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Abstract
Background: In gene networks, the timing of significant changes in the expression level of each
gene may be the most critical information in time course expression profiles. With the same timing
of the initial change, genes which share similar patterns of expression for any number of sampling
intervals from the beginning should be considered co-expressed at certain level(s) in the gene
networks. In addition, multiple testing problems are complicated in experiments with multi-level
treatments when thousands of genes are involved.

Results: To address these issues, we first performed an ANOVA F test to identify significantly
regulated genes. The Benjamini and Hochberg (BH) procedure of controlling false discovery rate
(FDR) at 5% was applied to the P values of the F test. We then categorized the genes with a
significant F test into 4 classes based on the timing of their initial responses by sequentially testing
a complete set of orthogonal contrasts, the reverse Helmert series. For genes within each class,
specific sequences of contrasts were performed to characterize their general 'fluctuation' shapes
of expression along the subsequent sampling time points. To be consistent with the BH procedure,
each contrast was examined using a stepwise Studentized Maximum Modulus test to control the
gene based maximum family-wise error rate (MFWER) at the level of αnew determined by the BH
procedure. We demonstrated our method on the analysis of microarray data from murine
olfactory sensory epithelia at five different time points after target ablation.

Conclusion: In this manuscript, we used planned linear contrasts to analyze time-course
microarray experiments. This analysis allowed us to characterize gene expression patterns based
on the temporal order in the data, the timing of a gene's initial response, and the general shapes of
gene expression patterns along the subsequent sampling time points. Our method is particularly
suitable for analysis of microarray experiments in which it is often difficult to take sufficiently
frequent measurements and/or the sampling intervals are non-uniform.
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Background
Recent advances in DNA microarray technologies have
made it possible to investigate the transcriptional portion
of gene networks in a variety of organisms. When micro-
array experiments are performed to monitor gene expres-
sion over time, researchers can address questions
concerning the detection of the cellular processes underly-
ing the observed regulatory effects, inference of regulatory
networks and, ultimately, assignment of functions to the
genes analyzed in the time courses.

There is a natural connection between gene function and
gene expression. Based on our understanding of cellular
processes, genes that are contained in a particular path-
way, or respond to a common internal or external stimu-
lus, should be co-regulated and consequently, should
show similar patterns of expression. Therefore, identifying
patterns of gene expression and grouping genes into
expression classes may provide much greater insight into
their biological functions. A large group of statistical
methods, generally referred to as "cluster analysis", have
been developed to identify genes that behave similarly
across a range of experimental conditions, including time
courses. These statistical algorithms can be divided into
two classes, depending on whether they are based on 'sim-
ilarity' measures or not. Methods based on 'similarity'
measures rely on defining a distance (or 'dissimilarity')
between gene expression vectors; Euclidean distance and/
or the Pearson correlation coefficient are the two most
commonly used distance measures. Examples of similar-
ity measures-based methods are hierarchical clustering
[1], k-means [2], self-organization maps (SOM) [3,4], and
support vector machine (SVM) [5]. These methods do not
consider the temporal structure of the data when used to
analyze time-course experiments. In addition, some
methods could confuse the clusters because the actual
expression patterns of the genes themselves become less
relevant as clusters grow in size [6].

The clustering methods in the second class are based on
statistical models, without defining a 'similarity' measure.
Using statistical models to represent clusters changes the
question from how close two data points are to how likely
a given data point is under the model. Such clustering
methods are more commonly used to analyze time-course
microarray experiments. Examples of such methods are
based on cubic spline [7], ANOVA model [8], autoregres-
sive curves [9], first-order kinetics [10], Hidden Markov
Models [11,12], Bayesian model average [13], order-
restricted inference methodology [14], and Gaussian Mix-
ture Models [15-19]. Such approaches may be restricted
either by the rigorous assumptions of the stochastic mod-
els [9,11,12], or by the small number of time points and
non-uniform sampling intervals in gene expression data
[7,9,10].

In gene networks, the level of expression of individual
genes changes based on their functional position in the
network. Therefore, the most critical information in time
course expression profiles is the timing of the changes in
expression level for each gene [10], and secondarily is the
general shape of its expression pattern [20,21]. In addi-
tion, different genes will be activated or inactivated at
each level of a gene network. Therefore it may not be rea-
sonable to expect that the expression levels of those co-
expressed genes will go up and down concordantly all the
way through the entire sampling period. With the same
timing of initial change, genes which share similar pattern
of expression for any number of sampling intervals from
the beginning should be considered co-expressed at cer-
tain level(s) in the gene network. However, statistical
methods to analyze these patterns have not yet been
reported.

Attention to the multiplicity problem in gene expression
analysis has been increasing. Numerous methods are
available for controlling the family-wise type I error rate
(FWER). Since microarray experiments are frequently
exploratory in nature and the sample sizes are usually
small, Benjamini and Hochberg [22] suggested a poten-
tially more powerful procedure, the false discovery rate
(FDR), to control the expected proportion of errors
among the identified differentially expressed genes. A
number of studies for controlling FDR have followed [23-
29]. In microarray experiments with multi-level treat-
ments, the multiple testing problems are two dimen-
sional. Not only are thousands of genes involved, but for
each gene, either pre-selected contrasts or post-hoc com-
parisons may be needed to characterize its expression pat-
tern. There are very few studies that have investigated how
to deal with such multiple-testing problems in the micro-
array literature [30].

In this manuscript, we propose a different strategy based
on planned linear contrasts (pre-selected contrasts) for
the analysis of time-course microarray experiments. Spe-
cifically, our approach takes into consideration the tem-
poral order in the data, including the timing of a gene's
initial response and the general shapes of gene expression
patterns along the subsequent sampling time points. Our
methods are particularly suitable for analysis of microar-
ray experiments in which it is often difficult to take suffi-
ciently frequent measurements and/or the sampling
intervals are non-uniform. We demonstrated our method
on the analysis of microarray data from murine olfactory
sensory epithelia at five different time points after target
ablation.

Results
Olfactory sensory neurons (OSNs) detect odors in the
ambient environment and transmit the sensory informa-
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tion directly to the brain. The death of OSNs can be
induced experimentally by microsurgical removal of their
axonal targets in the brain (olfactory bulbectomy, OBX).
The temporal regulation of genes associated with the
death of OSNs and other cellular processes as a result of
OBX can be systematically investigated at 2 hr, 8 hr, 16 hr
and 48 hr post-OBX. Based on the statistical methods
described (see Methods), 1234 genes were considered to
be significant by the procedure of controlling FDR at 5%

for multiple testing across genes. The largest P-value con-
sidered to be significant was 0.009545 as determined by
the FDR procedure. The temporal regulation of these 1234
genes fell into four distinct classes based on the first signif-
icant change in their temporal profile that occurred at
either 2 hr (Class I), 8 hr (Class II), 16 hr (Class III), or 48
hr (Class IV) post-OBX. Among the 1234 genes (Figure 1),
212 were grouped into Class I in which the differential
expression of these genes was detected as early as 2 hours

Flow chart illustrating the statistical procedure to classify gene expression patternsFigure 1
Flow chart illustrating the statistical procedure to classify gene expression patterns. A 1 × 5 ANOVA F test was 
performed for each of the 6464 genes after data filtering. By controlling FDR at 5%, 1234 genes were selected, 1105 of which 
were clustered into 4 classes based on the timing of their initial significant change in expression level. The fluctuation patterns 
of genes in each class were examined using planned linear contrasts.

6464 Present Probe Sets on MG_U74Av2

Control FDR at 5%

1234 genes left 

1105 genes classified based on initial response 129 genes with marginal changes

1X5 ANOVA F

212 genes

23 patterns

76 genes

10 patterns

292 genes

6 patterns

525 genes

2 patterns

Class I Class II Class III Class IV

Preplanned contrasts

Table 1: Example of genes from different classesThree genes from each of the 4 classes were selected to illustrate their expression 
patterns. P_F: P values for the overall F test; P_t: P values at their initial responses; FC: fold changes at their initial responses, where a 
negative sign indicates down-regulation.

Class Gene P_F P_t FC Gene Function

I Pdcd5 5.40E-03 6.30E-04 1.2 apoptosis
Cetn3 7.40E-05 3.10E-04 1.2 Ca binding

Kit 3.40E-03 5.30E-04 1.4 growth factor

II Ccl2 3.20E-05 3.70E-04 4.1 chemotaxis
Csf3 6.30E-03 5.80E-04 3.2 growth factor
Bub3 2.10E-04 1.20E-04 1.2 cell cycle

III Omp 1.40E-04 1.60E-05 -1.6 marker protein
Ptdss2 9.00E-05 8.00E-04 -1.4 enzymatic activity
Tfrc 2.10E-03 3.60E-04 2.1 endocytosis

IV Casp6 4.50E-03 6.60E-04 -1.4 Apoptosis
Cd68 4.40E-04 2.90E-05 2 macrophage marker
Slfn4 1.50E-04 7.30E-06 4 cell cycle
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after target ablation. Seventy-six genes were grouped into
Class II, 292 genes whose expression level first changed at
16 hr post-OBX into Class III, and 525 genes whose
expression level first changed at 48 hours after the surgery
were grouped into Class IV. The remaining 129 genes did
not pass our selection criteria although their ANOVA F
tests were significant.

The expression level of the gene for olfactory marker pro-
tein Omp, which is expressed in mature OSNs, was
unchanged at 2 hr and 8 hr following OBX. The initial
change, a down-regulation at 16 hr post-OBX, indicated
that degeneration was evident between 8 hr and 16 hr
post-OBX (Figure 2). The significant down-regulation of
Omp (p = 1.6E-5, Table 1) continued to the 48 hr time-
point that was accompanied by a -1.6 FC in OMP mRNA,
indicating degenerative changes in OSNs accompanying
their cell death.

The genes for programmed cell death 5 (Pdcd5), centrin 3
(Cetn3), and Kit are examples of Class I genes that showed
their first significant change in temporal expression at 2 hr
post-OBX, with Pdcd5 and Cetn3 being up-regulated and
Kit being down-regulated (Figure 3). In contrast, Class II
genes showed their first significant change in temporal
expression at 16 hr post-OBX (Figure 4); they included the
genes for chemokine (C-C motif) ligand 2 (Ccl2), colony
stimulating factor 3 (Csf3), and budding uninhibited by
benzimidazoles 3 homolog (Bub3) that were up-regulated
simultaneously. The genes for phosphatidylserine syn-
thase 2 (Ptdss2) and the transferrin receptor (Tfrc) are
examples of Class III genes that showed their first signifi-

cant change in temporal expression at 16 hr post-OBX,
with Ptdss2 and Tfrc down-regulated and up-regulated
respectively (Figure 5). The genes identified statistically as
Class IV genes were initially quiescent until their first sig-
nificant change in expression at 48 hr post-OBX (Figure 6)
as shown by the genes for caspase 6 (Casp6), CD68 anti-
gen (Cd68), and schlafen 4 (Slfn4). From a functional per-
spective, the regulation of the genes for Pdcd5, Ptdss2, and
Casp6 at 2 hr, 16 hr, and 48 hr respectively suggested that
the molecular mechanisms associated with OSN degener-
ation and cell death occurred over a 2d time frame that is
consistent with the systematic down-regulation of the
gene for Omp. The up-regulation of the genes for Ccl2 and
Cd68 at 8 hr and 48 hr respectively suggested the expres-
sion of macrophage chemoattractant protein-1 (CCL2) by
resident and recruited macrophages identified phenotypi-
cally with CD68 antibody that indicate the delivery of bio-
active molecules associated with the earliest regeneration
of the sensory epithelium. The genes for Kit, Csf3, Bub3,
and Slfn4 are broadly defined as having growth factor
activity, which suggested that molecular mechanisms
associated with the transformation of progenitor cells into
mature OSNs through the proliferative stages of the cell
cycle was initiated within 2 hr of OBX and continued
throughout the following 48 hr. The results of our statisti-
cal and bioinformatics analyses clearly indicate that the
categorization of genes into four Classes based on their
first significant temporal regulatory event has biological
relevance at the cellular level in this neurosensory tissue.

Genes in each class share the same timing of their earliest
significant change in expression. The expression pattern of
each gene at subsequent time points may vary. We there-
fore can further cluster genes in each class into subgroups
based on their subsequent expression patterns or 'fluctua-
tion patterns'. For genes in Class I (Figure 1), there theo-
retically may as many as 54 fluctuation patterns. In our
example study, we found 23 different patterns in this
class. There were 10, 6, and 2 patterns for genes in Class II,
III, and IV respectively. We can use simple diagrams to
illustrate these patterns and a series of characters (1, 0, -1)
to index their expression patterns as described in the
Methods. For example, the fluctuation pattern of Omp
expression (Figure 2) can be represented by (0 0 0 -1 -1),
and the expression of Pdcd5 can be indicated by (0 1 0 0
0) (Figure 3). Genes with the same fluctuation patterns
will be finally grouped into the same group (Figure 7). For
example, gene Cetn2 and Cetn3 shared the same expres-
sion pattern and can be grouped together. This pattern
was indicated by (0 1 -1 0 -1). Genes Csf3 and Pdcd8 had
their initial responses at hr16 and shared the same fluctu-
ation pattern. These two genes can be classified into
another group indicated as (0 0 1 -1 0). Genes CD68 and
Slfn4 (Figure 6) can also form a cluster for the same rea-
son.

A simple diagram to illustrate the expressionpattern of the gene OmpFigure 2
A simple diagram to illustrate the expressionpattern 
of the gene Omp. Mean hybridization signals (± SD) at each 
time point were plotted. The expression of Omp was 
unchanged at 2 hr and 8 hr following OBX. Its first significant 
change in expression was a down-regulation at 16 hr post-
OBX. Its expression continued to decrease at 48 hr. The 
fluctuation pattern of Omp expression was indexed by (0 0 0 
-1 -1), shown in the upper right corner of the graph. Dia-
grams in the following figures were plotted similarly.
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Discussion
In this study, we adopted linear models to describe our
data and used planned linear contrasts to analyze time-
course microarray experiments. We identified 1234 genes
with significant changes in expression in a microarray
study of murine olfactory epithelium, and 1105 of them
were grouped into 4 classes based on the timing of their
initial changes. We further categorized these 1105 genes
into 41 fluctuation patterns. We also used simple dia-
grams to illustrate these fluctuation patterns and a series
of characters (1, 0, -1) to index these patterns. Although
the ANOVA F tests were significant, 129 genes cannot be
grouped into any of these 4 classes based on our criteria.
A significant ANOVA F test among a group of means indi-
cates that the largest contrast among all possible contrasts
is significant. Therefore, a gene with a significant F test
does not necessarily have a significant selected contrast.
Therefore the expression patterns of these genes should be
interpreted carefully.

The critical value  used to select significant

contrasts is the uniform upper bound for testing a com-
plete set of contrasts regardless of the correlation structure
among these contrasts. It is a conservative approach. For
planned linear contrasts, the most powerful bound can be
found based on the correlation structure of these contrasts
[31,32]. In general, the most powerful bound can't be
obtained without knowing the correlation structure
among the contrasts [33]. The uniform bound, however,
can be obtained from testing a complete set of orthogonal
contrasts using the Studentized Maximum Modulus Dis-
tribution [34]. In practice, although a little bit conserva-
tive, it is straightforward to use this uniform bound to test
all contrasts especially when the number of different com-
binations of contrasts is large.

Our methods emphasized the relative differences between
adjacent sampling time points and the direction of the dif-

M
new m vα , ,−2

Example diagrams to illustrate expression patterns of genes in Class IFigure 3
Example diagrams to illustrate expression patterns 
of genes in Class I. Mean signals (± SD) for genes Pdcd5, 
Cetn3, and Kit from Class I were plotted. Their expression 
levels were significantly altered at as early as 2 hr after OBX. 
Their subsequent expression patterns were different, which 
was indicated by the indices in each panel.
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Example diagrams to illustrate expression patterns of genes in Class IIFigure 4
Example diagrams to illustrate expression patterns 
of genes in Class II. Expression patterns of genes Ccl2, 
Csf3, and Bub3 from Class II were significantly altered initially 
at 8 hr after OBX, and each of these genes has a different 
fluctuation index.
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ferences. The information about exact magnitudes of gene
expressed at each time point was not included in our
methods. For example, two genes may have the same pat-
tern index 0 1 -1 0 0, but the magnitude of changes for the
two genes may be dramatically different. Therefore, even
for genes in the same index groups, their expression pat-
terns should be examined with care.

The temporal order in the data was considered in our
methods by the selection sequence but was not parame-
terized in our model. The information about the differ-
ences among sampling intervals were also ignored in our
analysis. With small sample sizes and non-uniform sam-
pling intervals, which are very common in biomedical
research, our methods may be more straightforward and
robust than those commonly in use. With large sample
sizes and relative uniform sampling intervals, other meth-
ods, such as regression analysis, mixture models, or
autoregressive models can be applied.

Conclusion
Linear models were adopted to describe microarray data,
and sequences of planned linear contrasts were used to
group genes into different expression patterns based on
their initial and subsequent changes in expression. Our
methods are particularly suitable for analysis of microar-
ray experiments in which it is often difficult to take suffi-
ciently frequent measurements and/or the sampling

intervals are non-uniform. Our methods can also be
extended to designs with more than one factor.

Methods
Microarray experiments
The goal of this study was to investigate the induction of
gene regulation at short time intervals (2, 8, 16, and 48
hrs) following deafferentation of olfactory sensory neu-
rons by target ablation (olfactory bulbectomy, OBX) com-
pared with sham controls [35]. Total RNA was isolated
from the olfactory epithelium of 3 male mice per time
point (1 GeneChip/mouse). Following hybridization
with Affymetrix GeneChips MG U74Av2, 3 chips per time
point (a total of 15 GeneChips), the signal intensities
were generated by Affymetrix Microarray Suite v5.0.

In our study, all positive control genes and genes that
resulted in "absent" calls for all chips across all time
points were removed from further analysis. If there was no
evidence that these genes were expressed in any of the
samples, then these genes can be removed to reduce prob-

Example diagrams to illustrate expression pattern of genes in Class IIIFigure 5
Example diagrams to illustrate expression pattern of 
genes in Class III. Expression patterns of genes Ptdss2, and 
Tfrc from Class III, which are unchanged at 2 hr and 8 hr, 
were first significantly altered at 16 hr after OBX, and each 
had a different fluctuation index.
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Example diagrams to illustrate expression patterns of genes in Class IVFigure 6
Example diagrams to illustrate expression patterns 
of genes in Class IV. Expression patterns of genes Casp6, 
Cd68 and Slfn4 from Class IV, were unchanged until the last 
time point sampled, 48 hr after OBX.

0 10 20 30 40 50

500

900

1300

1700

Casp6

0 10 20 30 40 50

500

1000

1500

2000

2500

Cd68

0 10 20 30 40 50

0

500

1000

1500

Slfn4

Time (hr)

S
ig

n
a
l

S
ig

n
a
l

S
ig

n
a
l

0 0 0 0 -1

0 0 0 0 1

0 0 0 0 1
Page 6 of 11
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:245 http://www.biomedcentral.com/1471-2105/7/245
lems associated with multiple comparisons. Other meth-
ods of removing low intensity points were also suggested
by Bolstad et al., 2003[36]. All ESTs were also removed
from the analysis because the primary aim of these exper-
iments was to identify known genes that were differen-
tially regulated; eliminating ESTs further reduced
problems with multiple comparisons. After data filtering
steps, 6464 genes remained, and the background-cor-
rected intensities of these genes were subjected to further
statistical analyses.

Algorithm and analysis
Statistical model
We use a linear model to describe the experiment. Let Yg
be the vector of observed expression levels for gene g, g =
1, ..., 6464 then

Yg = Xβg + εg

where X is the matrix of known constants, βg = (µg1, µg2, ...,
µgm), and m is the number of time points (m = 5 in this
study). εg is the random error, and we assume εg ~ MVN(0,
σg

2I).

Reverse Helmert series
A contrast is a linear combination of parameters for which
the coefficients sum to zero. A complete set of orthogonal
contrasts is a set of k-1 contrasts in k treatments (or treat-
ment combinations) which provides a complete parti-
tioning of the variability among parameters into mutually
exclusive and exhaustive parts. Each contrast in such a set
is orthogonal to every other remaining one [37]. One
commonly used complete set of orthogonal contrasts is
the reverse Helmert series, in which one treatment group
is compared with the average of all remaining treatment
groups. Subsequent contrasts eliminate the first group and
then proceed by comparing one of the remaining groups
to the average of the other remaining groups, as show
below:

One of the advantages of the Reverse Helmert contrasts is
that these contrasts are orthogonal and, hence, contrasts
among the sample means are uncorrelated. Basing tests on
uncorrelated contrasts avoids the problems inherent in
interpreting conditional tests. Adjacent Differences(AD)
are sometimes used to identify the point at which initial
gene expression occurs. However, these contrasts are not
orthogonal and consecutive contrasts have a correlation
of 0.5. Consequently, the probability of identifying the
correct threshold is lower for AD than for the Reverse
Helmert Contrasts.

Lββ =

−

−

− − −
−
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Genes shared the same expression pattern were grouped togetherFigure 7
Genes shared the same expression pattern were 
grouped together. Expression patterns of genes Cetn2 and 
Cetn3 from Class I are the same and therefore they were 
grouped together. Another example is genes Csf3 and Pdcd8 
from Class II which were put into one group because of the 
same expression pattern.
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Clustering genes based on the timing of their initial responses
The reverse Helmert series can test the following m-1
hypotheses sequentially:

Genes will be partitioned into m-1 classes based on the
testing results of H10 ~ Hs0, where s = m-1. Class 1 contains
genes that reject H10; genes that reject H20 from the
remaining list are grouped into class 2, and so on; Class s
includes genes that reject Hs0 without rejecting the previ-
ous s-1 hypotheses. Therefore Genes in Class 1 are consid-
ered to be early responding genes whose expression levels
are significantly altered during the first sampling interval,
that is, at the 2nd sampling time point. Genes that do not
change their expression levels until the 3rd sampling time
point are collected in Class 2, and so on. As indicated by
the described partition process, genes within a class share
the same timing of onset or cessation of expression.

Clustering genes within a class
Genes in each of these above m-1 classes can be further
classified based on their 'fluctuation' shapes at the subse-
quent sampling points. For gene g in class j, where j = 1, 2,
..., s, the following s-j contrasts are needed,

Therefore, a specific sequence of m-1 hypotheses will be
performed for each gene to determine its expression pat-

tern. Let  be the unbiased estimate of the contrast cor-

responding to the hypothesis , in a balanced

experiment with sample size n in each treatment group,
the statistic

where ci is the ith coefficient for the contrast, and i = 1, ...,

m. MSEg is the usual unbiased estimate of , and v = N-

m is the error degree of freedom (df), where N = mn.

Indexing gene expression patterns
Let the state of the first observation be 0, for gene g, its
expression profile can be transformed into a sequence of
expression fluctuation as follows:

where k = 1, 2, ..., s is an index, where k = r if it is the rth
contrast for gene g. S is the transformed value of the gene
expression profiles. Thus an m-time-point expression pro-
file is transformed into an m-1-state sequence of expres-
sion fluctuation consisting of a character set (1, 0, -1).
Each character in the sequence indicates whether the
mean expression level of the gene is significantly up-regu-
lated (1), not altered (0), or significantly down-regulated
(-1) at the next time point, while the whole sequence rep-
resents the fluctuation pattern of the gene expression.
Besides the pattern in which the gene's expression level is
unchanged throughout the entire sampling period, there
are at most 2 × 3m-k-1 fluctuation patterns for genes in Class
k. There are no more than 3m-1 patterns of expression in
total in an m-time-point microarray experiment.

Multiple testing control
An ANOVA F test was performed for each gene to identify
the differentially expressed genes. This F test is testing the
hypothesis µg1 = µg2, ..., = µgm, which is equivalent to test
the composite hypothesis Lβ = 0. The BH procedure of
controlling FDR at 5% was applied to the P values of the
F test. A cutoff point αnew, which is equal to the largest P
value considered to be significant, was determined by the
above BH procedure. By this procedure, each test for the
gene that rejected the F test is at least αnew level test.

For each selected gene, a specific sequence of m-1 con-
trasts was tested to determine its expression pattern. To be
consistent with the BH procedure performed, the family-
wise error rates (FWER) for these genes have to be control-
led at least at the level of αnew. In this study, we controlled
the maximum family-wise error rates (MFWER) by using
the Studentized Maximum Modulus distribution [34].
The following theorem in the Appendix outlined the con-
cern of gene-based controlling MFWER at the level of αnew.

Outline of the analysis
A short summary of the statistical methods used in this
study follows:
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1. Linear models were used to describe the data based on
the experimental design. For each gene, an ANOVA F test
was performed based on the described model, and the
corresponding P-value was obtained.

2. To adjust for multiple tests based on the large number
of genes, the BH method of controlling FDR [22] at 5%
was applied to the P-values obtained above, providing a
list of genes (list I) that exhibit significant differences
among the means of the 5 sampling points.

3. Using αnew, which equals the largest P-value determined

to be significant in step 2 as the cut-off point, we grouped
genes in list I into 4 classes based on the timing of their
initial responses by testing the reverse Helmert contrasts
sequentially. The Studentized Maximum Modulus distri-
bution parameter m-2 = 3 and v = 10 were used in this

example study, where αnew = 0.009545 and 

= |M0.009545,3,10| = 3.8651.

4. Using the same critical value , we further

clustered genes in each of the above classes by testing
appropriate contrasts for the subsequent sampling time
points.

5. Based on the results of the m-1 contrasts for each gene,
we also can select genes which share similar pattern of
expression for any number of sampling intervals from the
beginning.

Statistical software
We used the SAS (version 9.0) proc GLM procedure to do
model fitting and significance analysis. The SAS program
implementing linear models for the olfactory sensory epi-
thelia data is available [38].
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Appendix
Theorem For any balanced one-way model with m treat-
ment groups and assuming normality and equal variance
σ2, Let λ1, λ2, ..., λk be an arbitrary complete set of con-
trasts such that

Under the null hypothesis, let P be the distribution of the

vector λ = [λ1, λ2, ..., λK] with mean 0 and covariance

matrix ∑, let PK be the distribution of the vector of a com-

plete set of contrasts  with the covari-

ance matrix ∑K = Iσ2 is the diagonal of ∑ then the gene

based maximum family-wised error rate (MFWER) at any

level of α of testing a specific sequence of contrasts (list in
the Methods) after rejecting the overall F test is achieved
by comparing |Ti| with |Mα,k-1,v|, where v is the df of error,

and |Mα,k-1,v| is the 100(1 - α) percentile from the Studen-
tized Maximum Modulus distribution.

Proof Let λ1, λ2, ..., λK be any complete set of contrasts,
then let

V0 = {0 ≤ i ≤ K: λi = 0} and

V1 = {0 ≤ j ≤ K: λj ≠ 0},

let test function

(1) Suppose V1 is empty such that λi = 0 ∀i, then MFWER
is

(2) V0 is empty such that λi ≠ 0 ∀i, then MFWER is 0.
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(3) Suppose that neither V0 nor V1 is empty, then MFWER
is

under PK, based on Sidak's inequality (8) [39],

 has a Studentized Maximum Modulus dis-

tribution [34] with parameter K-1 and v, let

MFWER = α*(α, m - 1, v) = max{α(α, m - 1, v)} = α,

then q = |Mα,K-1,v| is the 100(1-α) percentile from above
distribution.
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