chelating agents like EDTA, by increasing the amount of
dNTPs, by lowering the amount of Mg2+, and by adding
known DNA polymerase inhibitors like phenol. However,
we could not find the appropriate conditions to achieve
the partial inhibition of DNA polymerase in a reproduci-
ble way.

Both in-silico and experimental real-time PCR data were
analysed with different methods. The simpler and wide-
spread used methods are based on CT value determina-
tions, assuming constant amplification efficiency during
the exponential phase of the PCR and among different
samples [11,22]. Then, from Eq. (5) is easy to solve the
initial template amount ratio between two samples as:

where T0 is the initial template amount, E is the amplifica-
tion efficiency, and CTi the threshold cycle for each sam-
ple. The simplest form of threshold-based methods even
assumes amplification efficiency equal 1. Thus, the ratio
of initial template amounts between two samples will be
2ΔCT [12]. Because of the exponential nature of this expres-
sion, amplification efficiencies below 1 will lead to unre-
liable quantifications. Amplification efficiency below 1 is
frequent and indeed, most of our real-time PCR reactions
showed amplification efficiencies between 0.7 and 0.95.
To overcome this limitation, a dilution series based
method for amplification efficiency estimation has been
developed [14,23]. A curve is constructed by amplifica-
tion of serial dilutions of one reference sample and plot-
ting the resulting CT values against the base 10 logarithm
of the dilution factor. Assuming constant amplification
efficiency between dilutions and over the number of ther-
mocycles required to reach CT, the amplification effi-
ciency can be obtained from Eq. (4) as E = 10-1/slope-1.
However, sample contamination with salt, phenol, chlo-
roform, etc. may result in a lower-than-expected PCR effi-
ciency [13,24,25]. Dilution of this sample will also dilute
the contaminant decreasing its effect on the PCR reaction,
thereby increasing the PCR efficiency with each dilution
step. Indeed, we usually observe such dilution effect on
PCR amplification efficiency, see for example data pre-
sented in Fig. 2A, in which estimated efficiency from the
dilution series was 0.853, while estimations of the intrin-
sic amplification were 0.835, 0.852 and 0.856 for dilu-
tions 100, 10 and 1, respectively. Amplification efficiency
estimations from such dilution series will be inaccurate,
introducing a bias in the quantification. Moreover, con-
taminants can quantitatively and qualitatively differ

T

T
EA

B

CT CTB A0

0
1 6= +( ) ( )−

Table 1: Estimation of model parameters.

A B

Mean ± Correlation Mean ±
Dilution T0 SE SEM T0 × b T0 × Tm T0 SE SEM

10 8.52 2.27 8.63 ± 0.963 -0.97 12.4 0.29 12.17 ±
10 7 2 0.98 0.963 -0.977 11.2 0.34 0.52
10 10.4 1.95 0.963 -0.969 12.9 0.36

1 0.42 0.06 0.967 -0.962 0.981 0.018
1 1.08 0.56 1 ± 0.32 0.964 -0.948 0.804 0.024 1 ± 0.12
1 1.51 0.74 0.965 -0.977 1.21 0.043

0.1 0.09 0.04 0.073 ± 0.968 -0.965 0.121 0.0032 0.12 ±
0.1 0.065 0.015 0.0087 0.969 -0.974 0.111 0.0026 0.0028
0.1 0.063 0.023 0.968 -0.921 0.117 0.0028

Estimation of T0, b and Tm by fitting Eq. (1) and (2) to experimental data (A), and estimation of T0 by fitting Eq. (1) and (2) to experimental data using 
b and Tm values previously obtained from the fit of Eq. (2) to experimental amplification efficiencies (B). Shown is the dilution of mouse midbrain 
cDNA used for each real-time PCR run, the best fit values for T0, the asymptotic estimation of the standard error (SE), and the T0 mean value ± 
standard error of the mean (SEM). For (A), the correlation between T0 and the other parameters estimated by non-linear regression is also shown.
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between samples, thus, the assumption of equal amplifi-
cation efficiencies between samples can lead to strong
errors in quantifications.

Analysis of in-silico PCR results showed that the bias in
quantifications by these methods is directly related to the
difference in amplification efficiency between templates.
In such a way, a 20% difference in amplification efficiency
leaded to 11 and 7.4 fold bias in quantifications depend-
ing on whether efficiency 1 or reference sample efficiency
(0.8) was used for calculations (Fig. 3A). Accordingly, the
quantification of β2-microglobulin was 86% and 74%
overestimated by the use of efficiency 1 or 0.855 in thresh-
old-based methods, respectively (Fig. 3B). Despite the
poor accuracy of these methods, T0 estimation from repli-
cated samples was very precise (mean CV: 6%, range:
0.75–12%), possibly because these approaches are only
affected by errors in CT estimation. Similar precision was
obtained with experimental real-time PCR results (Fig.
3B), and it was previously reported by other authors [26].

Four different methods for single reaction amplification
efficiency estimation have been proposed. All of them use
the kinetic data generated by real-time PCR cyclers, they
do not assume equivalent amplification efficiency among
samples and have the additional advantage that no dilu-

tions curve is needed. Three of them assume constant
amplification efficiency during the exponential phase of
the PCR and estimate it from the few data points that fall
into this phase [13,15,16]. The simplest one is based on
the product yield measured at two thresholds along the
exponential phase of the PCR, from which the amplifica-
tion efficiency is estimated as E = (T1 /T2)1/(CT1-CT2) - 1 [15].
Then, the initial template amount is calculated from Eq.
(5). Based on the same model for the PCR reaction, Ram-
akers et. al. proposed the use of all the points of the back-
ground subtracted and logarithm transformed PCR data
that fall into a "window-of-linearity", for amplification
efficiency estimation by linear regression [13]. Recently,
Tichopad et.al. introduced a similar approach based on a
new statistical method for the identification of the expo-
nential phase and estimation of amplification efficiency
by non-linear regression [16]. Analysis of in-silico gener-
ated results with different amplification efficiencies
showed better accuracy of these three approaches when
compared with the threshold-based methods, since they
introduced only 2.3 – 4.8 fold bias in quantifications (Fig.
3A). However, since T0 determinations depend on both
efficiency and CT estimations, precision in quantification
of replicates was very poor (mean CV: 58%, range: 19–
134%). Indeed, quantification of samples that differ less
than 10% in amplification efficiency were more accurate

Effect of amplification efficiency over the quantifications performed by different methodsFigure 3
Effect of amplification efficiency over the quantifications performed by different methods. (A) In-silico generated 
PCR data with initial template amount T0 = 0.001 and different intrinsic amplification efficiencies (Ei) ranging from 0.65 to 0.972 
analysed by different methods (see below). Data points represent the base 2 logarithm of the ratio between T0 estimations 
from each simulated reaction and efficiency 0.8 ones vs. the amplification efficiency bias as mean ± SEM of triplicates. (B) Anal-
ysis of experimental results by different methods (see below). Bars represent the error of quantifications as mean ± SEM for 
triplicates. Bars marked with (*) are under-estimations, conversely, the rest of the bars are over-estimations. Method 6 under-
estimated T0 by 737%, note that it is out of scale in the graph. Data was analysed with the CT method assuming constant ampli-
fication efficiency equal to 1 {1}; with the CT method assuming constant amplification efficiency equal to 0.8 for in-silico data, or 
0.855 for experimental data {2}; assuming constant amplification efficiency that was estimated from two threshold values {3} 
[15]; using the assumption-free analysis proposed by Ramakers et.al. {4} [13]; using the standardized determination of PCR effi-
ciency from single reaction proposed by Tichopad et.al. {5} [16]; using the sigmoid model proposed by Liu et. al. {6} [17]; and 
with our model based real-time PCR analysis method (MoBPA) {7}.
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when analysed with the Pfaffl or efficiency 1 threshold-
based methods [12,14], most likely due to the poor preci-
sion of single reaction based efficiency estimations. These
observations were further confirmed with experimental
real-time PCR data (Fig. 3B).

Recently, Liu et.al. proposed a three parameters sigmoidal
function for modelling the whole kinetic process of real-
time PCR. Then, the initial template amount is estimated
after fitting the sigmoidal model to background sub-
tracted real-time PCR results [17]. Analysis of in-silico PCR
results showed a good accuracy and moderate precision of
this method for most PCR simulations, with a fold bias <
1.4 and a mean CV of 12% (range: 5–21%) (Fig. 3A).
However, the model presented systematic deviations from
the data that were particularly noted with amplification
efficiencies above 0.9, both with experimental and in-silico
generated data. These deviations had a strong effect on T0
estimation, leading to unreliable quantifications (Fig.
3B). Similar deviations were recently described in the pla-
teau phase by Rutledge, who showed that elimination of
these data points improve the accuracy of this method
[18].

Finally, quantification from the same in-silico and experi-
mental real-time PCR results with our model based
approach showed the highest accuracy and precision.
Analysis of in-silico data showed that 20% difference in
amplification efficiency between samples only led to 0.31
fold bias, with a mean CV of only 2.6% (range: 0.8–4.2%)
(Fig. 3A). Moreover, an increase of 7% in experimental
real-time PCR amplification efficiency only led to 13%
under-estimated quantification (mean CV: 10.5%) (Fig.
3B).

To test the reliability of the different methods in condi-
tions of similar amplification efficiency between samples,
we amplified three dilutions of mouse midbrain cDNA
with β-actin specific primers. Among threshold-based
methods, the use of amplification efficiency estimated for

each experiment from the dilution series [14] produced
the best results (Table 2). Most methods for the estima-
tion of amplification efficiency from single reaction
results introduced strong deviations in the quantification.
Only the approach suggested by Tichopad et.al. [16]
showed moderate deviations (Table 2). Similar observa-
tion have been reported by Peirson et.al., who showed
that estimation of amplification efficiency from single
reactions data introduces systemic errors and increases the
assay noise [27], suggesting that these methods should be
used only when the amplification efficiency between sam-
ples is not the same. A statistical method for the detection
of samples with dissimilar efficiencies, called kinetic out-
lier detection (KOD), was recently developed [28]. KOD
method can be used to decide whether to use single reac-
tion or global amplification efficiency estimated from
dilution series for quantifications. To note, our model
based approach gave the most accurate and precise results,
which were similar to the ones produced by Pfaffl
approach [14] (Table 2), indicating that MoBPA produce
reliable quantifications no matter whether samples are
amplified with similar or different efficiency.

Our model assumes that the signal is proportional to the
amount of product, which is often the case for SYBR-
Green I real-time PCR performed with saturating concen-
trations of dye. In such conditions centrally symmetric
amplification curves are expected. However, in TaqMan
applications, where the Taq DNA polymerase digests a
probe labelled with a fluorescent reporter and quencher
dye, the signal diverges from the product resulting in non-
symmetric amplification curves (Supplementary Fig. 1A
in Additional file 1) [8]. To test whether our approach is
also suitable for TaqMan data analysis, we quantified β-
actin and hypoxanthine phosphoribosyl transferase
(HPRT) in 1/10 dilutions of the same cDNA sample using
TaqMan probes. The error of quantifying a 10-fold con-
centrated sample was only slightly higher using TaqMan
when compared to SYBR-Green I (Fig. 2C and Supple-
mentary Fig. 1B in Additional file 1). These results suggest

Table 2: Analysis of real-time PCR results with similar amplification efficiency among samples. Data represent the quantification of 
dilutions 0.1 and 10 as the mean ± SEM for 12 experiments performed in triplicate.

Dilution Analysis method
1 2 3 4 5 6 7

0.1 0.084 ± 0.003 0.11 ± 0.0033 0.57 ± 0.30 0.37 ± 0.19 0.75 ± 0.45 0.71 ± 0.63 0.12 ± 0.022
1 1 ± 0.019 1 ± 0.017 1 ± 0.11 1 ± 0.20 1 ± 0.12 1 ± 0.10 1 ± 0.018

10 14 ± 0.680 10 ± 0.35 242 ± 206 83 ± 52 15 ± 5.5 48 ± 1.0 10 ± 1.1

(1)CT method assuming constant amplification efficiency equal to 1 [12].
(2) CT method with amplification efficiency estimated from a dilution series [14].
(3) Amplification efficiency estimated at two product yield thresholds [15].
(4) Amplification efficiency estimated with LinRegPCR software [13].
(5) Amplification efficiency estimated with the Tichopad et.al. approach [16].
(6) Amplification efficiency estimated from the model proposed by Liu et.al. [17].
(7) Our model based real-time PCR analysis method (MoBPA).
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that MoBPA is robust enough to deal with non-symmetric
amplification curves, possibly because it makes use of
only the data points that fall into the exponential-lineal
growth phases of the PCR.

Conclusion
Following the emergence of functional genomic method-
ologies, the development of high-throughput methods for
microarray-derived data validation is becoming indispen-
sably. Nevertheless, high-throughput quantification by
real-time PCR is difficult to achieve, primarily due to defi-
ciencies of the threshold-based methodologies, which
require reliable estimation of amplification efficiencies
[27]. In addition to the technical challenge of generating
dilution curves for each target sequence, these methods
assume similar amplification efficiencies between sam-
ples, and this assumption has been reported to be invalid
[13,24,25]. Here we introduce a new method for the anal-
ysis of real-time PCR results termed: Model Based method
for real-time PCR data Analysis (MoBPA). The new
method produced the most accurate and precise quantifi-
cations when compared to previous methods regardless of
whether samples were amplified with similar or different
amplification efficiencies. Moreover, no calibration curve
is needed for quantifications, since amplification effi-
ciency is estimated directly from real-time PCR data.
MoBPA provides many of the fundamental capabilities
required for fully automated high-throughput quantifica-
tion [18], including routine assessment of amplification
efficiency within individual samples and no need of PCR-
generated standard curves. In addition, quantitative data
can be easily derived from arbitrary fluorescence units,
simply applying a calibration factor that relates fluores-
cence to DNA mass [18]. In conclusion, MoBPA combines
the well accepted exponential model of the PCR reaction
with a sigmoid description of amplification efficiency to
obtain a powerful method for real-time PCR data analysis
that expand the applicability of real-time PCR to fully
automated high-throughput applications.

Methods
RNA extraction and reverse transcription
Mice were killed by cervical dislocation and brains
removed. Midbrains were dissected, snap frozen in liquid
nitrogen and stored at -80°C until RNA extraction. Total
RNA was isolated using TRIzol Reagent (Invitrogen, MD),
genomic DNA contaminant was removed using DNAse I
(Ambion, Inc., TX), and mRNA was purified by Micro-
Poly(A)Pure kit (Ambion, Inc., TX). First-strand comple-
mentary DNA was synthesized at 42°C by priming with
oligo-dT12–18 (Invitrogen, MD) and using SuperScriptII
reverse transcriptase according to the protocol provided
by the manufacturer (Invitrogen, MD).

Polymerase chain reaction
PCR amplifications were obtained using an Icycler IQ
Real-Time PCR Detection System (BioRad, CA). cDNA
samples were assayed by triplicate. PCR reactions were
performed in a final volume of 25 μl containing 1 μl of
cDNA, 2.5 μl of the reaction buffer (200 mM Tris-HCl pH
8.4, 500 mM KCl), 3 mM MgCl2, 0.3 mM of dNTPs mix,
0.2 nM of each primer, 0.3 × SYBR-Green I (Molecular
Probes, OR), 100 μg/ml BSA, 0.25 μl ROX Reference Dye
(Invitrogen, MD), 1% glycerol, and 1.25 U of Taq Plati-
num Polymerase (Invitrogen, MD). The primer sequences
used were: β2-microglobulin, sense: TGA CCG GCT TGT
ATG CTA TC and antisense: CAG TGT GAG CCA GGA TAT
AG; β-actin, sense: CAA TGT GGC TGA GGA CTT TG and
antisense: ACA GAA GCA ATG CTG TCA CC. PCR was per-
formed as follows: one initial cycle of 94°C for 2.5 min,
40 cycles of 94°C for 30 sec, 58°C for 30 sec, and 72°C
for 15 sec. TaqMan real-time PCRs were performed as the
SYBR-Green I assays, but with no addition of SyBrGreen I
and with the following primers and probes: β-actin sense:
AGA AAA TCT GGC ACC ACA CC, antisense: CAG AGG
CGT ACA GGG ATA GC, and probe: ACC GCG AGA AGA
TGA CCC AGA TCA T; HPRT sense: AGA CTG AAG AGC
TAT TGT AAT, antisense: CAG CAA GCT TGC GAC CTT
GAC, and probe: TGC TTT CCT TGG TCA GGC AGT ATA.

Analysis of real-time PCR data
ROX base-line corrected real-time PCR results were ana-
lysed with different methods as described [12-17] using
the R-System v2.2.0 [29] or the LinRegPCR software [13].
For the LinRegPCR software, we used the default fit
option, which iteratively searches for lines consisting in 4
to 6 data points with the highest R2 value. Then we
inspected the fit for each PCR curve and manually cor-
rected the windows of linearity when needed.

The implementation of our method comprise the follow-
ing steps: 1) Identification of ground, exponential, lineal
growth and plateau phases, 2) background subtraction, 3)
effective amplification efficiency estimation and fitting eq
(2) to experimental data, 4) initial template amount cal-
culation.

The ground phase was identified as described [16], using
a p-value cut-off of 0.01, while the beginning and end of
the lineal growth phase was identified as the second deriv-
ative maximum and minimum, respectively, of a four
parameters sigmoid function (eq. 7) fitted to the data
(Supplementary Figure 2A in Additional file 1).

Here, y is the PCR product yield (fluorescence units), x is
the cycle number, mi and ma are the signal-offset and sat-

y
mi ma c

c x

h

h h
=

−( )
+

( )7
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uration value, respectively, c is the point of inflexion and
h is the exponent parameter. Non-linear least square
regressions were performed with a Gauss-Newton algo-
rithm implemented in the nls function of the R-system
software.

The background level was calculated as the last ground
phase data point, which in tern was estimated by a linear
regression over the last five data points of this phase [16].

The effective amplification efficiency for each PCR cycle
(En) was solved from Eq. (1) as En = Tn+1 /Tn - 1 [5] and cal-
culated using the background subtracted data. Then, the
parameters b and Tm were estimated by fitting Eq (2) to
the experimental effective amplification efficiency by
non-linear regression. We only used data points that fall
into the exponential and linear growth phase of the
amplification curve, because efficiency calculated at the
early ground phase and late plateau phase showed strong
dispersion due to experimental background noise or
showed no information, respectively (Supplementary Fig-
ure 2 in Additional file 1). Finally, the initial template
amount T0 was estimated by fitting our discrete model,
shown below in R-code:

T <- function(x,t0,b,Tm) {

output <- NULL

for (i in 1:length(x)) {

t00 <- t0

for (ii in 1:x [i]) t00 <- t00*(1+1/
(1+exp((t00-Tm)/b)))

output <- c(output,t00)

}

return(output)

}

to background subtracted experimental data by the nls
function of R-system, using the values for the parameters
b and Tm estimated previously.

Our method was implemented in the R-System. The
source code and Windows binary of MoBPA package are
available for non-commercial research use (see Additional
files 2 and 3).

Quantification error and Akaike's Information Criterion
For calculating the quantification error, we defined a ref-
erence sample (RS) and a target sample (TS), which are
derived from the same original sample and differ by a
known dilution factor or PCR amplification efficiency. We
calculated the relative bias as RE = (TS - RS)/RS, and the
quantification error as SQE = RE * 100 for RE ≥ 0, or SQE
= -100 * RE /(1 + RE) for RE < 0.

For comparing alternative models we used a corrected
form of the Akaike's Information Criterion (AIC), defined
as:

where N is the number of data points, K is the number of
parameters fitted by the regression plus one, and SS is the
sum of the square of the vertical distances of the points
from the curve [20].

In silico generation of PCR data
Simulation data was generated in silico from eqs. (1) and
(2), using parameters that resemble real PCR runs. Results
from amplification of mouse midbrain cDNA with β-actin
and β2-microglobulin specific primers were used to esti-
mate plausible values for the simulation parameters. In
such a way, the initial template amount in fluorescent
arbitrary units (T0) was set to 10-3, and the product
amount at the PCR plateau phase (Tmax) was set to 1200.
The amplification parameters b and Tm were solve from
eq. (2) and (3) as,

Then, for Tn = Tmax, En tends to zero, so we calculated
approximated values for b and Tm using Tn = Tmax = 1200
and En = 0.001.

Zero mean, normally distributed random noise was
added to the in-silico results. The background mean (Bg)
and intra- and inter-replicates standard deviation (intraSD
and interSD) were estimated from 48 triplicate samples to
be 625, 17.94 and 19.06 respectively. The mean standard
deviation for fluorescence intensity in the early ground
phase of each PCR reaction (mSD), also estimated from
experimental data, was 4.9. We found no correlation
between the standard deviation of fluorescence intensity
in the early ground phase of each PCR reaction and Bg val-
ues, thus, random noise generated from a normal distri-
bution with mean 0 and standard deviation mSD was
added to in-silico PCR data regardless of the background
fluorescence level.
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