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Abstract
Background: In real-time PCR, it is necessary to consider the efficiency of amplification (EA) of
amplicons in order to determine initial target levels properly. EAs can be deduced from standard
curves, but these involve extra effort and cost and may yield invalid EAs. Alternatively, EA can be
extracted from individual fluorescence curves. Unfortunately, this is not reliable enough.

Results: Here we introduce simultaneous non-linear fitting to determine – without standard
curves – an optimal common EA for all samples of a group. In order to adjust EA as a function of
target fluorescence, and still to describe fluorescence as a function of cycle number, we use an
iterative algorithm that increases fluorescence cycle by cycle and thus simulates the PCR process.
A Gauss peak function is used to model the decrease of EA with increasing amplicon accumulation.
Our approach was validated experimentally with hydrolysis probe or SYBR green detection with
dilution series of 5 different targets. It performed distinctly better in terms of accuracy than
standard curve, DART-PCR, and LinRegPCR approaches. Based on reliable EAs, it was possible to
detect that for some amplicons, extraordinary fluorescence (EA > 2.00) was generated with locked
nucleic acid hydrolysis probes, but not with SYBR green.

Conclusion: In comparison to previously reported approaches that are based on the separate
analysis of each curve and on modelling EA as a function of cycle number, our approach yields more
accurate and precise estimates of relative initial target levels.

Background
In real-time PCR, fluorescence is recorded at each cycle to
monitor the generation of product [1]. Typically, after sev-
eral cycles with no or minor changes in background fluo-

rescence, there is a short phase with vigorous exponential
increase of fluorescence, which then gradually slows
down to a plateau phase. In conventional data analysis,
for each fluorescence curve a crossing point (Cp) alias

Published: 12 February 2008

BMC Bioinformatics 2008, 9:95 doi:10.1186/1471-2105-9-95

Received: 19 September 2007
Accepted: 12 February 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/95

© 2008 Batsch et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18267040
http://www.biomedcentral.com/1471-2105/9/95
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:95 http://www.biomedcentral.com/1471-2105/9/95
threshold cycle (Ct) is determined from the visible expo-
nential amplification phase using either the fit point
method or the second-derivative method [2]. It is clear
that for proper calculation of initial target levels, differ-
ences in efficiency of amplification (EA) must be taken
into account [3]. Even small EA differences amplify to
large apparent differences in mRNA levels [4]. The above
methods require the set-up of standard curves from which
EA is deduced. The disadvantages of standard curves are
(i) the extra effort and cost to set up additional samples
e.g. by serial dilution, and (ii) non-matching EAs if inhib-
itors are present and serially diluted [4].

The alternative to using standard curves is to determine EA
directly from the samples [5]. The initial exponential
amplification can be described in terms of fluorescence
(based on the assumption that accumulation of fluores-
cence is proportional to accumulation of amplification
product) by the following equation:

Fx = F0• (EA)x (1)

See Table 1 for definition of parameters. Note that in this
report, EA has limits of 1 (= no amplification) and 2 (=
ideal amplification, i.e. complete doubling of target with
each cycle); all references to papers where EA runs
between 0 and 1 have been transformed by adding 1. Ide-
ally, one would like to determine the individual EA of
each sample to determine accurate F0 values; F0 is directly
proportional to the sample target cDNA amount. How-
ever, for each trace of fluorescence there are only very few
(around 5 to 7) data points with virtually constant EA
which can be used for an analysis according to equation 1.
In earlier cycles, there is only background fluorescence
(i.e. amplification product can not be detected for many
cycles), and in later cycles the EA declines due to product
accumulation [6]. Thus, very few qualified data points
combined with considerable measurement error makes
direct exponential extrapolation inaccurate. One strategy
to improve parameter estimation is to include later points
of the fluorescence curve and to adjust EA as a function of
cycle number [7-9]. However, we have observed that these
approaches can not properly model target fluorescence in
detail.

Very recently, Alvarez et al. have introduced into real-time
PCR data analysis the useful notion to model the decrease
of EA not as a function of cycle number, but as a function

of fluorescence, the indicator of product accumulation
[10]. This insightful concept is more difficult to apply to
data analysis though, since it does not allow direct fitting
of flourescence as a simple function of cycle number.
Alvarez et al. calculate, as Fi+1/Fi ratio, amplification effi-
ciencies for each cycle, then fit 2 parameters of a sigmoidal
function to these EA values as a function of fluorescence,
and finally estimate, with both parameters fixed, F0 by
iterative discrete fitting. The downsides of this approach
are large errors in the Fi+1/Fi ratios, non-linear regression
with fluorescence as the independent variable (which vio-
lates the idea of x having a small or no error), fluorescence
data (y axis: Fi+1/Fi ratio; x axis: Fi) on both axes, and fitting
twice to the same set of information. Further limitations
are indicated in the Discussion.

Based on the innovative concept of modelling EA as a
function of amplicon fluorescence, it was our aim here to
overcome the defects of the approach of Alvarez et al.. As
the key improvement, we find that iterative simulation of
the PCR process with EA modelled as a Gaussian peak
function of amplicon fluorescence yields precise and cor-
rect initial EA values, both with hydrolysis probe and
SYBR green detection. Our approach includes, for the first
time, simultaneous non-linear fitting to determine EA as
a common parameter for all samples of a group. Com-
pared to established methods of real-time PCR data anal-
ysis, our approach results in more accurate estimates of
relative cDNA levels.

Results
Modelling EA as a function of target fluorescence
Initially, we tried to fit equation 1 to a limited number (<
6) of data points from the very early visible exponential
phase, i.e. the first points above background fluorescence.
In this phase the EA should still be, as a good approxima-
tion, constant and equal to the initial EA. However, this
approach was relatively unreliable, even with simultane-
ous fitting of multiple curves, since there is considerable
(random) experimental error (cf. background fluores-
cence differences in Fig. 1B) with every fluorescence read-
ing, yet the last point with the highest fluorescence is
always fitted best, even when various weighing options
were applied. It is thus necessary to include data points
from later cycles in order to mitigate random fluorescence
errors. We tested previously reported sigmoid [7,8], logis-
tic [9], and other (e.g. asymmetric sigmoid or reverse
asymmetric sigmoid) transition functions in order to
model target fluorescence as a function of cycle number.
All of these, however, showed systematic deviations
between calculated and observed fluorescence particularly
in the early exponential phase (not shown).

With the aim of modelling EA as a function of fluores-
cence [10], we inspected several of our own experimental

Table 1: Definition of parameters of equation 1.

x Cycle number
Fx fluorescence recorded at cycle x
F0 virtual initial fluorescence
EA efficiency of amplification
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data sets, plotted as Fi/Fi-1 versus Fi (see Fig. 2). This made
us consider a Gauss peak function (y = a * exp [-0.5 * {(x
- b)/c}2]) and a logistic peak function (y = 4 * a * d/(1 +
d)2 with d = exp [-(x - b)/c]) for modelling. Since we
expected EA (= Fi/Fi-1) to be maximal at Fi = 0, both func-
tions were simplified by setting b to zero. With the Gauss
function, it follows that EA = 1 + (EA0 - 1)/exp [Fi

2/k] with
k = 2 * c2. With the logistic function, the analogous equa-
tion is EA = 1 + 4 * (EA0 - 1) * exp [-Fi/k]/(1 + exp [-Fi/k])2

with k = c. Both functions adequately describe Fi/Fi-1 as a
function of Fi (Fig. 2). As an important difference, the
logistic function always yields higher EA0 values than the
Gauss function (see below). However, it is not possible to
determine which function is more appropriate from this
plot, since the critical region of low Fi is unaccessible,
because of very large errors.

In order to describe experimental fluorescence as a func-
tion of cycle number, we use an iterative approach that
yields all 3 parameters by a single non-linear fitting proce-
dure. Depending on F0, the virtual initial target fluores-
cence, EA0, the initial efficiency of amplification, and k,
the fluorescence is increased cycle by cycle – with EA
adjusted as a function of target fluorescence – up to cycle
x. Note that e.g. function EA = 1 + (EA0 - 1)/exp [Fi

2/k] is
valid for the plot of Fi/Fi-1 versus Fi. However, in the PCR
simulation, it is necessary to calculate – in the other direc-
tion – Fi+1 from Fi; since EA is not a linear function of Fi,
the available ratio Fi/Fi-1 can not be used. Thus, combining
EA = Fi+1/Fi and EA = 1 + (EA0 - 1)/exp [Fi+1

2/k] gives Fi *
(EA0 - 1)/exp [Fi+1

2/k] + Fi - Fi+1 = 0. We use the algorithm
of Newton [11] to solve this equation by iteration. Note
that Alvarez et al. have used a Fi+1/Fi plot to avoid the need
to calculate Fi+1 from Fi by Newton iteration.

Selection of data points
Like previously reported approaches, neither Gauss nor
logistic function can reliably model the plateau phase of
the PCR fluorescence curve (Fig. 2). We therefore exclude
all data points beyond the minimum of the second deriv-
ative (approximated by a 5 point peak; see Fig. 1 and
Methods for details) from analysis. Also with the fluores-
cence difference (dF) data, we define the background
interval that is modeled by a straight line (Fig. 1B).

Simultaneous fitting
The EA0 values that result from fitting to individual fluo-
rescence curves are still uncertain to an extent that pre-
cludes direct use (see below). We thus use simultaneous
fitting in the final stage of data analysis to determine an
optimal common EA0. For this, all associated curves (up
to n = 16), with the same points selected as previously for
individual fitting, are first pooled into a group by transfor-
mation of the cycle numbers (see Methods). Note that the
protein of interest and the standard used for normaliza-

Selection of pointsFigure 1
Selection of points. (A) Fluorescence difference (dF) as a 
function of cycle number with data from a hydrolysis probe 
assay run on a LightCycler™. Filled circles were used for fit-
ting with function EAvPeak; fitting results are displayed as line 
graph. Circles marked by an asterisk indicate the 5 point 
peak. (B) As part A, but at higher magnification on the y axis. 
Points for definition of background fluorescence are selected 
as follows: each position i, going down cycle by cycle from 
the 5 point peak, is checked until the dF values of at least 3 
points in the interval i-8 to i-1 surpass the reference level, 
which is the average dF of points i, i+1, and i+2. The upper 
limit of the background definition interval, denoted by a filled 
arrow, corresponds to i; the lower limit, denoted by an open 
arrow, is at i-8. Finally, slope and offset of the background 
line is determined by linear regression on the raw fluores-
cence data at i-8 to i. (C) Corresponding raw fluorescence 
data. Fitting results from function EAv are displayed as line 
graph. Open circles represent points that were excluded 
from fitting. Asterisks and arrows as above.
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tion, e.g. beta-actin, constitute separate groups, since dif-
ferent primers (and probes) are used. Samples with
markedly different individual EA0s should be gathered
into separate groups. With the iterative algorithm
described above, a single common EA0 is fitted to all
curves of a group; at the same time, individual F0 and k
parameters are fitted for each curve. Based on the shared
EA0, the final F0 values, which are proportional to initial
target amount, can be directly used to calculate relative
expression levels; for this, normalized ratios, calculated
from F0 values of the protein of interest and of the corre-
sponding standard protein, are compared.

Validation
Locked nucleic acid (LNA) hydrolysis probe and SYBR
green assays with 5 different targets as shown in Table 2
were performed to resolve whether to use the Gauss func-
tion or the logistic function and to validate our approach.
For each target, 3 identical dilution series of 5 samples
each were processed in parallel; all 15 samples were ana-
lyzed as a group. Note that these assays are to some extent
imperfect, since they were pipetted and operated by 4 dif-
ferent persons with ordinary skills. In these comparisons,
goodness of fit, indicated by chi squared, was not always
better with the Gauss function; nevertheless, on average
goodness of fit was better i.e. chi squared was smaller by a
factor of 1.23 (geometric mean; data not shown). Deci-
sively, the Gauss function performed better than the logis-

Efficiency of amplification can be described as a function of fluorescence with a Gauss peak or a logistic peak modelFigure 2
Efficiency of amplification can be described as a function of fluorescence with a Gauss peak or a logistic peak 
model. For each amplicon described in Table 2 (same order, left to right corresponds to top to bottom), the third fluores-
cence curve (arbitrarily chosen; numbering refers to the Excel raw data file [see Additional file 5]) was analyzed. After subtrac-
tion of linear background, EA was calculated as Fi/Fi-1 ratio and plotted against fluorescence (Fi) as shown. To avoid confusion, 
points with Fi < 0.1 are not displayed; most of these, because of large errors in EA, lie outside the y axis range. The line graphs 
were drawn with the Gauss peak function (upper row) or the logistic peak function (lower row). Note that function parame-
ters were not fitted to the points shown, but determined by our stepwise PCR simulation approach based on the raw fluores-
cence versus cycle number data. Open circles represent data that was not used for fitting.
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tic function according to 2 criteria: i) the sum of accuracy
errors (error = absolute value of accuracy factor – 1; see
Table 2) is smaller, i.e. 0.26 (Gauss) vs. 0.44 (logistic). ii)
With SYBR green detection of the human GAPDH ampli-
con, the logistic function yielded a concerted EA0 of 2.05;
this is significantly higher – the standard deviation from
fitting of the concerted EA0s was ≤ 0.01 for all 5 targets
(data not shown) – than the theoretical upper limit of 2;
by contrast, the Gauss function produced an EA of 1.99.
Thus, the Gauss function was used for all analyses below.

Results of Table 2 indicate good precision (median of rel-
ative errors: 5%) and accuracy. In order to compare our
approach with the standard curve approach [3], each dilu-
tion series was analyzed as a separate subgroup as shown
in Table 3. With our approach, precision was better by a
factor of 1.5 (median of relative errors: 8% vs. 12%); more
importantly, accuracy was better by a factor of 2.1
(median of relative errors: 13% vs. 27.5%). Note that our
method yields EA0s both higher and lower than the corre-
sponding EAs of the standard curve approach. We sup-
pose that this is caused by the LightCycler software for Cp
estimation, which can not properly correct a drifting base-
line, since the best available baseline adjustment ("arith-
metic") simply subtracts a constant offset from all data

points. Table 4 shows results from analysis of our data sets
with 2 of the tools that are available for data analysis with-
out standard curves. Estimates from LinRegPCR analysis
[4] were much less precise (38.5%) and accurate (58.5%).
In comparison to the DART-PCR approach [12], which
uses the average of individual EAs to calculate F0 values,
precision was virtually identical (8% vs. 7%); however,
accuracy was in favour of our approach by a factor of 1.5
(13% vs. 19.5%). Table 5 suggests that our approach is
better than DART-PCR because individual EAs are deter-
mined more precisely; SEMs on average (geometric mean)
were smaller by a factor of 2.0.

Surprisingly, with some hydrolysis probe assays we
obtained EA0s definitely higher than 2.00; concurrently,
the measured dilution factors of corresponding dilution
series were strikingly wrong. With the same primers, but
SYBR green instead of hydrolysis probe detection, EA0s ≤
2.00 were determined, and measured matched intended
dilution factors. Thus, with LNA hydrolysis probes (Roche
Universal Probe Library), efficiency of fluorescence gener-
ation can be higher than efficiency of amplification. Extra
fluorescence is not caused by the probe alone, since for
one amplicon probe #89 gave a higher EA0 than the SYBR
green assay (2.11 vs. 1.86; ≥ 3 samples per group), but for

Table 2: Simultaneous analysis of dilution series of 5 targets. For each target, 3 series of 5 samples each were pooled into a single 
group. Precision is defined as SEM divided by F0. The accuracy factor is the geometric mean of the measured dilution steps (calculated 
from the F0 values) divided by the intended dilution step, i.e. 4. Raw data is available online as Excel file [see Additional file 5].

Target Detection Dilution EA0 group F0 arithmetic mean SEM Precision relative error (%) Accuracy factor

SLC6A14 rat hydrolysis probe original 1.91 4.1 × 10-8 0.06 × 10-8 2 1.12 (1.22)a

1 : 4 9.0 × 10-9 0.4 × 10-9 4
1 : 16 1.7 × 10-9 0.3 × 10-9 17
1 : 64 4.6 × 10-10 0.2 × 10-10 5
1 : 256 1.0 × 10-10 0.2 × 10-10 15

SLC22A13 human hydrolysis probe original 1.86 6.1 × 10-7 0.2 × 10-7 3 0.92 (0.99)
1 : 4 1.7 × 10-7 0.07 × 10-7 4
1 : 16 4.0 × 10-8 0.08 × 10-8 2
1 : 64 1.2 × 10-8 0.05 × 10-8 5
1 : 256 3.3 × 10-9 0.02 × 10-9 7

EMT pig hydrolysis probe original 1.79 1.1 × 10-4 0.06 × 10-4 6 1.02 (1.11)
1 : 4 3.4 × 10-5 0.2 × 10-5 6
1 : 16 8.4 × 10-6 0.4 × 10-6 5
1 : 64 1.7 × 10-6 0.5 × 10-6 31
1 : 256 4.0 × 10-7 0.2 × 10-7 6

ETT chicken SYBR green original 1.88 1.1 × 10-4 0.2 × 10-4 16 0.97(1.03)
1 : 4 2.3 × 10-5 0.5 × 10-5 23
1 : 16 8.1 × 10-6 0.6 × 10-6 8
1 : 64 1.9 × 10-6 0.07 × 10-6 4
1 : 256 4.9 × 10-7 0.2 × 10-7 4

GAPDH human SYBR green original 1.99 1.3 × 10-7 0.06 × 10-7 5 0.99 (1.07)
1 : 4 4.4 × 10-8 0.2 × 10-8 6
1 : 16 1.1 × 10-8 0.03 × 10-8 2
1 : 64 2.3 × 10-9 0.06 × 10-9 3
1 : 256 5.2 × 10-10 0.6 × 10-10 11

a: logistic model
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another amplicon detection with same probe matched
SYBR green (1.84 vs. 1.84). Based on sequence analysis
and dedicated experiments we have devised a hypothesis,
depicted in Figure 3, to explain additional exponential
probe hydrolysis. We suppose that, given matching partial
binding sites as indicated, the tightly-binding LNA probe
may guide the polymerase to switch to a second antisense
strand during synthesis of sense strand. This low-effi-
ciency template-switching [13,14] generates an extended
amplicon with two perfect probe binding sites instead of
one. The extended amplicon can be extended further by
the same mechanism. In support of the model, when
CCCA (antisense strand, close to the 5' end; read from
right to left) was replaced by GGTG, EA0 dropped from
2.27 to 2.08 (3 samples per group). Residual fluorescence
growth may be caused analogously by the sequence TGAG
(marked by half dashes in the figure) in reverse strand syn-
thesis.

Discussion
In real-time PCR, without a doubt, it would be optimal to
determine an individual EA for each sample. However, it
does not seem possible with present experimental tech-
nology to determine individual EAs according to equation
1 reliably: very few qualified data points (i.e. only the first
5–7 points that rise above background fluorescence with

virtually constant EA) combined with considerable meas-
urement error makes direct exponential extrapolation
inaccurate. One strategy to improve parameter estimation
is to include later points of the fluorescence curve. How-
ever, we find that sigmoid [7,8], logistic [9], or other func-
tions can not properly model target fluorescence in detail.
Very recently, Alvarez et al. have introduced a fundamen-
tally different approach [10]. It appreciates that the
decrease of EA is caused by product accumulation [6,15].
This concept allows to embrace even more points for anal-
ysis (i.e. up to the minimum of the second derivative of
fluorescence) than other methods, which use the maxi-
mum of the second derivative as an upper limit [9] or the
center of selection [12]. Unfortunately, the particular
algorithm of Alvarez et al., which is based on a sigmoidal
function, suffers from a number of disadvantages (see
Introduction and below). In the present report we use iter-
ative non-linear fitting with a Gauss function to describe
EA as a function of fluorescence. Both approaches use the
same number of parameters for fitting, i.e. 2 parameters
plus the actual result, F0. However, our approach has the
following advantages over the approach of Alvarez et al.:
i) Parameters EA0, F0, and k are fitted directly to the fluo-
rescence vs. cycle number data without any data transfor-
mation except for inevitable subtraction of background;
this avoids additional errors (as in the Fi+1/Fi ratios) and

Table 3: Comparison of simultaneous analysis and standard curve approach. Data for table 2 was analyzed as 3 subgroups of 5 samples 
each. In the standard curve approach, the EA was calculated as 10-1/slope with the slope of the regression line. Relative error of accuracy 
was calculated as the absolute value of 1 – (measured factor/4).

Standard curve (Pfaffl) approach Present paper approach

Target Dilution 
step 1 : 4

EA 
subgroup

Factor
arithmetic

mean

SEM Precision 
relative error 

(%)

Accuracy 
relative error 

(%)

EA0 subgroup Factor
arithmetic

mean

SEM Precision 
relative error 

(%)

Accuracy 
relative error 

(%)

SLC6A14 
rat

1 1.77 4.8 0.5 11 21 1.92 4.5 0.2 3 14

2 1.74 5.0 1.4 28 25 1.92 5.7 1.0 17 42
3 1.80 3.1 0.9 28 21 1.89 3.6 0.5 14 9
4 4.7 1.3 28 18 4.9 1.1 23 22

SLC22A13 
human

1 2.08 2.9 0.2 7 29 1.86 3.6 0.1 3 10

2 2.04 5.7 0.2 3 43 1.86 4.3 0.1 3 6
3 1.82 2.7 0.3 12 33 1.86 3.3 0.2 6 17
4 6.5 1.4 21 61 3.7 0.4 11 8

EMT pig 1 1.71 3.1 0.1 4 23 1.81 3.3 0.1 2 18
2 1.76 2.5 0.9 35 38 1.79 4.1 0.3 8 3
3 1.77 9.6 4.1 42 140 1.78 7.0 3.5 50 75
4 5.3 1.8 33 33 4.2 1.2 28 5

ETT 
chicken

1 1.87 6.7 2.0 30 66 1.89 5.3 1.5 27 33

2 2.01 2.8 0.6 22 31 1.89 2.9 0.7 25 28
3 1.83 4.9 0.6 12 21 1.86 4.3 0.3 8 7
4 3.7 0.4 10 7 3.9 0.2 5 3

GAPDH 
human

1 1.91 2.0 0.1 5 50 2.00 3.0 0.1 3 26

2 1.92 5.0 0.3 6 26 1.96 4.0 0.3 7 0
3 1.84 4.9 0.1 1 22 1.99 4.8 0.2 5 20
4 4.3 0.1 2 6 4.5 0.4 9 12

Median: 12 27.5 Median: 8 13
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preserves error composition. ii) All final parameters are
estimated in a single round of fitting. Alvarez et al. have
rejected direct iterative fitting of F0 alongside with their 2
model parameters because of large uncertainty in the esti-
mation of F0. Instead, they use an unfavourable algorithm
that involves data transformation and fitting twice to the
same data set. By contrast, data from Tables 2 and 3 sug-
gests that our Gauss function model allows accurate fit-
ting of the same number of parameters concurrently. iii)
EA0 can freely surpass 2; this was very instrumental to
uncover overestimation of DNA amplification with cer-
tain LNA hydrolysis probe assays. By contrast, with the
sigmoid function of Alvarez et al., EA0 is forced to values <
2; to recognize this flaw of formula design, insert a very
large Tm/b ratio in equation 3 of the cited work. iv) Our
model is compatible with simultaneous fitting to deter-
mine a common EA. Note that simultaneous fitting of EA0
is not directly possible with the function of Alvarez et al.,
since there EA0 is not a single parameter, but a function of
2 parameters.

In an extensive comparison, the approach of Alvarez et al.
displayed the lowest quantification error of all methods of
individual curve analysis (Fig. 3B and Table 2 in the cited
work); similar results were only obtained with EAs esti-

mated from standard curves based on dilution series [3].
We have not applied the approach of Alvarez et al. to our
data, since, as explained above, the approach is based in
parts on unfavorable design. However, our comparison
with the widely-used standard curve approach suggests
that our approach gives markedly better results (Table 3).
Also, we find that our approach is much better in terms of
precision and accuracy than the LinRegPCR approach
(Table 4). With the DART-PCR approach, which uses the
average of individual EAs to calculate F0 values, precision
was virtually identical; however, accuracy was distinctly
better with our approach. We suppose that this is caused
predominantly by much more (factor 2.0) precise individ-
ual EAs (Table 5). Moreover, with DART-PCR, the mean
EAs of 2 amplicons were markedly smaller than the corre-
sponding EA0s from our approach; the other 3 were not
significantly larger. This is not surprising, since DART-PCR
assumes a constant EA which is determined around the
second derivative maximum and thereby may underesti-
mate the initial EA.

In spite of these improvements, the F0 values that result
from fitting to individual fluorescence curves are still
uncertain to an extent that precludes direct use (see Table
5, column EA0 individual). The individual EAs are useful

Table 4: Analysis with 2 previous approaches that work without standard curves. Data for table 2 was analyzed as 3 subgroups of 5 
samples each. For each curve, fluorescence of point 10 was subtracted as background from all points. With the DART-PCR approach, 
each curve was first analyzed separately for EA. R0 values (that correspond to F0) were calculated with the average EA for each 
subgroup. With the LinRegPCR approach, software version 7.2 was used to analyze each curve separately.

DART-PCR approach LinRegPCR approach

Target Dilution 
step 1 : 4

mean EA 
subgroup

Factor
arithmetic

mean

SEM Precision 
relative error 

(%)

Accuracy 
relative error 

(%)

EA range Factor
arithmetic

mean

SEM Precision 
relative error 

(%)

Accuracy 
relative error 

(%)

SLC6A14 
rat

1 1.97 4.7 0.2 5 18 1.79 – 2.04 71.7 57 79 >1000

2 1.94 6.4 1.6 25 61 1.71 – 2.09 0.94 0.23 24 77
3 1.86 3.6 0.5 14 10 1.83 – 2.79 >1000 >1000 100 >1000
4 5.0 1.1 21 26 8.6 8.5 99 114

SLC22A13 
human

1 1.70 3.2 0.1 3 21 1.64 – 2.01 6.4 2.9 45 59

2 1.70 3.3 0.1 2 17 1.68 – 2.24 254 227 89 >1000
3 1.71 3.0 0.1 1 25 1.52 – 1.93 412 412 100 >1000
4 3.1 0.1 4 23 36 36 100 797

EMT pig 1 3.0 0.2 6 25 1.67 – 2.02 8.8 7.7 87 121
2 1.78 3.7 0.2 6 7 1.66 – 1.84 7.2 3.5 49 80
3 1.87 6.8 2.9 43 69 1.60 – 1.75 11.7 4.9 42 193
4 1.70 4.2 1.2 29 4 3.4 0.9 25 16

ETT chicken 1 1.87 4.9 1.2 25 22 1.77 – 1.91 3.0 0.6 19 24
2 1.86 3.0 0.8 26 25 1.76 – 1.88 2.5 0.4 18 37
3 1.92 4.0 0.3 7 1 1.85 – 1.92 2.4 0.8 32 39
4 4.0 0.3 7 0 6.4 0.7 12 59

GAPDH 
human

1 1.86 2.9 0.1 3 28 1.84 – 1.90 4.6 0.4 10 15

2 1.84 3.4 0.3 8 15 1.78 – 1.87 3.0 0.8 26 25
3 1.81 4.0 0.2 4 1 1.77 – 1.86 6.3 0.5 7 58
4 3.8 0.3 7 6 2.8 1.0 35 29

Median: 7 19.5 Median: 38.5 58.5
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to identify erratic samples and to judge the quality of
primers and probes, but, as was observed previously, they
introduce additional error and thus increase data variance
[12]. Indeed, in the afore-mentioned comparison of avail-
able individual curve analysis methods, accuracy and pre-
cision in quantification of experimental dilution series
was poor [10]; similarly, with our data sets, the LinReg-
PCR software yielded the least accurate results (Table 4).
Given that determination of F0 values from individual EAs
is futile because of experimental limitations, then the next
best thing is to analyze related samples as a group with a

concerted EA. Towards this end, Peirson et al. have simply
calculated the arithmetic mean of individual EAs [12]. In
the present report we introduce simultaneous non-linear
regression to determine an optimal EA for all samples of a
group. Note that with our large data sets, EA0 determined
by simultaneous fitting was not dramatically different
from the arithmetic mean (compare Arithmetic mean val-
ues, Table 5, with EA0 group values, Table 2). However,
with few samples per group, for example with 6 GAPDH
amplicon samples (individual EA0s LNA probe: 2.17,
2.25, 2.25; SYBR green: 1.89, 1.96, 1.96), simultaneous

Proposed mechanism of extraordinary fluorescence growth with LNA hydrolysis probe detectionFigure 3
Proposed mechanism of extraordinary fluorescence growth with LNA hydrolysis probe detection. The example 
shown is the GAPDH amplicon (see Materials and Methods) which e.g. had an EA0 of 2.33 with hydrolysis probe and 2.00 with 
SYBR green detection. The diagram shows forward primer, LNA hydrolysis probe with 5' fluorophore (filled circle) and 3' 
quencher (open circle), and the entire amplicon antisense strand, with reverse primer sequence underlined. A 3' phosphate (P) 
prevents elongation of the probe.

Table 5: Comparison of individual EAs: DART-PCR vs. present paper approach. Individual EAs were obtained during data analyses as 
reported in Tables 3 and 4.

DART-PCR approach Present paper approach

Target Dilution EA individual Arithmetic 
mean

SEM Precision relative 
error (%)

EA0 individual Arithmetic 
mean

SEM Precision relative 
error (%)

Error ratio

SLC6A14 rat original 1.88, 1.91, 1.80 1.92 0.02 1.1 1.83, 1.86, 1.86 1.91 0.01 0.7 1.59
1 : 4 1.96, 2.00, 1.82 1.91, 1.91, 1.84
1 : 16 1.96, 2.02, 1.90 1.95, 1.92, 1.91
1 : 64 2.03, 1.89, 1.81 1.95, 1.93, 1.96
1 : 256 2.03, 1.87, 1.96 1.97, 2.00, 1.90

SLC22A13 human original 1.79, 1.85, 1.86 1.70 0.03 1.6 1.94, 1.92, 1.86 1.85 0.02 0.9 1.76
1 : 4 1.78, 1.83, 1.86 1.82, 1.83, 1.89
1 : 16 1.66, 1.61, 1.62 1.80, 1.73, 1.88
1 : 64 1.63, 1.66, 1.62 1.97, 1.87, 1.81
1 : 256 1.65, 1.56, 1.60 1.75, 1.90, 1.82

EMT pig original 1.83, 1.83, 1.79 1.78 0.02 1.4 1.84, 1.83, 1.82 1.79 0.01 0.4 3.14
1 : 4 1.85, 1.92, 1.64 1.81, 1.79, 1.76
1 : 16 1.68, 1.82, 1.65 1.79, 1.80, 1.78
1 : 64 1.75, 1.94, 1.69 1.82, 1.75, 1.80
1 : 256 1.77, 1.83, 1.72 1.81, 1.75, 1.75

ETT chicken original 1.95, 1.93, 2.06 1.89 0.02 0.9 1.87, 1.89, 1.87 1.88 0.01 0.4 2.63
1 : 4 1.86, 1.81, 1.97 1.89, 1.88, 1.83
1 : 16 1.87, 1.81, 1.85 1.87, 1.88, 1.82
1 : 64 1.87, 1.92, 1.86 1.92, 1.89, 1.90
1 : 256 1.80, 1.84, 1.86 1.88, 1.91, 1.87

GAPDH human original 1.86, 1.78, 1.77 1.84 0.01 0.6 2.06, 1.94, 2.02 1.99 0.01 0.5 1.24
1 : 4 1.91, 1.84, 1.82 1.97, 1.99, 2.00
1 : 16 1.80, 1.83, 1.79 1.99, 1.98, 1.97
1 : 64 1.86, 1.86, 1.85 1.96, 1.94, 2.01
1 : 256 1.86, 1.88, 1.83 2.05, 1.97, 1.97
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fitting (EA0 group = 2.01) and arithmetic mean (2.08)
may yield markedly disparate results. We suggest that
simultaneous fitting provides the best possible EA0 that
optimally unifies all related fluorescence curves; simulta-
neous fitting thus contributes to the better performance of
our approach. Empirically, for a reliable EA0 we would rec-
ommend to employ at least 3 samples per group.

Making good use of accurate EA0s, our study has revealed
that fluorescence generation with some LNA hydrolysis
probe assays may overestimate DNA amplification and
hence cause incorrect results. To explain this, we assume
low-efficiency polymerase template switching that leads
to progressive amplicon elongation including additional
probe binding sites (Fig. 3). It would thus seem advisable
to verify each new LNA hydrolysis probe amplicon with
SYBR green detection to avoid spurious fluorescence gen-
eration.

Conclusion
In the present report we introduce a new approach to ana-
lyze real-time PCR fluorescence curves without standard
curves. Our strategy is based on the useful concept of Alva-
rez et al. to model EA as a function of amplicon fluores-
cence. As the key improvement, we find that a Gaussian
model overcomes the defects of the original sigmoidal
model. Iterative simulation of the PCR process up to the
minimum of the second derivative of fluorescence yields
precise and meaningful initial amplification efficiency
values. In the final stage of analysis, a common EA0 is fit-
ted simultaneously to all curves of a group of related sam-
ples. In comparison to previously reported approaches
that are based on the separate analysis of each curve and
on modelling EA as a function of cycle number, our
approach yields more accurate and precise estimates of
relative initial target levels.

Methods
Isolation of total RNA and reverse transcription
Total RNA was isolated by the method of Chomczynski
and Sacchi [16] from frozen (-80°C) tissues. Reverse tran-
scription was performed as detailed previously [17] with
the following modifications: i) RQ1-DNase (Promega,
Mannheim, Germany) was used at 1 U/μg total RNA; ii)

Random nonamers were used for priming; iii) cDNA syn-
thesis was performed at 42°C.

PCR
A LightCycler 1.0 apparatus with system 2.0 software
(Roche, Mannheim, Germany) was used for real-time
PCR. Product accumulation was detected with SYBR green
I or with locked nucleic acid hydrolysis probes (TaqMan
principle [18]) from the Universal ProbeLibrary (Roche).
Primers and probes (see Table 6 for sequences) were
selected online with the ProbeFinder (Roche) version
2.35 [19]. A single reaction (total volume 10 μl) con-
tained 1 μl master mix (5 × concentration; LightCycler
TaqMan Master; Roche 04735536001), 1 μmol/l each of
forward and reverse primer, SYBR Green I at 1 : 30.000
dilution (Invitrogen S7563) or 50 nmol/l probe, and var-
ious amounts of cDNA or plasmid DNA. Contamination
controls contained water instead of DNA. After enzyme
activation (10 min, 95°C), thermocycling consisted of 45
cycles of 10 s at 95°C, 30 s at 55°C, and 1 s at 72°C; veloc-
ity of temperature change was 1.1°C/s.

Analysis of real-time PCR data
Data were analyzed with pro Fit 6.0.6 Software (Quantum
Soft, Switzerland) running on a Mac OS X system (Apple,
California, U.S.A). Fitting was achieved by non-linear
regression with self-written program (SimFitEAv) and
function (EAv, EAvPeak, M16EAv) plug-ins. Complete
listings (text files) are available online [see Additional file
1] [see Additional file 2] [see Additional file 3] [see Addi-
tional file 4]. Functions calculate a single y value from the
input; input consists of a single x value and multiple
model parameters. Program SimFitEAv analyzes 1 to 16
fluorescence curves simultaneously; it works as follows:

Selection of points
First, each fluorescence curve is analyzed separately. The
change of fluorescence (dF) as a function of cycle number
is used to define an upper limit of useful points and to
select points for linear background definition. With the dF
data (calculated as fluorescence at cycle i minus fluores-
cence at cycle i-1), a 5 point peak is identified as the high-
est sum of dF values of a 5 point sliding window (Fig. 1A).
The background fluorescence is modeled individually for
each curve by a straight line; this line is defined by a 9

Table 6: Sequences of primers and probes.

Target Forward primer Reverse primer Probe

SLC6A14 rat CTCAGAGAAGCTGAGGTTTGG AAGCCACAGAAAGGGAATAAAA GGATGCTG (#89)
SLC22A13 human GCCCTCAGAGAAGGAAACAG CTGCTCACAAAGGCCACTC CTTCCAGC (#11)

EMT pig CGCTGCCCAACTTTCTCTT GCTCTATCTCCTTTCTTCCGAGT CTGGCTGG (#20)
ETT chicken GCCCCTGTTTGCTTACTTCA GATCCACCAGAGCGGAAC GGATGCTG (#89)

GAPDH human AGCCACATCGCTCAGACA GCCCAATACGACCAAATCC TGGGGAAG (#60)
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point interval as explained in the legend to Figure 1B.
Slope and offset of the background line are determined by
linear regression of the corresponding raw fluorescence
data. Points preceding the 9 point interval and following
the 5 point peak are excluded from further analysis (Fig.
1C). The parameters of a peak function (EAvPeak) are fit-
ted to all remaining points to estimate starting parameters
for function EAv. The EAvPeak function basically works
like the EAv function described below, but it yields the flu-
orescence difference between the last and the second-to-
last cylce as y output. Note that the number of points used
for definition of peak and background were chosen
empirically; higher numbers might work as well.

Fitting to a single fluorescence curve with variable efficiency of 
amplification
For all remaining points, linear fluorescence background
is subtracted from raw fluorescence. Then, the parameters
of function EAv are determined by non-linear regression.
In essence, our Gauss model is based on the following
equation (exp indicates e raised to the power of its argu-
ment in square brackets):

Fi = Fi-1• (1 + (EA0 - 1)/exp [Fi-1
2/k]) (2)

See Table 7 for definition of parameters. Note, however,
that Fi+1 is calculated from Fi by means of Newton itera-
tion [11]. For details, see the function listings provided
online as additional files (see above). Amplification is
repeated until the cycle number reaches the x input; the
final fluorescence is yielded as y output. In other words,
each call of function EAv simulates a PCR reaction up to
cycle x, starting with Fi = F0 at cycle 1. Apart from linear
background, which is added for visual display of final
results, this generates a step-wise increase in fluorescence.
Individual fitted EA0 values are displayed to the user for
comparison.

Simultaneous fitting
In the final stage, a simultaneous fit is made with all
curves of a group, with the same points selected as previ-
ously for function EAv. Function M16EAv uses a single
global EA0 parameter for all fluorescence curves; for each
curve, parameters F0 and k are fitted individually. The
same algorithm as in function EAv is used; however, data
sets are first joined by transformation of the cycle num-
bers: curve 1 uses cycle numbers 1 to 50, curve 2 uses 51
to 100 and so forth. Function M16EAv recognizes the

input cycle number x and picks the F0 and k parameters
accordingly. Individual F0 values and the common EA0 are
displayed to the user as the final result.
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